• Non ci sono risultati.

Approccio strumentale per l'analisi dei riflessi cardiovascolari - tesi

N/A
N/A
Protected

Academic year: 2021

Condividi "Approccio strumentale per l'analisi dei riflessi cardiovascolari - tesi"

Copied!
57
0
0

Testo completo

(1)

Un nuovo approccio strumentale

integrato per l’analisi dei riflessi

cardiovascolari

Ivan Corazza

Dipartimento Cardiovascolare, Università di Bologna

(2)

Diagnosi

Frequenza cardiaca

Pressione

(3)

Le misure standard (pressione e frequenza cardiaca) su

cui si basa la diagnosi in un laboratorio SNV, sono

accurate e e precise?

Una misura è caratterizzata da: ACCURATEZZA E PRECISIONE.

(4)

La misura della pressione al dito è una buona “misura” per la valutazione della pressione

arteriosa?

Compressore

Fotodiodo

Fototransistor

Per “settare” il sistema vengono applicati valori crescenti e noti di pressione e si rileva la pulsatilità

del vaso col sistema ottico: il massimo di pulsatilità si ha col valore di pressione esterna applicata

corrispondente al valore medio della pressione endovasale.

Nella fase operativa di misura, il sistema ottico controlla la valvola in uscita al compressore in modo

da mantenere in ogni istante la pressione nella fascia al valore della pressione interna del vaso ed

avere la parete vasale “scarica” (vascular unloading technique). In pratica, se la trasparenza del dito

aumenta, indicando una costrizione, la pressione esterna viene ridotta, se la trasparenza diminuisce,

la pressione esterna viene aumentata.

La pressione applicata in ogni istante alla fascia segue quindi con continuità la pressione endovasale e

viene registrata per il monitoraggio continuo pressorio non invasivo.

(5)

La pressione al dito è uguale alle pressione brachiale?

1) P idrostatica (dovuta al dislivello

dito-cuore)

2) Caduta di pressione dovuta alla

distanza dal cuore e riflessioni

Onda incidente

Onda riflessa

h g P

www.ainv.it

(6)

|Z|

f

f

P

F

Z

C

i

i

i

i

i

i

i

0

i

i

i

i

0

F

P

Z

)

(

sen

F

F

)

t

(

F

)

(

sen

P

P

)

t

(

P

Carico arterioso: impedenza vascolare

0 0 0

F

P

R

Resistenza vascolare

periferica

Zc: impedenza caratteristica (media dei valori dopo il primo minimo, in genere dalla 3a alla 10a armonica)

2

)

(

)

(

)

(

2

)

(

)

(

)

(

t

F

Z

t

P

t

P

t

F

Z

t

P

t

P

c b c f

www.ainv.it

(7)

Pressione totale ottenuta modificando (anticipando e posticipando) il delay dell’onda

riflessa (+/-100ms, +/-200ms).

(8)

8 soggetti normotesi

Età: 25 anni (range 19-32).

Altezza: 186 cm (range 181-197)

Peso: 76 kg (range 72-90).

(Nessun episodio sincopale, nessuno pratica

sport)

Original tracings during the three stages of

tilt of all subjects: after 1 min head-up tilt

(TILTinitial), halfway head-up tilt (TILTmid)

and 1 min before tilt back (TILTend).

Thin lines: finger waveforms (FINAPRES)

bold lines: brachial waveforms.

Finger arterial versus intrabrachial

pressure and continuous

cardiac output during head-up tilt

testing in healthy subjects

W.T. Jellema, B.P.M. Imholz, J. Van

Goudoever,

K.H. Wesseling, J.J. Van Lieshout

Clinical Science 1996; 91:193-200

(9)

Differenze fra le pressioni sistoliche (SBP),

diastoliche (DBP) e medie misurate (MBP)

con il finapress (FINAP) e quelle

intrabrachiali (IAP). Ogni valore

rappresenta la media su 10s per ogni

minuto di esame.

I simboli diversi indicano soggetti diversi.

Le linee orizzontali indicano il valore

medio ± 1.96 SD.

Finger arterial versus intrabrachial pressure and continuous

cardiac output during head-up tilt testing in healthy subjects

W.T. Jellema, B.P.M. Imholz, J. Van Goudoever, K.H. Wesseling, J.J. Van Lieshout Clinical Science 1996; 91:193-200

(10)

Confronto fra le pressioni misurate con FINAP e IABP

nell’ultimo minuto di tilt in 4 soggetti nei quali la pressione

sistolica è calata di > 20mmHg e il tilt è stato interrotto.

