• Non ci sono risultati.

Long lasting effects of the conversion from natural forest to poplar plantation on soil microbial communities

N/A
N/A
Protected

Academic year: 2021

Condividi "Long lasting effects of the conversion from natural forest to poplar plantation on soil microbial communities"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Microbiological

Research

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r e s

Long

lasting

effects

of

the

conversion

from

natural

forest

to

poplar

plantation

on

soil

microbial

communities

Francesco

Vitali,

Giorgio

Mastromei,

Giuliana

Senatore,

Cesarea

Caroppo,

Enrico

Casalone

DepartmentofBiology,UniversityofFlorence,ViaMadonnadelPiano6,SestoFiorentino,50019Florence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received3April2015

Receivedinrevisedform8September2015 Accepted10October2015

Availableonline20October2015 Keywords: T-RFLP Forestsoil Land-use Bacterialcommunities Fungalcommunities

a

b

s

t

r

a

c

t

Inthisstudy,weevaluatethelong-lastingeffectsonsoilmicrobialcommunitiesofachangewithina

singleland-usecategory,specificallytheconversionfromnaturalforesttoforestplantation.Tominimize

theeffectsofimpactsotherthanland-use(i.e.,climaticandanthropogenic),wechosethreesiteswithin

aNaturalPark,withhomogeneousorographicandsoiltexturecharacteristics.Wecomparedmicrobial

diversityinatotalof156soilsamplesfromtwonaturalmixedforestsandasimilarforestconvertedto

poplarplantationaboutthirtyyearsago.Thediversityandstructureofbacterialandfungalcommunities

wereinvestigatedbyterminalrestrictionfragmentslengthpolymorphism(T-RFLP)analysisofthe

16S-rRNAgeneandtheITS-rDNAregions,respectively.Bacterialandfungalcommunitiesfromtheforest

plantation,comparedtothosefromnaturalforestsoils,showeddifferentcommunitystructureandlower

␣-diversityvalues,consistentlywiththesignificantlyhigherpHvaluesandlowerorganicmattercontent

ofthosesoils.␤-diversityvalues,thenumberofmeasuredandestimateddominantOTUs,andtheir

distributionamongthethreesitesshowedthatmicrobialcommunitiesfromthetwonaturalforestswere

muchmoresimilartoeachotherthantheyweretocommunitiesfromthepoplarplantation,suggestingan

effectoftheforestconversiononthecompositionanddiversityofsoilmicrobialcommunities.␣-diversity

incultivatedforestsoilshadnarrowertemporalfluctuationsthaninnaturalforestsoils,suggestinghigher

temporalstabilityofmicrobialcommunities.Overall,wedemonstratedthattheconversionfromnatural

foresttoforestplantationalteredsoilmicrobialcommunities,changingtheirstructure,loweringtheir

diversity,andcausingaspatialandtemporalhomogenization.

©2015ElsevierGmbH.Allrightsreserved.

1. Introduction

Soilmicrobial communitiesare akey componentof the for-estecosystem;theyareinvolved infundamentalprocesses,like decomposition and nutrient cycling, and perform a link role betweenplantsandecosystemfunctions(Zaketal.,2003;Vander Heijdenetal.,2008;BardgettandWardle2010).Theinfluenceof thetreetypeonmicrobialcommunitystructureandfunctionwas supportedbya numberof differentreports (Myersetal.,2001; Hackletal.,2004;Bastiasetal.,2007;Schweitzeretal.,2008;Berg andSmalla2009;Wubetetal.,2012;Wangetal.,2013).Inturn, belowground-livingmicroorganismshavebeendemonstratedto influence, directly or indirectly, the productivity,diversity and compositionofplantcommunities(VanderHeijdenetal.,2008; Waggetal.,2011).

∗ Correspondingauthor.Fax:+390554574735. E-mailaddress:enrico.casalone@unifi.it(E.Casalone).

With200millionha(10millionofwhichinItaly),forests repre-sentthemajornaturalvegetationcoverinWestEurope(31.5%of thelandarea,5%oftheworld’sforests);aquarteroftheseforests areofthemixedtype.Despiteapositivereforestationtrend,risks forEuropeanforesthealthandvitalityseemontheincrease,mainly duetoanthropicimpact(MCPFE,2007).Despitethefundamental issueofnatureconservationandbiodiversitypreservationofforest sitesandtherecognizedimportantrolethatmicrobial communi-tiesplayinthefunctioningofforestryecosystems,veryfewstudies haveinvestigatedtheeffectsonmicrobialdiversityofforest man-agementandforestconversioninapreservednaturalenvironment (Nackeetal.,2011).Recently,thedeforestationofAmazon rain-forests(DaCJesusetal.,2009;Rodriguesetal.,2013)orofpristine forestsinthePampabiome(Suleimanetal.,2013)toobtainpasture siteshasbeenreportedtoaltermicrobialdiversityandcommunity structureofsoilmicroorganisms.Farlessattentionhasbeenspent ontheeffectthatachangewithinasingleland-usecategory,such astheconversionfromnaturalforesttoplantedforest,haveon soilmicrobialcommunities;withtheresultthatthisspecialcase http://dx.doi.org/10.1016/j.micres.2015.10.002

(2)

offorestland-usechangeisstillpoorlyunderstood(Nackeetal., 2011),especiallywithrespecttofungi.Veryrecently,twostudies reportedthatconversionfromnaturalforesttoplantationforest,in thePampabiome(Lupatinietal.,2013)andinSoutheastAsian trop-icalforest(McGuireetal.,2014),alterthebelow-groundecosystem, andultimatelyaffectthemicrobialcommunitiesresidentinthesoil. Theconversionofnaturalforeststooilpalmplantationisreported toaffectthecompositionofbothbacterialandfungalcommunities (Lee-Cruzetal.,2013;Kerfahietal.,2014).Asplantationforests intheworldaccountedforaround7%ofglobalforestcover,and areprojectedtocontinuetoincreaseintheforeseeablefuture;a wealthofsoilmicrobialdiversity,aswellastheenormousandstill untappedpoolofbiologicalresourcestheyconstitute,couldbeat risk;especiallyinhotspotofplantdiversity,suchasthe Mediter-raneanarea(Myersetal.,2001).

Themainobjectiveofthepresentworkwastostudytheeffects thata changewithina singlecategory ofsoil land-use, specifi-callya long-term(about 30 years old)conversionfrom natural mixedforesttopoplarplantation,hadonsoilinhabiting micro-bialcommunities.Duetothelongtimesincetheconversiontook place,we expecttodetectlong lasting, andalmost permanent, effects.Withthisaim,thestructure,and␣-diversity(insideeach studysite)and␤-diversity(betweendifferentstudysites)of bac-terialandfungalcommunitiesfromthesoilofaconvertedpoplar plantation and two natural forests were compared. The three forestsites werelocatedwithin a natural park(Migliarino–San Rossore–MassaciuccoliRegionalPark,Tuscany,Italy),notfarfrom each other, in a climatic,orographic and soil texture homoge-neouslandscape.Inthiswaynaturalandanthropiceffects,other thanthoselinkedtotheconversion,wereminimized.To charac-terizemicrobialcommunities,weusedacost-effectiveandrapid techniqueofDNAfingerprinting,theterminalrestrictionfragment lengthpolymorphism(T-RFLP) analysis.T-RFLPhasbeenwidely usedforstudyingmicrobialcommunitystructure anddynamics (Osbornetal.,2000),andhasbeenrecentlyre-evaluatedforthe estimation of microbial community diversity (Van Dorst et al., 2014). Secondarily,therelationships that microbial community structureanddiversityhadwiththephysicochemicalproperties ofthesoilsand withseasonalitywasanalyzedtorecognizethe contributionthatotherfactorshadbeyondland-useconversion.

2. Materialsandmethods

2.1. Sitedescriptionandsoilsampling

The study area is located inside the Migliarino–San Rossore–Massaciuccoli Regional Park (latitude 43◦35–43◦51,

longitude 10◦15–10◦22, approximately; mean altitude 4m), which ranges along the Tyrrhenian Sea between the cities of ViareggioandLivorno(Tuscany,Italy),andbelongstothe Mediter-raneanclimatetype.Thestudywasconductedinthreedifferent field sites withinthe Park (Table1).Sites 1 (anapproximately 7000m2 large meso-hygrophilic/hygrophilic deciduous forest)

and site 3 (an approximately 118,000m2 meso-hygrophilic

deciduousforest)wereoldnaturalmixed-deciduousforeststhat untilmid-1970’sweresubjectedtocontrolledlogging,afterthat theywereleftundisturbed.Site 1and3 are8300mapart each other,in thenorthandsouthofthePark,respectively.Site2(a 28,000m2 plantedforest)wasa mature15 years old (in2010)

poplar plantation never subject to any agriculturalpractice; it is325mapartfromsite1towardnorth.Site 2wasoriginallya naturalhygrophilicmixed-deciduousforest,converted topoplar plantation;aerialphotosofthissite(includingalsosite1)placed thefirstestablishmentofapoplarplantationbetween1978and 1982(Fig.1).Plantsinthethreesiteswereidentifiedand georef-erencedIndividual soilsamples wereseasonally collectedfrom georeferenced trees, using a bulb planter (10cm wide×15cm depth),atabout20cmfromthetrunk;foreachtree,samplesat differentseasonswerecollectedatspotsnotdisturbedbyprevious sampling activities.A total of 156 soil samples were collected fromsoilsassociatedwithdifferenttrees:sevennaturalpoplars (5Populusalbaand2Populuscanescens)insite1,fromAutumn 2010toSummer2012;fourcultivatedpoplars(hybridTriploclone Populus nigra×Populus deltoids) in site 2, from Spring 2011to Summer2012;andelevenmaples(Acercampestre)insite3,from Winter2011toSummer2012.Individualsoilsampleswereplaced separatelyinsterileplasticbagsandimmediatelystoredat5◦C; thesamedaythesampleswerebroughttothelab.Eachindividual samplewas sequentiallysieved through5mmand 2mm pores sizestainlesssteelsieves.Thesievedsoilfromeachsamplewas splitintofouraliquotsthatwerestoredat4◦C,fortotalmicrobial counts,moisturecontent,pHdeterminationandlossonignition measure;a furtheraliquot was stored at −80◦C for molecular

analysis.

Rainandairtemperaturevalues,measuredbytwo meteorolog-icalstationsplacedaspartoftheLIFE08NAT/IT/00342-DEMETRA project,havebeenaveragedovera7daysperiodbeforethe sam-plingdates.

2.2. Analysisofsoilchemistry

Sampling sites were classified as follow: site 1, Humic Eutrudepts,coarsesand,mixed,thermic;site2,coarsesand,mixed, thermic;site3,FragicHapludalfs,fine,mixed,thermic.Dataforsite

Fig.1.Aerialphotography,executedbyRossi–Brescia(Italy),ofSite2in(a)1978(folderc0117,swipe29,frame412),and(b)1982(folderc0233,swipe3a,frame335). ImagesCourtesyoftheGeneralCartographicarchiveoftheTuscanyRegion.

(3)

Table1

Characteristicsofthesamplingsites.

Site Area(m2) Forestmanagement Meandistancesbetweenarea(m) Meandistancesbetweentrees(m) Sampledtreesa No.ofsamples Samplingdensityb

1 7,000 Natural 1–2(325) 51 PN 7 23.3%

2 27,745 Cultivated 2–3(8,250) 7 PC 4 N.d.

3 118,000 Natural 3–1(8,310) 217 A 11 4.12%

a PN—Populusalba;PC—Populusnigra×Populusdeltoids;A—Acercampestris.

bPercentageofsampledtreesonthetotalnumberoftreefromthesamespeciesinthatsite.

1and3werefrommapunitsdated2002;site2wasnotinthese mapsandwasdefined,atthetimeofthesamplingcampaign,for soiltextureonly.

Forphysicochemicalanalysis,allthesoilsamplesfromeachsite ineachseasonwerepooledtomakeasinglecompositesample;a totalof21compositesoilsampleswereanalysed(eightfromsite1, sixfromsite2,andsevenfromsite3).Gravimetricwatercontent, organicmatter(OM)content,andpHweredeterminedon com-positesoilsamples.Gravimetricwatercontentwasdeterminedas weightlossafterover-dryingthefreshlysievedsoilat105◦Cfor 24h.WeightpercentageOMwasdeterminedonover-driedsoils bythelossonignition(LOI)procedureinamufflefurnaceat550◦C for24h(Heirietal.,2001).pHwasmeasuredonsievedair-dried soilsamplesmixedtodeionizedwateratratioof1:2.5(w/v);the mixturewasshakentoformaslurryandleftundisturbedfor15min priortowithdraw70␮Lofsupernatanttobeanalysedbya micro-electrode (Ross® pHmicroelectrode,ThermoScientific;Beverly, MA,USA).

2.3. Viablecounts

To determinate the number of viable bacteria and fungi in thesoil, five grams of each individualsieved soilsample were placedinaseparatesterileplasticbagwith50mLofsaline solu-tionand processedby Stomacher® 400Circulator(Seward, UK) for3minat260rpmtoensurethedetachmentofmicroorganisms fromsoilparticles.After15minsedimentation,the suspension-supernatant from each soil was serially diluted and plated in triplicate (0.1mL) on Soil ExtractAgar Medium with cyclohex-imide(1␮g/mL)andonRoseBengalChloramphenicolAgarBase (Oxoid,Basingstoke,England)withchloramphenicol(0.1␮g/mL), forselectivegrowthofbacteriaandfungi,respectively.Plateswere incubatedforthreedaysat37◦Cand30◦C,respectively;onlyplates containingbetween30and300coloniesweretakenin consider-ationtocalculateviabilityasColonyFormingUnits(CFU/gofdry soil).Soil-extractagarmediumcontained100ml/Lsoilextract,1g/L glucose,1g/Lyeastextractand15g/Lagar.Thesoilextractwas pre-paredbymixing500gofsoilwith1Lofwater;themixturewas autoclavedat121◦Cfor1h.Thesterilizedsoilmixturewasfiltered throughgauzeandthencentrifugedfor15minat6000rpm.The supernatantwasfiltratedthrougha0.2-␮mmembranefilterand thepHwascorrectedto7.0.

2.4. SoilDNAextractionandpurification

TotalDNAwasextractedfrom250mgaliquotsofeachofthe156 individualsoilsamplesusingNucleoSpinSoilkit(MachereyNagel, Düren,Germany),withLysisBufferSL2and150␮Lof Enhancer SX.,ExtractedDNAswerefurtherpurifiedbyPowerClean® DNA Clean-UpKit(MachereyNagel,Düren,Germany).