Linee sottili: FINAP

Neretto: IABP

Non ci sono differenze significative fra gli

andamenti.

ESISTONO DIFFERENZE SIGNIFICATIVE FRA I

VALORI ASSOLUTI DI SISTOLICA E

DIASTOLICA….

Finger arterial versus intrabrachial pressure and continuous

cardiac output during head-up tilt testing in healthy subjects

W.T. Jellema, B.P.M. Imholz, J. Van Goudoever, K.H. Wesseling, J.J. Van Lieshout Clinical Science 1996; 91:193-200

(11)

Gli strumenti nati dopo il Finapress, hanno quindi implementato degli

algoritmi per correggere le onde pressori misurate al dito e rendere

affidabili non solo gli andamenti ma anche i valori assoluti.

Come?

Funzioni di trasferimento (nel

domino delle frequenze)

Misura Onda di

Pressione Brachiale

Misura Onda di Pressione al

dito

In contemporanea

Quindi il processo inverso:

Onda di Pressione al dito

Funzione di trasferimento

Onda di Pressione Brachiale

Misura Onda di

Pressione Aortica

Onda di Pressione al dito

Funzione di trasferimento

Onda di Pressione Aortica

(12)

TF tra Pressione aortica e

brachiale in funzione dell’età

(in soggetti normali)

TF tra Pressione aortica e brachiale

durante vasodilatazione in soggetto

normale.

(13)

BRACHIAL ARTERY PRESSURE RECONSTRUCTIONS

There is a delay of several dozen milliseconds between finger blood pressure pulsations and intra-brachial pulsations since the former travel further. In addition, their levels are generally lower and the waveforms appear more distorted, mainly due to reflections and pressure gradients.

To correct the distortion in finger pressure relative to brachial artery pressure, a frequency dependent filter can be used to restore the waveform at the brachial level. This brachial artery pressure reconstruction

technique allows clinicians and researchers to obtain the brachial arterial pressure if they wish to perform a more precise measurement at the heart level. Waveform filtering is done in real time.

The transfer function from brachial to finger resonates at about 8Hz (thin top trace). This causes oscillatory distortions of the finger wave. Distortions can be removed by a digital filter that has an anti-resonance at 8Hz (bottom trace). The two transfer functions compensate each other almost perfectly to produce a desirably flat overall transfer function (thick trace).

Correzione pressione idrostatica e nel FinometerPRO calibrazione con

pressione brachiale (metodo Return-toFlow)

Portapres (la pressione è corretta dal sw beatscope)

FINOMETER

(14)

NEXFIN (BMEYE)

“The arterial BP wave changes shape as it travels along the arteries, with systolic

pressure increasing while diastolic and mean pressure decrease. These effects are

compensated by applying a physiological model, yielding brachial BP finger arterial BP”

(15)

Le funzioni di trasferimento usate dagli strumenti in commercio sono ricavate come

media di funzioni di trasferimento di soggetti normali e sani (si trovano in letteratura)

in condizioni stazionarie e stabili. Sono fisse e memorizzate nel software residente

sull’apparecchio.

!!!! La morfologia dell’onda di pressione si modifica:

In funzione dell’età (cambia l’elastanza vascolare);

In presenza di patologie vascolari e cardiache congenite;

In presenza di situazioni fisiologiche anomale (ipotensione ortostatica, sincope, etc).

Le pressioni fornite da questi strumenti vanno sempre considerate “criticamente”!!

Possiamo considerare affidabili gli andamenti ma non i valori assoluti!!

Alcuni strumenti usano la pressione brachiale misurata con metodo oscillometrico per calibrare il

segnale di pressione ricostruito. In tal modo otteniamo dei valori di sistolica e diastolica più

affidabili (sicuramente in condizioni stazionarie) anche se le forme d’onda rimangono alterate.

(16)

.

Bos W J W et al. Circulation 1996;94:1870-1875

Return to flow: si gonfia il bracciale e si

misura la pressione sistolica in

corrispondenza del ritorno del flusso al

dito.

Il bracciale va allo stesso braccio in cui si

misura la pressione al dito e la

calibrazione viene eseguita all’inizio della

procedura soltanto usando il valore di

sistolica.

FinometerPRO calibrazione con pressione brachiale (metodo Return-toFlow)

(17)

TASK FORCE MONITOR

“Continuous non-invasive AP (CNAP) is obtained by applying pressure via the finger

cuffs such that the blood volume flowing through the finger arteries is held constant

(i.e. volume-clamping). The finger arterial pressure was scaled to central AP every 15

min by a scaling function with NIAP values as arguments. After applying this scaling

operation, CNAP values correspond to the values measured at the brachial artery.”