2.5. PCRamplificationofgenomicDNAfromsoil

TotalDNAextractedfromeachofthe156individualsoil sam-ples was used for PCR amplification of the bacterial 16SrDNA gene and theITS1 and ITS2 internally transcribed spacers(ITS

region)offungi.PCRreactionswereperformedwith10ngof tem-plateDNA in a final reactionvolumeof 25␮LwithDreamTaq Buffer(containing20mMMgCl2—ThermoFisherScientificGmbH,

Karlsruhe, Germany), 0.2mM ofeach dNTP(EuroClone, Milano, Italy),1␮Mofeachprimer,1UofDreamTaqpolymerase(Thermo FisherScientificGmbH,Karlsruhe,Germany).Bacterial16SrDNA genes wereamplifiedusing thefluorescently labelled27F-FAM (5-[6FAM]- AGAGTTTGATCCTGGCTCAG-3) and the 1525R (5 -AAGGAGGTGWTCCARCC-3)primers(Osborneetal.,2005);fungi ITSregionswereamplifiedwiththefluorescentlylabelled ITS1f-(5-[6FAM]-CTTGGTCATTTAGAGGAAGTAA-3)andITS4r(5 -[PET]-TCCTCCGCTTATTGATATGC-3)primers(Gardesand Bruns1993). Bacterialamplificationreactionconsistedofaninitial denatura-tionstepat95◦Cfor5min,5cyclesat95◦Cfor30s,60◦Cfor30s, 72◦Cfor2min,then5cyclesat95◦Cfor30s,55◦Cfor30s,72◦C for2min,followedby25cyclesat95◦Cfor30s,52◦Cfor30s,72◦C for2minandafinalextensionat72◦Cfor10min.Fungal amplifi-cationreactionconsistedofaninitialdenaturationstepat94◦Cfor 5min;34cyclesat94◦Cfor1min,52◦Cfor1min,72◦Cfor2min andafinalextensionat72◦Cfor10min.16SrDNA(approximately 1500bp)andITSregion(variablesizes)PCRampliconswere puri-fiedbyWizard®SVGelandPCRClean-UpKit(Promega,Madison, Wisconsis,USA)fromgelafterelectrophoresisona0.8%agarose gelordirectlyfromtheamplificationreaction,respectively. 2.6. Geneticprofilingofmicrobialcommunities

Thediversityofthedominantmembersofbacterialand fun-galdomainswascharacterizedbygeneticprofilingusingterminal restrictionfragmentlengthpolymorphism(T-RFLP).16SrRNAPCR amplicons(0.6–1␮g)weredigestedwith20unitofRsaIrestriction enzyme(ThermoFisherScientific,GmbH,Karlsruhe,Germany)ina finalvolumeof20␮L,at37◦Cfor4h;thedigestionwasterminated byheatingat80◦Cfor20min.ITSregionPCRamplicons(0.1␮g) were digested with 6 unit of HinfI restriction enzyme (Roche, Basilea,Switzerland)inafinalvolumeof20␮L,at37◦Cfor4h;the digestionwasterminatedbyheatingat65◦Cfor20min.Thelength ofthefluorescentlylabelledterminalrestrictionfragments(T-RFs) wasdeterminedwithanAppliedBiosystems®3500SeriesGenetic AnalyzerautomatedsequencerusingLIZ500(AppliedBiosystems, FosterCity,California,USA)sizestandardasadimensional stan-dard. T-RFsprofiles were analysed with GeneMapper software (AppliedBiosystems,FosterCity,California,USA).Fixedthresholds of50and100RFUwereusedtoremove baselinenoise forblue channel (6FAM-labeled primers) and red channel (PET-labelled primer),respectively.AlignmentofT-RFspeakswasautomatically performedbythesoftwareandmanuallychecked.

2.7. Dataanalysisandstatisticalmethods

All data elaborationsand analysis werecarried out using R Statisticalsoftwareversion2.15.1(RCoreTeam,2013)withthe packageVegan(Oksanenetal.,2013)andggplot2(Wickham,2011). FortheanalysesoftheT-RFLPprofilesofbacterialandfungal communitiesinthesoilsamples,onlyT-RFpeakswithheightabove the fixed threshold were considered. Biodiversity analysis was

(4)

Fig.2.Physicochemicalcharacterizationandmicrobialabundanceofsoilsfromthethreestudysites.(a)pH(b)relativeorganicmatter(OM)content(c)relativehumidity(d) fungalviablecounts(e)bacterialviablecounts.Dataina–caremeasuredonpooledsoil,whiledataindandearemeanseasonalvalues.Boxesrepresentinterquartilerange (IQR),medianvaluesareindicatedbytheblacklines,andpointrepresentoutliers.SignificanceofT-Testbetweensitesisreportedundereachplot:**p<0.01;*p<0.05;NS notsignificant.

performedonnormalizedT-RFLPprofiles.Normalizationwasdone bymeasuringtherelativeabundanceofeachindividualT-RFina profileanddividingitspeakareabythetotalpeakareaoftheprofile. Theoverallbacterialandfungal␣-diversitywasevaluated mea-suringphylotyperichness,S=numberofT-RFs;Shannon–Wiener index,H=−



pilogepi(Shannon,1948),Simpson’sindexof

diver-sity,D=1−



pi2(Simpson,1949),wherep

iistheproportionof

speciesi;andShannonevennessindex,E=H/logS,thatisequality ofphylotypeabundanceinacommunity.␤-diversitywas calcu-latedusingBray–Curtisdissimilarityindex,BCij=2Cij/(Si+Sj)where Cijisthesmallervalueofspeciessharedbetweensiteiandj,while CiandCjaretotalspeciesnumberinsampleiandsamplej respec-tively.TheindexwascalculatedbycomparingcumulativeT-RFLP profilesobtainedbycalculatingthemeanareaofeachT-RFinthe T-RFLPprofilesofallthesamplesineachsite;thecumulative pro-fileswerethennormalized(seeabove)andT-RFswitharelative area<0.01 wereeliminated.Toestimatetheeffects ofland-use on␤-diversitywithineach sitewe usedthesameprocedureas inLee-Cruzet al.(2013).Firstlywe measure␤-diversity asthe Bray-CurtisdistancebetweensingleT-RFLPprofiles,andthenthe betadisperfunctionintheVeganpackage wasusedtotest ifthe multivariatedispersionof␤-diversity(measuredasthedistance fromgroupcentroid)wasstatisticallydifferentamongdifferent landuses,using999permutations.

To estimate true phylotype richness in each site, individ-ual T-RFLP profiles were further inspected with Chao1 index, Chao=S+a12/2a2 where a1 and a2 are the number of species

occurringonlyinoneoronlyintwosites(Chao,1984),and phylo-types(T-RFs)accumulationcurves(Hughesetal.,2001).Ordination analysisofT-RFLPprofilestookintoaccountonlyqualitative infor-mationaboutpresence/absence of T-RFswithheightabovethe fixedheightthreshold.Adissimilaritymatrixwascomputedusing Sørensenindexonthepresence/absencematrixandusedasinput forordinationanalysisofmicrobialcommunitieswithUnweighted

Pair Group Method with Arithmetic mean (UPGMA) clustering andwithNon-parametricMulti-DimensionalScaling(nMDS)with 100randomstarts.Environmentalvariables(cumulativerainand airtemperature), soilchemistry variables(OM,pH,and relative humidity),andmicrobialabundancedata(log10ofviablecounts)

werefittedontothenMDSordinationusingenvfitfunctioninVegan package.Thesignificanceoffittedvectorswastestedusing999 per-mutations.TheAnalysisofSimilarities(ANOSIM)wasusedtotest spatialandseasonalvariabilityofthesoilmicrobialcommunities (Reesetal.,2004).

3. Resultsanddiscussion

3.1. Physicochemicalpropertiesandmicrobialabundanceinsoils acrossland-use

Resultsofphysicochemicalcharacterizationofcomposite sea-sonalpoolsofsoilsfromthethreesitesarereportedinFig.2.Soilsin site2showedthehighestpHvaluesandthelowestorganicmatter contentandhumidityvalues.Differencesamongsitesweretested withtwo-sampleT-test(Fig.2).pHwastheonlyparameterthat showedstatisticallysignificantdifferencesinallcomparisons(Site 1vs.Site2:t=6.623,p=<0.001;Site1vs.Site3:t=2.861,p=0.017; Site2vs.Site3:t=7.336,p=<0.001),whereasdifferencesinOM contentwere(highly)significantonlywhencomparingsite2with theothertwosites(Site1vs.Site2:t=6.421,p=<0.001;Site1vs. Site3:t=−1.804,p=0.095;Site2vs.Site3:t=−8.812,p=<0.001), andsoilrelativehumiditywassignificantlydifferentonlybetween site2and1(Site1vs.Site2:t=3.019,p=0.011;Site1vs.Site3: t=1.393,p=0.187;Site2vs.Site3:t=−1.838,p=0.095).Overall, compositesoilfromthepoplarplantationinsite2differedfrom naturalforestsoils(site1and3)morethanthelatterdifferedfrom eachother.

(5)

Fig.3. ␣-diversityanalysisofbacterialandfungalcommunitiesfromsoilsofthethreesites.LettersindicatesresultsofPosthocTukey’stest.

Microbialabundanceresults,evaluatedbyviablecountsin indi-vidualsoilsamples fromthethree sites,are reportedin Fig.2. Thenumberof cultivablebacteriawasalwaystwo-threeorders ofmagnitudegreaterthancultivablefungi.Whilebacterialviable countsweresimilarinthethreesites,fungalviablecountsinsite 1 and 3, were similar to each other, but lower than in site 2, withsite2and3showingastatisticallysignificantdifference(Site 2 vs.Site 3:t=2.342, p=0.047). Viablecounts in site 2 always showedthegreatestvariability.Toinvestigatetheoriginofthis variability,thedependencyofthecultivablecomponentof micro-bialcommunitieswithtemporalandspatialfactorswastestedwith Kruskal–Wallistest(TableS1).Thetestindicatedthat,withinthe samesite,quantitativefluctuationsofculturablecomponentsof microbialcommunitiesineachofthethreesiteswerenotlinked tospatialfactors(soilsamplesassociatedtodifferentindividual trees)but,withtheexceptionofbacterialcommunitiesinsite3,to temporalfactors(soilsamplesatdifferentseasons).

Overall,theabovereportedresultssuggestedthatthe conver-sionfromnaturalforesttoplantedforestwasassociatedtolong lasting modifications of the physico-chemicalcharacteristics of soil:poplarplantationsoilsweremorealkalineandwithreduced organicmattercontent.SoilpH,inparticular,isaparameterthat correlatesandintegrateslotsofsoilproperties,andrepresentsa well-knownfactorinfluencingcompositionanddiversityof micro-bialcommunities(Lauberetal.,2009;Rousketal.,2010).Moreover, theconversionfromnaturaltoplantedforestinfluenced,directly

orthroughthemodificationofsoilphysico-chemicalproperties, thecultivablecomponentofmicrobialcommunities,determining anincreaseincultivablefungiandahigherseasonalinstabilityof bothbacteriaandfungiinthepoplarplantation(site2)compared tonaturalforests(site1and3).

3.2. Microbialcommunitydiversityanalysis

Microbialcommunitiesdiversityandstructurewereanalyzed usingT-RFLPofamplified16SrDNAfromsoilsamples.Evenif phy-lotypesderivedfromT-RFLPmaynotbeequivalenttospecies,they doprovideabasistoestimate␣and␤diversity,andcommunity structureofsoilmicrobialpopulationsthroughspaceandtime(Van Dorstetal.,2014).

3.2.1. ˛-Diversityanalysis

Results of ␣-diversity analysis of bacterial and fun-gal communities in the three sites are reported in Fig. 3. Bacterial communities from soils of the cultivated poplar in site 2 had lower ␣-diversity values (richness, S=18; Shannon Index, H=2.31)compared tosites 1(S=22;H=2.51) andsite3(S=21;H=2.39),whereasEvennessvaluesweremore similar (E=0.82, E=0.80, and E=0.79 in site 1–3, respectively). ANOVA analysisshowed that among-sites differences in bacte-rial ␣-diversity were always significant(Richness F(2,153)=4.49,

(6)

Fig.4. SpeciesaccumulationcurvesofbacterialcommunitiesinsoilsfromSite1–3.Theerrorbarsare95%confidenceinterval.HorizontallinesrepresentChao1richness estimatorvalues.

p=0.008; and Simpson F(2,153)=4.87, p=0.005). Similarly to

bacteria,fungalcommunities fromsoilsofthecultivatedpoplar insite 2 had lower ␣-diversityvalues (richness, S=9;Shannon Index,H=1.91)comparedtosites1(S=12;H=2.12)andsite3 (S=11; H=2.06), whereas Evenness values were more similar (E=0.86,E=0.86,andE=0.87insite1–3,respectively);however, onlyrichnessresultedsignificantlydifferentamongsites(Richness F(2,153)=4.00,p=0.020;EvennessF(2,153)=0.09,p=0.914;Shannon

F(2,153)=1.73, p=0.180;andSimpsonF(2,153)=0.18, p=0.835).The

relative high values of Evenness indicated equal contributions of dominantphylotypesof bacteria and fungito ␣-diversity in thethree sites. Whenanalyzed bya Post hoc Tukey’stest, the abovereporteddifferencesbetweensite2andsites1and3were particularlyevidentwithregardtobacterialrichnessandShannon index,andwerealsopresentinfungirichness(lettersinFig.3). Overall,thesedatahighlightedaneffectofland-useconversionin thesenseofadeclineinbacteriaandfungicommunityrichness. Similarreductions offungal richness wereobserved in tropical forestconverted tooilpalmplantationinBorneo(Kerfahietal., 2014)andindeadwoodsamplesofforestconvertedfromnative deciduous to coniferous species in a German study (Purahong

etal.,2014).Thislaststudyalsohighlightedthatthemodifications infungalcommunitystructureanddiversitymaybedependenton whichconiferousspecieswasintroduced.Figs.4and5show rich-nessestimationforbacterialandfungalcommunities,respectively. Richnessestimation in thenatural forestsin sites1 and 3 was almostidentical(around100bacterialand150fungalphylotypes) andhighercomparedtosite2(around50bacterialand100fungal phylotypes).Thesedifferencesinrichnessestimationdidnotseem tobeduetoundersamplingproblemsinsite2;infact,despitethe lowernumberofsamplesanalyzed,bacterialpopulationsinsite 2weretheonlyonesapproachingtheChaoIindexvalue(which representanestimationoftruerichness).Moreover,atasample sizeof24(themaximumforsite2),theerrorbars(representing 2timesthestandarddeviation)ofthephylotype(T-RF) accumu-lationcurvesinsite2neveroverlappedwiththoseofsite1and 3.This,althoughnotbeingtheresultofaproperstatisticaltest, wasa goodindicationof significantdifferencesinthemicrobial richnessbetweenthecultivatedforestin site2 andthenatural forests.Theestimatednumbersoffungalphylotypeswasalways higherthanbacterial,aresultthatapparentlyconflictedwiththe higherrichnessofbacteriacomparedtofungi(Figs.2and3),but

Fig.5.SpeciesaccumulationcurvesoffungalcommunitiesinsoilsfromSite1–3.Theerrorbarsare95%confidenceinterval.HorizontallinesrepresentChao1richness estimatorvalues.

(7)

Table2

Comparisonofsimilarity(ANOSIM)resultsintestingthe“site”groupingfactoron cumulativeandindividualT-RFLPprofilesdata.Cumulativedatawereaveragedsite profiles. T-RFLPprofiles ANOSIM Bacteria Fungi R P R P Individual 0.07 ** 0.45 ** Cumulative 0.53 ** 0.92 ** Significance:**p<0.01.

thatcouldbeexplainedbyhigherwithin-sitediversityoffungal communities(seealsoANOSIManalysisinTable2andbelow).