Il bracciale va all’arto controlaterale rispetto a quello in cui si misura la pressione al dito

e la calibrazione viene eseguita durante tutta la procedura usando due valori pressori

misurati con il metodo oscillometrico.

(18)

Misura della frequenza cardiaca

Devo misurare l’intervallo temporale fra un battito e il successivo…

Posso ottenere la stessa informazione utilizzando le curve di pressione arteriosa?

Alcuni apparecchi che vengono proposti stand-alone per la valutazione dei riflessi cardiovascolari non prevedono l’acquisizione dell’ecg…

(19)

E’ impossibile misurare la frequenza cardiaca dalle onde di pressione (sia che si valuti il

piede di salita sia che si valuti il picco…)

Caso 1

(20)

Caso 2

In caso di asistolia è

importante poter monitorare il

tracciato ECG!!!

L’ECG è fondamentale per la corretta valutazione della frequenza

cardiaca e per il monitoraggio del paziente.

(21)

Altri parametri di interesse clinico…

EEG: informazioni sulla attività cerebrale e

verifica in tempo reale delle modificazioni

dello stato neurologico.

RESPIRO: corretta valutazione dell’aritmia sinusale,

valutazione di iperventilazione o apnee sui parametri

cardiovascolari; monitoraggio della corretta

esecuzione della fase di “respiro profondo”.

CARDIAC OUTPUT e STROKE VOLUME: indici

della performance cardiaca e necessari per la

valutazione delle resistenze vascolari.

FLUSSO CUTANEO: vasodilatazione e vasocostrizione come

conseguenza della attività simpatica.

FLUSSO TRANSCRANICO: parametri emodinamici cerebrali in funzione

dell’attività simpatica e vagale (es. durante Tilt Test)

(22)

CARDIAC OUTPUT

Metodi standard: Fick; flussimetro elettroagnetico, termodiluizione (continua o a bolo);

Diluizione di indicatori (continua o a bolo), flussimetria doppler.

Sono evidentemente non applicabili in valutazioni ambulatoriali del SNV

Possibili

alternative:

Pressure Contour Method (Finometer, portapres con Beatscope, Nexfin)

(23)

Pressure Contour Method (AORTIC PRESSURE WAVE)

Sagawa K, Lie RK, Schaefer J. Translation ofOtto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 1899;37:483-526. J Mol Cell Cardiol. 1990;22(3):253-77.

(24)

Diastolic pulse contour analysis

(Compliance considerata costante e introdotta a mano nel modello)

Systolic pulse contour analysis

(Z

A

introdotto come una costante calcolata su soggetti sani)

PiCCO system (Pulsion Medical Systems, Munich, - Germany)

– (Z

A

è parametrizzata in funzione

dell’età del soggetto con una formula ricavata sempre su soggetti sani)

Modelflow pulse contour analysis

(La compliance aortica e Z

A

sono funzioni non lineare di genere ed

età e sono ricavate sempre da precedenti studi su soggetti sani) –

Usato da Finometer e Nexfin

Ann Card Anaesth. 2008 Jan-Jun; 11(1):56-68.

Cardiac output monitoring.

Mathews L, Singh RK.

Pulse power analysis

(scompone l’onda di pressione in incidente e riflessa e consente di misurare

cambiamenti nello SV e non valori assoluti, a meno di una calibrazione)

Long time interval analysis of peripheral arterial blood pressure waveform

(l’analisi viene

effettuata non beat to beat ma su scale di tempi più lunghe)

Pulse contour cardiac output estimation without external calibration

(Z

A

è funzione di sesso, età,

altezza, peso, body surface area)

Pressure recording analytical method (PRAM)

(non necessita calibrazione ma è una metodica ancora

poso usata

(25)

Carico arterioso: impedenza vascolare

0

0

0

F

P

R

|Z|

f

f

P

F

Z

C

i

i

i

i

i

i

i

0

i

i

i

i

0

F

P

Z

)

(

sen

F

F

)

t

(

F

)

(

sen

P

P

)

t

(

P

Resistenza vascolare

periferica

Zc: impedenza caratteristica (media dei valori dopo il primo minimo, in genere dalla 3a alla 10a armonica)

(26)

Carico arterioso:

0

0

F

P

R

1

2

3

RC

1

k

e

P

)

t

(

P

0

kt

Resistenza Idraulica

P

V

C

Compliance

P

max

Pmin

P

V

Aorta

www.ainv.it

(27)

Change in heart rate aortic characteristic impedance (Zc) at rest and during handgrip in normotensive and hypertensive patients

Chirinos J A et al. Am J Physiol Heart Circ Physiol 2010;298:H320-H330

©2010 by American Physiological Society

Linea continua: pz ipertesi

Linea tratteggiata: soggetti

normotesi

(28)

Osservazioni:

Questi metodi necessitano della pressione aortica (che nel nostro caso è ricavata da

quella al dito, con tutti i problemi legati alla ricostruzione della forma d’onda corretta).

Alcune assunzioni fatte per applicare alcuni metodi sono sbagliate (es. Compliance

costante).

I metodi più complessi si basano sui risultati di altri studi pubblicati e tutti riferiti a

soggetti sani con pressioni prelevate in condizioni stazionarie.

Tutti i sistemi a parte gli ultimi due necessitano di calibrazione con metodi validati e

affidabili (invasivi).

Calcolare le resistenze vascolari come rapporto fra pressione media e flusso medio

quando il flusso è ricavato direttamente dalla pressione pone sicuramente un dubbio

(29)

December 2009, vol. 67, no 11

“… Relative changes in cardiac output can be accurately monitored noninvasively with

data obtained from the finger arterial pressure waveforms. However, an invasively

derived calibration of cardiac output is needed to obtain more reliable absolute data on

cardiac output…”

“… Although accuracy and reproducibility have been investigated in some small

trials, these should be further assessed thoroughly in various patient groups in different

clinical conditions before this technique can be widely used. Moreover, further

development to obtain absolute values of cardiac output without invasive calibration

might give a substantial added value to the method…”

(30)
(31)

Conclusion

All pulse contour techniques need a reliable invasive calibration. After

calibration, most methods may replace the thermodilution method with a

precision of 10% (i.e. the averaged result of three randomly performed

measurements). The Modelflow and Hemac techniques could replace the

thermodilution estimates based on the averaged result of four measurements

done equally, spread over the ventilatory cycle. The slightly lower precision of

the continuous pulse contour cardiac output techniques may, in clinical

settings, be outweighed by the advantages of being automatic and continuous.

Under research conditions the use of the conventional thermodilution method

with four measurements equally spread over the ventilatory cycle remains the

method of choice.

An evaluation of cardiac output by five arterial pulse contour

techniques during cardiac surgery

1.R. B. P. De Wilde

1

, J. J. Schreuder

2

, P. C. M. Van Den Berg

1

, J. R.

C. Jansen

1

Volume 62, Issue 8, pages 760–768, August 2007

(32)

S

ERVE UN METODO PER LA MISURA DEI PARAMETRI

EMODINAMICI CHE SIA INDIPENDENTE DA QUELLO PER IL

PRELIEVO DELLA PRESSIONE

.

(33)

Impedenziometria transtoracica

Z(t)

MAX

dt

dZ

)

(

LVET

0 3

)

(

4

.

1

Z

dt

dZ

TLVE

L

SV

MAX

(Sramek)

www.ainv.it

(34)

“… Recent technological advances have allowed the development of completely non-invasive CO

monitoring using impedance cardiography. This technique is ideal for continuous online and

intermittent CO monitoring. However, large amount of thoracic fluid may interfere with the

impedance signal making the haemodynamic data less reliable… “

Ann Card Anaesth. 2008 Jan-J

un;11(1):56-68.

Cardiac output monitoring.

Mathews L, Singh RK.

L’utilizzo della impedenza transtoracica, pur non essendo privo

di errori, garantisce affidabilità e indipendenza dal metodo di

misura della pressione, consentendo la valutazione delle

resistenze vascolari che sono effettivamente un risultato

(35)

Altri parametri di interesse clinico…

EEG: informazioni sulla attività cerebrale e

verifica in tempo reale delle modificazioni

dello stato neurologico.

RESPIRO: corretta valutazione dell’aritmia sinusale,

valutazione di iperventilazione o apnee sui parametri

cardiovascolari; monitoraggio della corretta

esecuzione della fase di “respiro profondo”.

CARDIAC OUTPUT e STROKE VOLUME: indici

della performance cardiaca e necessari per la

valutazione delle resistenze vascolari.

FLUSSO CUTANEO: vasodilatazione e vasocostrizione come

conseguenza della attività simpatica.

FLUSSO TRANSCRANICO: parametri emodinamici cerebrali in funzione

dell’attività simpatica e vagale (es. durante Tilt Test)

(36)

Laser Doppler

Il segnale doppler rilevato è una

media dei segnali diffusi da

capillari, arteriole e venule (in

genere entro 1mm di profondità)

I valori di flusso non sono

calibrati ma espressi in unità

arbitrarie.