Thesite-distributionofT-RFs,correspondingtodominant (T-RFswitharelativeheight>0.01)bacterialandfungalphylotypes (OTUs),isshowninFig.6.ThenumberofdominantOTUsinsite2 waslowerthaninsite1and3:41,48and46bacterialOTUsand46, 49and49fungalOTUs,respectively.ThenumberofT-RFsshared amongallsites,wasmuchlowerinfungalcommunities (10/99, 10%)thaninbacterialones(31/60,52%).Theseresultsarein con-trasttowhatobservedinastudyonnativebeechforestsandbeech forestsconvertedtoconiferforeststhatreported56–60%ofshared fungal OTUs,defined by DNA fingerprintinganalysis (Purahong etal.,2014).TheT-RFssharedamongthethreesitesofthislast studyconstitutedacoremicrobialcommunitythatdidnotseemto sufferanyinfluenceofland-use,edaphicconditions,andtree-type association.Inourstudy,theconvertedsite(Site2)hadthelower numberofbacterial(7.0%)andthehighernumberoffungal(52%) site-exclusiveT-RFscomparedtosite1(10%and38%,respectively) andsite3(17%and36%respectively),andalwayssharedagreater numberofT-RFswithsite1thanwithsite3.

Theseresultsstronglyindicatedthatthethreesitesnotonly dif-feredinthephysicochemicalcharacteristicsofsoilandinmicrobial diversity,butalsoinmicrobialcomposition.However,site2 dif-feredfromtheothertwositesmorethantheydifferedfromeach other,suggestingtheoccurrenceofamajorshiftinitsmicrobial compositionastheresultoftheconversionfromnaturalforestto poplarplantation.Purahongetal.(2014),applyinganARISADNA fingerprintinganalysistostudytheconsequencethatthe conver-sionfromnative,deciduousforesttoconiferousforestinGermany hadonthediversityand compositionoffungal communitiesin deadwood,reportedsimilaralterations,and statedthatchanges withinasingleland-usecategorycanberegardedasamajorthreat tofungaldiversityintemperateforestecosystem.Conversely,ina study,performedbyPCR-DDGE,ontheeffectsoftheconversionof naturaltropicalrainforestsinUganda,theauthorsreporteda rela-tiveresilienceofsoilmicrobialcommunitiestoforestconversionat alocalscale(Aleleetal.,2014).Differencesinthekindofland-use change,insoiltype,inanalyticalmethodusedtoinvestigatethe microbialcommunities(i.e.,onresolutionanddepthofthe imple-mentedanalysistechnique),andingeneralfeaturesofthespecific biomesubjectofthestudy,couldpartiallyexplainthecontradictory resultsofthesestudies.

Assite2differedfromsite1(wheresoilsassociatedtonatural poplarsweresampled)lessthanfromsite3(wheresoilsassociated to natural maples were sampled), a tree-type effect on phylo-typescompositioncouldbealsohypothesized.Indeed,significant plantspecificeffectsonmicrobialcommunitystructurehavebeen reportedbyanumberofstudies(Myersetal.,2001;Hackletal., 2004;Bastiasetal.,2007;BergandSmalla2009;Wubetetal.,2012; Wangetal.,2013).

3.2.2. ˇ-Diversityanalysis

Bray-CurtisdistancebetweenindividualT-RFLPprofileswithin eachsite(within-site␤-diversity)wascalculatedtodeterminethe

Fig.7.Distancetogroupcentroid(estimationof␤-diversity)ofbacterialandfungal communitiesinthethreesitesbasedonBray–Curtisdissimilarity.

effects ofland-useconversiononthespatialturnoverof micro-bialcommunities.Meanvaluesofwithin-site␤-diversity(␤)for bacterialcommunitieswere:site1,ˇ=0.673(SD=0.171);site2, ˇ=0.569(SD=0.196);site3,ˇ=0.670(SD=0.186).Two-sample t-testshowedthattheonlystatisticallysignificantdifferenceswere between site 2 and sites 1 and 3 (Site 1 vs. Site 2:t= 8.253, p=<0.01;Site 1vs. Site 3:t=0.603, p=0.546;Site 2vs. Site 3: t=−8.166, p=<0.01).Meanvalues ofwithin-site ␤-diversityfor fungal communities were: site 1, ˇ=0.838 (SD=0.113); site 2 ˇ=0.837(SD=0.151);site3ˇ=0.815(SD=0.130).Differentlyfrom bacteria,whenappliedtofungaldata,two-samplest-testshowed thattheonlystatisticallysignificantdifferencewasthatobserved betweensites1and3(Site1vs.Site3:t=5.8362, p=<0.01;Site 2vs.Site3:t=2.339,p=0.02;Site1vs.Site2:t=0.110,p=0.912). Fig.7reportsthevaluesofmultivariatedispersionofwithin-site ␤-diversity.Forbacterialcommunities,dispersionvaluesinsite2 werelowerthaninsite 1andsite 3,whilenodifferences were foundindispersionvaluesbetweensite1and3(Site1vs.Site3: t=0.322,p=0.0770;Site1vs.Site2:t=3.126,p=0.001;Site3vs. Site2:t=2.363,p=0.016;testedwith999permutations).Onthe contrary,fungalcommunitiesdidnotshowstatisticallysignificant differencesinthedispersionvaluesbetweenthethreesites(Site1 vs.Site3:t=1.530,p=0.128;Site1vs.Site2:t=0.007,p=0.994;Site 3vs.Site2:t=−1.051,p=0.296;testedwith999permutations). Thoseresultssuggestthat,compared tothenaturalforests, the cultivatedforestshowedahigherspatialhomogeneityofbacterial communities,butnotofthefungalones.

Between-site␤-diversity values (calculated withBray-Curtis distance) indicatedthat cumulativeT-RFLPprofiles ofmicrobial communitiesfromthetwonaturalforestsinsite1and3weremore similartoeachother(bacteria␤,site1vs.site3=0.21;fungi␤,site 1vs.site3=0.66)thantheyweretocommunitiesfromthepoplar plantationinsite 2(bacterial␤,site 1vs.site2=0.26 andsite3 vs.site2=0.33;fungi␤,site1vs.site2=0.80andsite3vs.site 2=0.88).However,bacterialcommunitiesfromthepoplar planta-tionweremoresimilartocommunitiesfromthesoilsassociatedto naturalpoplarssampledinsites1thantothoseassociatedto nat-uralmaplesinsite3.Thosedataconfirmedthedifferencebetween thepoplarplantationandthenaturalforests,butalsoreinforced thehypothesisofatree-typeeffectonsoilmicrobialcommunities diversity;aneffectalreadysuggestedbythemicrobialphylotypes distributionanalysisinthethreesites(Fig.6).Themeanvalueof between-site␤–diversitywerehigherforfungi(0.78±0.11)than forbacteria(meanvalue0.27±0.06);aresultthat,inadditionto whatalreadyobservedwithineachsite(see␣-diversityanalysis), furtherhighlightedthegreatheterogeneityoffungipopulationsin thethreeforestsites.