Se un’onda investe un oggetto in movimento, l’onda riflessa o

diffusa ha una frequenza diversa dall’onda incidente. La variazione

di frequenza è direttamente proporzionale alla velocità dell’oggetto

rispetto alla sorgente dell’onda.

cos

)

v

v

1

(

f

2

f

f

f

0 0 0 D

www.ainv.it

(37)

Altri parametri di interesse clinico…

EEG: informazioni sulla attività cerebrale e

verifica in tempo reale delle modificazioni

dello stato neurologico.

RESPIRO: corretta valutazione dell’aritmia sinusale,

valutazione di iperventilazione o apnee sui parametri

cardiovascolari; monitoraggio della corretta

esecuzione della fase di “respiro profondo”.

CARDIAC OUTPUT e STROKE VOLUME: indici

della performance cardiaca e necessari per la

valutazione delle resistenze vascolari.

FLUSSO CUTANEO: vasodilatazione e vasocostrizione come

conseguenza della attività simpatica.

FLUSSO TRANSCRANICO: parametri emodinamici cerebrali in funzione

dell’attività simpatica e vagale (es. durante Tilt Test)

(38)

f-f

0

F.F.T

t

A/D

t

f

0

A(f)

Doppler pulsato

cos

)

v

v

1

(

f

2

f

f

f

0 0 0 D

www.ainv.it

(39)

Cosa troviamo oggi sul mercato per lo

studio dei riflessi cardiovascolari:

Soluzioni all-in-one

(40)

Portapres (FMS, The Nederlands)

Parameter

Blood Pressure SYS, DIA and MEAN Heart rate

Inter beat interval Cardiac output Stroke volume Pulse rate variability Baroreflex sensitivity Total peripheral resistance Total arterial compliance

Max. steepness of current upstroke Ascending aortic impedance at DIA Left ventricular ejection time

Rate pressure product

Finometer (FMS, The Nederlands)

(Portapres con

BeatScope® software)

Nexfin HD (BMEYE) Parameter

Blood Pressure SYS, DIA and MEAN Heart rate

Inter beat interval Cardiac output Stroke volume

Total peripheral resistance

(41)

Criticità:

1) L’acquisizione dell’ECG viene fatta con moduli opzionali esterni.

2) I parametri emodinamici sono derivati dall’onda di pressione:

- Questa è alterata dagli algoritmi di correzione (correzione per

misurazione al dito e non al braccio);

-In caso di eventi patologici, l’onda di pressione si modifica (in

condizioni particolari scompare) e i parametri derivati non sono più

affidabili (MEGLIO UN METODO INDIPENDENTE PER LA MISURA DI

CO E SV!!!)

3) Non esiste la possibilità di personalizzare le analisi che

rimangono generiche e non dedicate allo studio delle manovre.

4) Non c’è acquisizione di EEG, respiro, doppler transcranico e flussi

(42)

Task Force Monitor, CNSystem, Austria

Parameteri acquisiti:

ECG;

Pressione oscillometrica;

Pressione beat-to-beat con metodica finapres;

Impedenza transtoracica.

Parametri derivati:

• gittata sistolica e cardiaca;

• resistenza periferica vascolare;

• inotropia del cuore;

• tono simpatico e vagale (variabilità della pressione e della

frequenza cardiaca);

• sensibilità del riflesso barorecettore.

Vantaggi:

1) Misura dei parametri emodinamici indipendente dalla misura della pressione (CO e SV

tramite impedenziometria transtoracica).

Criticità:

1) Non esiste la possibilità di personalizzare le analisi che rimangono generiche e non

dedicate allo studio delle manovre.

2) Gli algoritmi di analisi sono “chiusi” e non verificabili dall’operatore.

3) Non c’è acquisizione di EEG, respiro, doppler transcranico e flussi cutanei.

(43)

Confronto fra HRV automatica

eseguita dal TFM e analisi

autoregressiva controllata

dall’operatore

Nel 18% dei casi il TFM ha fornito

un risultato errato. Perché?

Possiamo solo fare delle ipotesi:

(assenza di stazionarietà del

tacogramma, ordine del modello

sbagliato…)

I. Corazza, M.C. Tozzi, G. Barletta, L. Soliera, P. Cortelli, R. Zannoli. (2007). Monitoraggio clinico del Tilt Test: Task Force monitor e analisi HRV (Heart rate

Variability). GIORNALE ITALIANO DI ARITMOLOGIA E CARDIOSTIMOLAZIONE. 3° Congresso Multidisciplinare sulla Sincope. Firenze. 18-2 Novembre 2007.

vol. 10(3), pp. 44.

(44)

Soluzione “integrata”

Sistema di acquisizione Analogico/Digitale a cui interfacciare i sensori di interesse:

- Elettrocardiografo

- Sistema per il prelievo della pressione arteriosa

- CO e SV tramite impedenza transtoracica

- Flusso cutaneo

- EEG

- Respiro nasale e addominale

- Doppler transcranico

- ……….

Software di analisi per l’estrazione dei parametri di interesse

(45)
(46)

Portapres

Finometer Finapres

Nexfin HD (BMEYE)

(47)

ECG (Cardioline)

Impedenza

transtoracica

(Biopac)

EEG

(EBNeuro)

Doppler transcranico

Flussi cutanei

(Perimed)

Quad AC Amplifier System

for EEG and breath (Grass)

(48)

Grazie.

(49)

Misura delle portata cardiaca mediante analisi dell’onda di

pressione aortica

(Ann Card Anaesth. 2008 Jan-Jun; 11(1):56-68.

Cardiac output monitoring.

Mathews L, Singh RK.)

(50)

Diastolic pulse contour analysis

Diastolic pulse contour analysis is based on the basic windkessel model, in which it is assumed that the arterial compliance is constant over the physiological pressure range and peripheral vascular resistance does not vary with in the diastolic interval. Based on these assumptions the arterial blood pressure should decay exponentially during diastolic time intervals with a time constant (τ). The time constant, τ, is given as τ = CA× R

The standard equation for the diastolic pressure (voltage) for the circuit shown in figure is P(t) = A1exp[-(t-t0)/τ+ + A2

where, t, is the time, (A1+ A2) represent end-diastolic pressure, A2is mean circulatory pressure. The time constant, τ, is obtained by fitting the above analytical expression into the diastolic portion of the waveform. By measuring the pulse wave velocity over the aorta (carotid to femoral) CAcould be estimated. Knowing τ and CA, peripheral resistance R is calculated. From the mean arterial pressure (MAP) and R, using ohm's law flow (SV) is calculated. In this model since the arterial compliance is assumed to be constant, which is not in reality, the derived SV values does not reflect the true SV. For accurate values calibration against a standard method is carried out.

Indietro

(51)

Systolic pulse contour analysis

In the windkessel model, the pulsatile systolic area (PSA) under the pressure curve above a horizontal line drawn from the diastolic point and bounded by a vertical line through the lowest point of incisura (area under the pressure curve from the start of the upstroke to the incisura as shown in figure and SV are related by means of characteristic impedance of the aorta (ZA). Wesseling and coworkers developed a pulse contour analysis technique based on a transmission line model of the arterial tree. In this model the SV is related to PSA and ZAby the

equation, SV = PSA/ZA

PSA = ∫ejection {PAO(t) - PED}dt

where PAO(t) is aortic pressure at time t and PEDis end-diastolic pressure. Although PSA can be found from the area under the curve there are no simple direct methods to establish the appropriate value of ZA. Taking into account the combined effects of varying heart

rate and MAP Wesseling and coworkers formulated an equation for SV as, SV = K (163 + HR - 0.48 MAP) ∫ejection {PAO(t) - PED}dt

Where K is an individual calibration constant, HR heart rate.

Since ZAis influenced by aortic cross section and compliance, both of which are pressure and age dependant and also a computer model of the circulation indicated that ZAis dependant on HR and aortic properties change with age the above equation is modified as SV = [PSA/(ZA)ini] [1,320 + HR × 10 - age × (0.28MAP-16)]/2000

Where the initial value for ZA, (ZA)ini,is (90+age)/1,000.

In the Wesseling model a linear combination of HR, MAP and age multiplied by an individual calibration factor is used to estimate ZA. Antonutto and coworkers used a multiple linear regression including pulse pressure (PP), HR and MAP to estimate ZA. Both the methods have been validated. Since ZAis not accurately known only uncalibrated SV is derived. For accurate SV values calibration

against a standard method is carried out.

Indietro

(52)

PiCCO system (Pulsion Medical Systems, Munich, -Germany)

The PiCCO system is a continuous CO monitor whose working principle is based on the Wesseling's model and the software used have the original Wesseling algorithm. However, it deviates from Wesseling's modified method in that no age related corrections for pressure dependant non-linear changes in aortic cross

sectional area are incorporated. In the second generation PiCCO equipment a more sophisticated algorithm that analyzes the actual shape of the waveform in addition to the PSA is used. From the shape of the arterial pressure curve after the dicrotic notch the exponential decay time constant (τ = CA× R) is calculated and R = MAP/CO. CO is obtained from the reference method. Since τ and R are known CAcan be computed. SV is computed using the formula,

SV = K *∫ejection {PAO(t) - PED}(t) + CAdp/dt] dt

Where K is the calibration factor and it is done by transpulmonary thermodilution.