3.2.3. Ordinationanalysis

ThesimilarityofindividualT-RFLPprofilesofbacterialand fun-gal communities in each samplingsite wasanalyzed by nMDS ordination.ANOSIManalysis(notshown)wasusedtotestthe sig-nificanceofwithin-sitegroupingofsoilsampleswithrespectto

(8)

Fig.6. VenndiagramillustratingthenumbersofuniqueandsharedT-RFsinthepooledbacterial(a)andfungal(b)T-RFLPprofiles.OnlyT-RFswitharelativeheight>0.01 areconsidered.

time(seasonandyear)andspace(differentindividualtrees).As regard bacteria,nMDS ordinationplots were alwayssignificant (0.19>stressvalues>0.11),and showeda tendencyofthe sam-plestoformseasonalclustersinthe2D-ordinationspace(Fig.S1), evenif ANOSIM analysisdidnotsupport anytested groupings. Unlikebacteria,nMDSordinationplotsoffungalcommunities(Fig. S2)wereclosetorandom(stressvalue>0.2),butANOSIManalysis offungalcommunitiesshowedstatisticalsignificancewhenfungi samplesweregroupedonthebasisofbelongingtothesame indi-vidualtree(site1:R=0.58,p=0.001;site2:R=0.16,p=0.024;site3: R=0.55,p=0.001),or,asinsite3only,onyearofsampling(R=0.09, p=0.003). Bacterial communities differed over space and time; whereasfungipopulationsappearedmoredifferentoverspaceand stableovertime.Theaboveresultsoutlinedageneralhigh hetero-geneityofmicrobialpopulationsinthethreesites.Highwithin-site heterogeneitymayreduce theresolution powerof theanalysis ofsimilarityofmicrobialcommunitystructurebetweendifferent sites,diminishingourcapabilitytofocusontheeffectofthe con-version,whichrepresentedthemainobjectiveofthiswork.Forthis reason,ineachofthethreesites,theT-RFLPprofilesofthe micro-bialcommunitiesfromindividualsamplesinagivenseasonwere puttogetherinsilicoandaveragedtoobtainatotalof21 cumula-tiveprofiles.Inthisway,interalia,communityprofiledatawere moredirectlycomparabletothedataobtainedfromanalysisofsoil chemistry,whichwereperformedon21correspondingseasonal compositeofsoils.ANOSIManalysiswasperformedonboth indi-vidualandcumulativeT-RFLPprofilesforcomparison.Inbothcases, differencesbetweensitesweresignificant,butcumulativeprofile analysisalwaysexplainedalargerpartofsitevariability(Table2). CumulativeT-RFLPprofileswereusedinsubsequentanalysis.

Fig.8reportsnMDSordinationplotandUPGMAclusteranalysis ofcumulativeT-RFLPprofilesofbacterialcommunitiesfromthe threesites.Theordination wassignificant(stressvalue=0.107), andoveralltheresultshighlightedaseparation ofsoilbacterial communitiesinthepoplarcultivation(site2)fromthoseofthe naturalmixedforests(site1and3),whichlargelyoverlappedwith each otherformingtwo mixed clusters. nMDSordination anal-ysisof fungal communities (Fig.9)was also significant(stress value=0.112),andshowedamoreclearseparationbetweenthe threesites,withcumulativeT-RFLPprofilesformingwellseparated anddefined clusters. Environmentalvariables (OM,pH, relative humidity,cumulativerain,andairtemperature)andbacterialand fungalviablecountswerefittedontotheordinationspaceofthe nMDSplotsinFigs.8and9.Theenvironmentaldescriptorsthatbest explaineddifferencesinassemblagestructurewerepH,OMand relativehumidity,bothinbacteria(pH:r2=0.583,p=0.003;OM:

r2=0.673,p=0.001;relativehumidity:r2=0.556,p=0.007)andin

Fig.8.Non-metricmultidimensionalscalingofT-RFLP-basedcompositionof bac-terialcommunitiesinsoilsfromSite1–3indifferentseasons.Eachpointrepresent apoolofT-RFLPprofilesfromthesamesite,season,andyear.Dottedellipsesshow resultsofUPGMAanalysisandhighlightsamplesclusteredat>75%similarity,based onSørensendissimilarityindex.Vectorsindicateonlyenvironmentalvariablesthat weresignificantlycorrelatedwiththeordination(p<0.01).

fungi(pH:r2=0.654,p=0.003;OM:r2=0.854,p=0.001;relative

humidity:r2=0.654,p=0.001).Inaddition,thefittingofthefungal

viablecountparameterinthefungiordinationwasalsosignificant (r2=0.519,p=0.005).

Fig.9.Non-metricmultidimensionalscalingordinationofT-RFLP-basedoffungal communitiesinsoilsfromSite1–3indifferentseasons.Eachpointrepresentapool ofT-RFLPprofilesfromthesamesite,season,andyear.Dottedellipsesshowresults ofUPGMAanalysisandhighlightsamplesclusteredat>50%similarity,basedon Sørensendissimilarityindex.Vectorsonlyindicateenvironmentalvariablesthat weresignificantlycorrelatedwiththeordination(p<0.01).

(9)

Table3

Coefficientofvariation(CV)of␣-diversityovertime.CVwasreportedaspercentageratiobetweenstandarddeviationandthemeanvalueofthediversityparameter.

Bacteria Fungi

Richness Evenness Simpsonindex Shannonindex Richness Evenness Simpsonindex Shannonindex

Site1 19.8% 6.5% 5.7% 10.7% 32.6% 13.7% 17.0% 23.5%

Site2 18.9% 5.1% 4.5% 10.0% 27.7% 9.8% 11.1% 18.9%

Site3 25.8% 7.8% 7.6% 13.4% 35.3% 10.9% 14.8% 22.9%

UPGMAclusteranalysisandnMDSordinationplotsclearly dif-ferentiatedthebacterialandfungalcumulativeT-RFLPprofilesof site2(poplarplantation)fromthoseofsites1and3(naturalforests) alongthefirstordinationaxis(Figs.8and9).Onlywithregardtothe fungi,sites1(soilsamplesassociatedtonaturalpoplars)andsite 3(soilsamplesassociatedtonaturalmaples)separatedalongthe secondordinationaxis.Byinterpretingtheseresults,wespeculate thatthefirstaxiswasstronglycorrelatedtosoilland-use(poplar plantationinsite2 vs.naturalforestinsite1and 3),whilethe secondaxiscouldbecorrelated,moreweaklyandonlyasregard fungi,totreetype(poplarinsite1and2vs.maplesinsite3).From thedirectionandangleofthevectorsresultingfromthefittingof soilphysicochemicalcharacteristicsonnMDSplots,pHandorganic matter(OM),andtoalesserextentsoilhumidity,werecorrelated tothefirstaxis,andhencetoland-use.

Overall,bothdiversityandordinationanalysisstrongly differ-entiatedbacteriacommunityintheconvertedforestfromthatof natural,primaryforests.Thefactthatsensibledifferencesoccurred betweenbacterialcommunitiesincultivatedpoplarsinSite2and primaryforestinSite1,despitethetwositesarelocatedinclose proximityandinbothsitessoilassociatedtopoplarswere sam-pled,stronglysuggestedthattheeffectsonbacteriapopulationsare mainlyduetoforestconversionratherthantospatialortreetype effects.Similarlossin␤diversityofbacterialcommunitieswere observedasaresultofforesttopastureconversionintheAmazon rainforest(Rodriguesetal.,2013),butnotofconversionfromforest tooilpalmplantationinBorneo,where␤diversitywasfoundtobe higherinconvertedforestrespecttoprimaryones(Lee-Cruzetal., 2013).However,theauthorsofthislastpaper,takingintoaccount thepossibilitythattheobserveddifferencesin␤diversitycouldbe presentpriortotheconversion,emphasizedtheneedforlong-term studiestoassesstheeffectsoftheconversion.

Unlikebacteria,thediversityoffungalpopulationsinourstudy seemtobealsolinkedtotreetypeeffects,inagreementwithwhat suggestedbyPurahongetal.(2014).