Several clinical studies and an experimental study showed good agreement between PiCCO and

thermodilution. Two different groups demonstrated that SV variation measured with PiCCO in patients before, during and after coronary artery bypass grafting (CABG) could predict fluid responsiveness. The technique may also be used in children. Peters and coworkers reported the haemodynamic response to terlipressin in an 11 year-old patient with septic shock.

Indietro

(53)

Modelflow pulse contour analysis

The Modelflow method computes an aortic flow waveform from the arterial pressure waveform using the three element model. The model is developed by Wessling and coworkers. The aortic impedance is a function of aortic cross sectional area, the instantaneous flow and compliance. Both compliance and impedance are nonlinear and depend on the elastic properties of the aorta. Unlike the previous models in Modelflow, the impedance and compliance nonlinearity are taken into account for SV calculations. The elastic properties of the human thoracic and abdominal arteries and changes in aortic cross sectional area with changing pressure were studied by

Langewouters and coworkers. The aortic cross sectional area is described by them as a function of pressure by an arctangent relation with three parameters. Aortic impedance and arterial compliance are then presented in terms of the aortic pressure area relation and its derivative. In the Modelflow method, the two elements the aortic impedance and arterial compliance are computed making use of a built in data base of arctangent area-pressure relationships. Subject's gender and age were the input. Instantaneous impedance and compliance values so

obtained are used in a model simulation to compute an aortic flow waveform. The peripheral vascular resistance is calculated for each beat and updated. Thus in short, the method computes arterial flow waveform from arterial pressure waveform with continuous nonlinear corrections for variations in aortic diameter, impedance and compliance during the arterial pulsation. Integration of flow waveform per beat gives SV.

The model assumes a normal human aorta and proper functioning of aortic valve. The maximal aortic diameter during ejection is the parameter included in the model that does not regress with age and its variability is

considerable, hence derived SV does not reflect the true value. For accurate values calibration against a standard method is needed.

The commercially available system based on the above algorithm is ModelflowR(Netherland's Organization for

Applied Scientific Research, Biomedical Instrumentation, BMI-TNO) and is calibrated by the mean of 3 or 4 conventional thermodilution measurements equally spread over the ventilatory cycle. Several clinical studies carried out in different clinical settings demonstrated good correlation with thermodilution. The results of Jellema and coworkers showed that once calibrated by thermodilution, Modelflow CO correlated well with thermodilution CO even after 48 hours of monitoring in ICU patients.

Indietro

(54)

Pulse power analysis

The pulse pressure measured from the arterial trace is a combination of an incident pressure wave (ejected from heart) and reflected wave (from the periphery). In order to calculate SV the two waves need to be

separated. This is further complicated by the fact that the reflected wave changes in size depending upon the proximity of the sampling site to the heart and also the patient's age. The algorithm used in pulse power analysis technique takes care of this aspect. The algorithm used is based on the assumption that the net power change in a heart beat is SV minus blood lost to the periphery during the beat and there exists a relation between net power and net flow. Since the whole beat is taken for analysis the method is independent of the position of the sampling site. In this method the pressure wave is transformed to a volume wave and using the mathematical technique of autocorrelation of the volume waveform the net power and beat period are derived. Net power is proportional to net flow (SV). It is only possible to calculate changes in SV rather than absolute values using this method. For accurate values, calibration against a

standard method (Lithium dilution technique) is carried out.

The commercial equipment based on the pulse power analysis is the LiDCO™ plus (LiDCO Ltd, Cambridge, UK). Several studies have compared thermodilution and LiDCO™ plus and found agreement. Despite a negligible bias, the limits of agreement were close to (±1.5L/min).

Indietro

(55)

Long time interval analysis of peripheral arterial blood pressure waveform

The varieties of pulse contour techniques described above are conceptually similar; the waveform analysis is performed only over time scales with in a cardiac cycle. However at such short time scales pressure

waveforms are dominated by complex waves propagating back and forth the distributed arterial tree.

According to the transmission line theory the confounding effects of the wave phenomena will diminish over large time scales. Based on the theory, Lu et al , developed a novel algorithm in which a long time interval mathematical analysis of the waveform is carried out. From the analysis of the waveform over time scales larger than cardiac cycles, the arterial blood pressure response to a single solitary cardiac contraction is estimated. Then the time constant, τ, is estimated by fitting a mono-exponential function

P(t) = A exp[-t/τ+ + w(t)

to the tail end of this response curve once the faster wave reflections are vanished. The parameters A and τ are estimated through least square minimization of the measured residual error [w(t)]. The validity of the technique was ascertained with respect to intra-arterial pressure waveforms obtained from open chest swines instrumented with aortic flow probes over a wide physiological state. This technique was also evaluated on humans based on previously published invasive and non-invasive arterial pressure data sets. Calibration against a standard method is necessary for measuring absolute SV.

Indietro

(56)

Pulse contour cardiac output estimation without external calibration

Flo Trac/Vigileo™ (Edwards Life Sciences, Munich, -Germany).

The pulse contour and pulse power based technologies described above require another standard technique to provide calibration constant compensating for the algorithms' inability to independently assess the ever changing effects of vascular tone on SV. Flo Trac/Vigileo™ system calculates CO, by using arterial pressure waveform

characteristics in conjunction with patient demographic data, without external calibration. Preparation for

monitoring consists only of entering the age, height, weight and gender into the unit and zeroing the transducer. The algorithm works on the principle that the pulse pressure (difference between the systolic and diastolic

pressures) is proportional to SV and inversely proportional to aortic compliance. Aortic pressure is sampled at 100 Hz and analyzed and updated every 20 seconds. The standard deviation of the 2000 data points (SdAP) is

proportional to pulse pressure, which is proportional to SV SV = K(SdAP)

Where K is a constant quantifying vascular tone (arterial compliance and resistance) and is derived from patient characteristics (sex, age, height, weight, body surface area) according to the method described by Langewouters and coworkers. A recent study indicated that the algorithm works satisfactory when compared with intermittent and continuous thermodilution techniques in post operative cardiac surgical patients. Chakravarty and coworkers compared CO values obtained with PAC-CCO, PiCCO and Flowtrac™ techniques, in 15 patients undergoing off-pump coronary artery bypass grafting. They found that the CO values obtained from all the techniques were interchangeable. The bias and precision were (in L/min), PAC (0.03, 0.06), PiCCO (0.13, 0.1) and Flowtrac™ (0.15, 0.04).

Indietro

(57)

Pressure recording analytical method (PRAM)

PRAM is a technique based on the mathematical analysis of pulse profile changes based on the theory of perturbations, by which any physical system under the effect of a perturbation tend to react to achieve its own state of minimum energy. The basic principle of PRAM is that, in any given vessel, the volume changes occur mainly because of radial expansion of the artery in response to variations in pressure. PRAM measure absolute SV without external calibration by determining the parameters able to characterize the elastic properties of the arteries from the objective analysis of the pressure wave profile. SV is calculated using the formula

SV = PSA/(P/t) × K

Where P/t is pressure wave profile expressed as the variation of pressure over t during the entire cardiac cycle (dp/dt). K is a factor inversely proportional to instantaneous acceleration of the vessels cross sectional area. The value of K is obtained from the expected (theoretical) MAP, which is constant and measured MAP. Only three studies have been carried out so far to prove its efficacy to determine absolute CO values. The recent study is CO determination in animals under various haemodynamic conditions and has found to give CO values comparable to that obtained by electromagnetic flowmetry and conventional thermodilution.

Indietro

Riferimenti

Documenti correlati

In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce

GEODYNAMICAL MODELS Seismic tomography studies have revealed a nearly vertical high velocity body beneath Vrancea, extending until 350km and whose NE part is the place of

In conclusion, a steep φ(L) with either a power law distribu- tion of delay times favoring short delays (as in D14) or a nearly unique long delay time (as in the log–normal model

Finally, no Pt particle formation was observed on the outer crystal surface after 52 hours testing, thereby suggesting that the Pt nanoparticles which were formed during

To evaluate the impact of beam-on data in range verification, we will compare the activity ranges calculated on the reconstructed images and their statistical precision for a

We therefore hypothesized that peripheral recording of pulse pressure profiles undermines the measurement of ˙ Q with Modelflow ® , so we compared Modelflow ® beat-by-beat ˙ Q

to definitions and recommended practices in the following fields: 20 © The Author(s). European University Institute. Available Open Access on Cadmus, European

gare il problema della fortuna del monumento di Roberto presso i contempora- nei, quelle visive offrono invece qualche spunto di riflessione. A una veduta d’in- sieme sulla