3.3. Temporalfluctuationanalysisofmicrobialcommunity diversity

Giventhelong-termnatureofourstudy,wewerealso inter-estedintheeffectthatseasonalityhaveonmicrobialcommunities diversityandinunderstandinghowsiteswithadifferentland-use respondtoseasonalchanges.Asabovereported,adifferentiation ofmicrobialcommunitiesonaseasonalbasewasnotsupportedby ANOSIManalysis;nevertheless,nMDSordinationsshowedsome degreeofseasonalclusterization,especiallyforthebacterial com-munities(Fig.S1).Inordertobetterclarifytherelationshipbetween seasonalityand ␣-diversityin each samplingsite, wehave cal-culateda coefficientof variation astheratio betweenstandard deviation and themean value of different ␣-diversity parame-ters(Table3).␣-diversityofbothbacteriaandfungicommunities insite2hadnarrowertemporalfluctuationscomparedtosite1 and3,indicatinghighertemporalstabilityofmicrobial commu-nitieswithin the poplarplantation soil. Other studiesreported contradictoryover-timeeffectsofland-usechangesondiversity andstructureofmicrobialcommunitiesofsoil,fromnochangesto majorchanges(DaCJesusetal.,2009;Sunetal.,2011;Rodrigues

etal.,2013;Suleimanetal.,2013;McGuireetal.,2014;and bibli-ographywithinthesepapers).Differencesingeneralfeaturesofthe study,likethekindofland-usechange,thesoiltype,theanalytical methodusedinmicrobialanalysis,maybeattheoriginofthese contradictoryresults.

4. Conclusions

Inthisstudy,acommonandwellestablishedDNA fingerprint-ingtechnique(T-RFLP)wassuccessfullyappliedtotheanalysisof bacterialandfungalpopulationsinsoilsamplesfromnativeforests andaforestconvertedtopoplarplantationtoinvestigate possi-ble effectsondiversityandcommunity structure.Withtheaim tominimizetheeffectsofgeneralclimaticdifferencesandthose ofunknownandunwantedanthropicimpacts,thestudyareawas locatedwithinanaturalpark,withhomogeneousorographicand soiltexturecharacteristics.

Overall,ourdataindicatesthatsite2,theresultofthe conver-sion(about30yearsago)fromnaturaltopoplarplantation,differed fromtwonatural(primary)forests(site1and3)byanumberof abioticandmicrobiologicalparametersofsoil.Majordifferences wereobservedonbothrichnessanddiversityofbacterialand fun-galcommunities.Thedifferencesweremuchstrongerbetweensite 2andsites1and3thanbetweensites1and3.Thesedifferences wereinterpretedastheeffectsoftheforestconversioninsite2,and becausetheywerestillvisibleafterabout30yearsfromthe conver-sion,theyshouldbeconsideredlonglastingandalmostpermanent. Interestingly,acontributionofthetreetype(poplarvs.maples)in shapingthestructureofbacterialand(particularly)fungal com-munitiesinthethreesamplingsitesemergedfrombetween-site ␤-diversity values and nMDSanalysis. Furthermore,we cannot excludethat aplant genotype-specificcontribution(Schweitzer etal.,2008)mayhavehadsomemarginalroleindeterminingthe differencesindiversityandstructureofthemicrobialpopulations fromsoilsassociated toP.albaand P.canescens insite1and P. nigra×P.deltoidshybridinsite2.

It is evident that we are yet far from achieving general knowledgeabouttheresponseofmicrobial communitiestothe conversionwithin a singleland-usecategory, and thatno gen-eraltrendscanbeoutlined.Inanycase,fromthesestudies,forest conversionemergesasapracticethatshouldberegardedasa gen-eralthreattomicrobialcommunitiesthatstronglyaffectsmicrobial diversityandstructure.

Acknowledgments

Theauthorswouldliketothank:AlessioMengoni(Dept.of Biol-ogy,University of Florence)for hisreview of theworkand for hisprecioussuggestions,CristinaIndorato(Dept.ofBiology, Uni-versityof Florence)for hertechnicalassistance,CristinaVettori (IGV-FI,CNR)for assistancein T-RFLP analysis,EmilianoFratini (Dept. of Chemistry, University of Florence) for organic matter analysisofsoil,GiacomoCertini(DISPAA,UniversityofFlorence) forsoiltextureanalysisofsite2samples,DavideTravagliniand Francesca Bottalico (GESAAF, University of Florence) for plants georeferencing,AlessandroMaterassiandGianniFasano(IBIMET CNR,Florence)formeteorologicaldata,FrancescaLogli(Migliarino

(10)

SanRossoreMassaciuccoliregionalpark)forusefulforestry infor-mationaboutthesamplingsiteswithinthepark.Thisworkwas fundedbytheEuropeanCommunityundertheLIFE+programme (grantno.LIFE08NAT/IT/00342–DEMETRAproject).Giuliana Sena-toreandCesareaCaroppohavebeenfinanciallysupportedbygrant no.LIFE08NAT/IT/00342.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion, athttp://dx.doi.org/10.1016/j.micres.2015.10. 002.

References

Alele,P.O.,Sheil,D.,Surget-Groba,Y.,Lingling,S.,Cannon,C.H.,2014.Howdoes conversionofnaturaltropicalrainforestecosystemsaffectsoilbacterialand fungalcommunitiesintheNileRiverwatershedofUganda?PLoSOne9(8), e104818.

Bardgett,R.D.,Wardle,D.A.,2010.Aboveground-BelowgroundLinkages:Biotic Interactions,EcosystemProcesses,AndGlobalChange.OxfordUniversity Press,Oxford.

Bastias,B.A.,Anderson,I.C.,Xu,Z.,Cairney,J.W.G.,2007.RNA-andDNA-based profilingofsoilfungalcommunitiesinanativeAustralianeucalyptforestand adjacentPinuselliottiplantation.SoilBiol.Biochem.39,3108–3114.

Berg,G.,Smalla,K.,2009.Plantspeciesandsoiltypecooperativelyshapethe structureandfunctionofmicrobialcommunitiesintherhizosphere.FEMS Microbiol.Ecol.68(April(1)),1–13.

DaCJesus,E.,Marsh,T.L.,Tiedje,J.M.,deSMoreira,F.M.,2009.Changesinlanduse alterthestructureofbacterialcommunitiesinWesternAmazonsoils.ISMEJ.3 (September(9)),1004–1011,NaturePublishingGroup.

Chao,A.,1984.Nonparametricestimationofthenumberofclassesinapopulation. Scand.J.Stat.11(4),265–270.

VanDorst,J.,Bissett,A.,Palmer,A.S.,Brown,M.,Snape,I.,Stark,J.S.,etal.,2014.

Communityfingerprintinginasequencingworld.FEMSMicrobiol.Ecol.89 (August(2)),316–330.

Gardes,M.,Bruns,T.D.,1993.ITSprimerswithenhancedspecificityfor basidiomycetes—applicationtotheidentificationofmycprrhizaeandrusts. Mol.Ecol.2,113–118.

Hackl,E.,Zechmeister-Boltenstern,S.,Bodrossy,L.,Sessitsch,A.,2004.Comparison ofdiversitiesandcompositionsofbacterialpopulationsinhabitingnatural forestsoils.Appl.Environ.Microbiol.70,5057–5065.

VanderHeijden,M.G.,Bardgett,R.D.,vanStraalen,N.M.,2008.Theunseen majority:soilmicrobesasdriversofplantdiversityandproductivityin terrestrialecosystems.Ecol.Lett.11(March(3)),296–310.

Heiri,O.,Lotter,A.F.,Lemcke,G.,2001.Lossonignitionasamethodforestimating organicandcarbonatecontentinsediments:reproducibilityandcomparability ofresults.J.Paleolimnol.25,101–110.

Hughes,J.B.,Hellmann,J.J.,Ricketts,T.H.,Bohannan,B.J.M.,2001.Countingthe uncountable:statisticalapproachestoestimatingmicrobialdiversity.Appl. Environ.Microbiol.67(10),4399–4406.

Kerfahi,D.,Tripathi,B.M.,Lee,J.,Edwards,D.P.,Adams,J.M.,2014.Theimpactof selective-loggingandforestclearanceforoilpalmonfungalcommunitiesin Borneo.PLoSOne9(11),e111525.

Lauber,C.L.,Hamady,M.,Knight,R.,Fierer,N.,2009.Pyrosequencing-based assessmentofsoilpHasapredictorofsoilbacterialcommunitystructureat thecontinentalscale.Appl.Environ.Microbiol.75,5111–5120.

Lee-Cruz,L.,Edwards,D.P.,Tripathi,B.M.,Adams,J.M.,2013.Impactofloggingand forestconversiontooilpalmplantationsonsoilbacterialcommunitiesin Borneo.Appl.Environ.Microbiol.79(23),7290–7297.

Lupatini,M.,Jacques,R.J.S.,Antoniolli,Z.I.,Suleiman,A.K.A.,Fulthorpe,R.R.,Roesch, L.F.W.,2013.Land-usechangeandsoiltypearedriversoffungalandarchaeal

communitiesinthePampabiome.WorldJ.Microbiol.Biotechnol.29(Feburary (2)),223–233.

McGuire,K.L.,D’Angelo,H.,Brearley,F.Q.,Gedallovich,S.M.,Babar,N.,Yang,N., etal.,2014.Responsesofsoilfungitologgingandoilpalmagriculturein SoutheastAsiantropicalforests.Microb.Ecol.(August(23)).

MCPFE,UNECE,FAO.StateofEurope’sforests2007.MCPFERep.Sustain.For. Manag.Eur.2007.

Myers,R.T.,Zak,D.R.,White,D.C.,Peacock,A.,2001.Landscape-levelpatternsof microbialcommunitycompositionandsubstrateuseinuplandforest ecosystems.SoilSci.Soc.Am.J.,359.

Nacke,H.,Thürmer,A.,Wollherr,A.,Will,C.,Hodac,L.,Herold,N.,etal.,2011.

Pyrosequencing-basedassessmentofbacterialcommunitystructurealong differentmanagementtypesinGermanforestandgrasslandsoils.PLoSOne6 (2).

OksanenJ.,BlanchetG.L.,KindtR.,LegendreP.,MinchinP.R.,O’HaraB.R.,etal. 2013.vegan.CommunityEcologyPackage.CommunityEcol.Packag. Osborn,A.M.,Moore,E.R.B.,Timmis,K.N.,2000.Anevaluationof

terminal-restrictionfragmentlengthpolymorphism(T-RFLP)analysisforthe studyofmicrobialcommunitystructureanddynamics.Environ.Microbiol.2.

Osborne,C.A.,Galic,M.,Sangwan,P.,Janssen,P.H.,2005.PCR-generatedartefact from16SrRNAgene-specificprimers.FEMSMicrobiol.Lett.248,183–187.

Purahong,W.,Hoppe,B.,Kahl,T.,Schloter,M.,Schulze,E.,Bauhus,J.,etal.,2014.

Changeswithinasingleland-usecategoryaltermicrobialdiversityand communitystructure:molecularevidencefromwood-inhabitingfungiin forestecosystems.J.Environ.Manage.139,109–119,ElsevierLtd.

RCoreTeam,2013,R:ALanguageandEnvironmentforStatisticalComputing.R Found.Stat.Comput.Vienna,Austria:RFundationforstatisticalComputing. Rees,G.N.,Baldwin,D.S.,Watson,G.O.,Perryman,S.,2004.Ordinationand

significancetestingofmicrobialcommunitycompositionderivedfrom terminalrestrictionfragmentlengthpolymorphisms:applicationof multivariatestatistics.AntonievanLeeuwenhoek86,339–347.

Rodrigues,J.L.M.,Pellizari,V.H.,Mueller,R.,Baek,K.,Jesus,E.D.C.,Paula,F.S.,etal., 2013.ConversionoftheAmazonrainforesttoagricultureresultsinbiotic homogenizationofsoilbacterialcommunities.Proc.Natl.Acad.Sci.U.S.A.110 (January(3)),988–993.

Rousk,J.,Bååth,E.,Brookes,P.C.,Lauber,C.L.,Lozupone,C.,Caporaso,J.G.,etal., 2010.SoilbacterialandfungalcommunitiesacrossapHgradientinanarable soil.ISMEJ.4(October(10)),1340–1351.

Schweitzer,J.A.,Bailey,J.K.,Fischer,D.G.,LeRoy,C.J.,Lonsdorf,E.V.,Whitham,T.G., etal.,2008.Plant-soilmicroorganisminteractions:heritablerelationship betweenplantgenotypeandassociatedsoilmicroorganisms.Ecology89 (March(3)),773–781.

Shannon,C.E.,1948.Amathematicaltheoryofcommunication.BellSyst.Tech.J. 27,379–423.

Simpson,E.H.,1949.Measurementofdiversity.Nature163,688.

Suleiman,A.K.A.,Manoeli,L.,Boldo,J.T.,Pereira,M.G.,Roesch,L.F.W.,2013.Shifts insoilbacterialcommunityaftereightyearsofland-usechange.Syst.Appl. Microbiol.36(March(2)),137–144,ElsevierGmbH.

Sun,B.,Dong,Z.X.,Zhang,X.X.,Li,Y.,Cao,H.,Cui,Z.L.,2011.Ricetovegetables: short-versuslong-termimpactofland-usechangeontheindigenoussoil microbialcommunity.Microb.Ecol.62,474–485.

Wagg,C.,Husband,B.C.,Green,D.S.,Massicotte,H.B.,Peterson,R.L.,2011.Soil microbialcommunitiesfromanelevationalclinedifferintheireffecton coniferseedlinggrowth.PlantSoil,491–504.

Wang,M.,Qu,L.,Ma,K.,Yuan,X.,2013.Soilmicrobialpropertiesunderdifferent vegetationtypesonMountainHan.Sci.ChinaLifeSci.56(6),561–570,SP ScienceChinaPress.

WickhamH.,2011,ggplot2.WileyInterdiscipRevComputStat.3:180–5. Wubet,T.,Christ,S.,Schöning,I.,Boch,S.,Gawlich,M.,Schnabel,B.,etal.,2012.

DifferencesinsoilfungalcommunitiesbetweenEuropeanbeech(Fagus sylvaticaL.)dominatedforestsarerelatedtosoilandunderstoryvegetation. PLoSOne7(January(10)),e47500.

Zak,D.R.,Holmes,W.E.,White,D.C.,Peacock,A.D.,Tilman,D.,2003.Plantdiversity, soilmicrobialcommunities,andecosystemfunction:arethereanylinks? Ecology84,2042–2050.

Riferimenti

Documenti correlati

D is the distance of the grains observed (just above the detection limit) by OSIRIS- NAC to the spacecraft; N is the number of detections (for the OSIRIS data, N was divided by

We reported a surprising example of horizontal interkingdom transfer of the human opportunistic pathogen (P. acnes) to grapevine (Vitis vinifera L.).. acnes was interestingly most

Esta hipótesis ha sido analizada fermentando a escala de laboratorio 17 uvas de Mueller Thurgau (MT) y 15 Sauvignon Blanc (SB) con 2 protocolos diferentes: TAN y REF

While GATA6 expression is restricted to the upper SG, AR is expressed in the bottom of the gland in mouse and human skin (Supplementary Fig. 1f and see ref. 23 ) We previously

Se Atene piange, Sparta non ride: negli Stati Uniti, il Restatement (Third) of Torts ha fatto venire meno l’uniformità federale nei giudizi sulla responsabilità

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Anhui, China;

L’uso delle nuove tecnologie per la valorizzazione del patrimonio sta modificando anche il panorama delle professioni culturali.. Per esempio un valido supporto