• Non ci sono risultati.

Global conservative and multipeakon conservative solutions for the modified camassa-holm system with coupling effects

N/A
N/A
Protected

Academic year: 2021

Condividi "Global conservative and multipeakon conservative solutions for the modified camassa-holm system with coupling effects"

Copied!
18
0
0

Testo completo

(1)

Research Article

Global Conservative and Multipeakon Conservative Solutions

for the Modified Camassa-Holm System with Coupling Effects

Huabin Wen,

1

Yujuan Wang,

2

Yongduan Song,

2

and Hamid Reza Karimi

3 1School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

2School of Automation, Chongqing University, Chongqing 400044, China

3Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Correspondence should be addressed to Yongduan Song; ydsong@cqu.edu.cn Received 31 January 2014; Accepted 18 March 2014; Published 24 April 2014 Academic Editor: Michael L¨utjen

Copyright Β© 2014 Huabin Wen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper investigates the continuation of solutions to the modified coupled two-component Camassa-Holm system after wave breaking. The underlying problem is rather challenging due to the mutual coupling effect between two components in the system. By introducing a novel transformation that makes use of a skillfully defined characteristic and a set of newly defined variables, the original system is converted into a Lagrangian equivalent system, from which the global conservative solution is obtained, which further allows for the establishment of the multipeakon conservative solution of the system. The results obtained herein are deemed useful for understanding the inevitable phenomenon near wave breaking.

1. Introduction

We consider here the following modified coupled

two-component Camassa-Holm system with peakons [1]:

π‘šπ‘‘+ 2π‘šπ‘’π‘₯+ π‘šπ‘₯𝑒 + (π‘šV)π‘₯+ 𝑛Vπ‘₯= 0, 𝑑 > 0, π‘₯ ∈ 𝑅,

𝑛𝑑+ 2𝑛Vπ‘₯+ 𝑛π‘₯V + (𝑛𝑒)π‘₯+ π‘šπ‘’π‘₯= 0, 𝑑 > 0, π‘₯ ∈ 𝑅,

π‘š = 𝑒 βˆ’ 𝑒π‘₯π‘₯, 𝑑 > 0, π‘₯ ∈ 𝑅,

𝑛 = V βˆ’ Vπ‘₯π‘₯, 𝑑 > 0, π‘₯ ∈ 𝑅.

(1)

System (1) is a modified version of the new coupled

two-component Camassa-Holm system in the following equation; namely, π‘šπ‘‘= 2π‘šπ‘’π‘₯+ π‘šπ‘₯𝑒 + (π‘šV)π‘₯+ 𝑛Vπ‘₯, 𝑑 > 0, π‘₯ ∈ 𝑅, 𝑛𝑑= 2𝑛Vπ‘₯+ 𝑛π‘₯V + (𝑛𝑒)π‘₯+ π‘šπ‘’π‘₯, 𝑑 > 0, π‘₯ ∈ 𝑅, π‘š = 𝑒 βˆ’ 𝑒π‘₯π‘₯, 𝑑 > 0, π‘₯ ∈ 𝑅, 𝑛 = V βˆ’ Vπ‘₯π‘₯, 𝑑 > 0, π‘₯ ∈ 𝑅, (2)

which, as an extension of the Camassa-Holm (CH) equation, has been established by Fu and Qu to allow for peakon

solitons in the form of a superposition of multipeakons. By

parameterizing ̃𝑑 = βˆ’π‘‘ for system (2), it then takes the form

of (1), which can be rewritten as a Hamiltonian system

πœ• πœ•π‘‘(π‘šπ‘›) = βˆ’( πœ•π‘š + π‘šπœ• πœ•π‘š + π‘›πœ• πœ•π‘› + π‘šπœ• πœ•π‘› + π‘›πœ• ) ( 𝛿𝐻 π›Ώπ‘š= 𝑒 𝛿𝐻 𝛿𝑛 = V ) (3)

with the Hamiltonian𝐻 = (1/2) ∫(π‘šπΊβˆ—π‘š+π‘›πΊβˆ—π‘›)𝑑π‘₯, where

𝐺 βˆ— π‘š = 𝑒, 𝐺 βˆ— 𝑛 = V, and 𝐺 = (1/2)π‘’βˆ’|π‘₯|.Particularly, when

𝑒 = 0 (or V = 0), the degenerated (1) has the same peakon

solitons as the CH equation. We are interested in such system because it exhibits the following conserved quantities, as can be easily verified: 𝐸1(𝑒) = ∫ 𝑅𝑒𝑑π‘₯, 𝐸2(V) = βˆ«π‘…V𝑑π‘₯, 𝐸3(𝑒) = ∫ π‘…π‘šπ‘‘π‘₯, 𝐸4(𝑒) = βˆ«π‘…π‘›π‘‘π‘₯, 𝐸5(𝑒, V) = ∫ 𝑅(𝑒 2+ 𝑒2 π‘₯+ V2+ V2π‘₯) 𝑑π‘₯. (4)

Volume 2014, Article ID 606249, 17 pages http://dx.doi.org/10.1155/2014/606249

(2)

Note that, when𝑒 = V, system (1) is reduced to the scalar Camassa-Holm equation as follows:

π‘šπ‘‘+ 4π‘šπ‘’π‘₯+ 2π‘šπ‘₯𝑒 = 0. (5)

The CH equation, which models the unidirectional propa-gation of shallow water waves over a flat bottom, has a

bi-Hamiltonian structure [3] and is completely integrable [4–6].

The CH equation has attracted considerable attention because

it has peaked solitons [4,7] and experiences wave breaking

[4,8]. The presence of breaking waves means that the solution

remains bounded while its slope becomes unbounded in

finite time [8, 9]. After wave breaking, the solutions of the

CH equation can be continued uniquely as either global

conservative [10–13] or global dissipative solutions [14].

As one of the integrable multicomponent generalizations

of the CH equation, system (1) has been shown to be

locally well posed with global strong solutions which blow

up in finite time [1, 2]. Moreover, the existence issue for a

class of local weak solutions for the modified coupled CH2

system was also addressed in [1]. It has been known that

the continuation of solutions for the system beyond wave breaking has been a challenging problem. In our recent work

[15], the problem of continuation beyond wave breaking for

the modified coupled CH2 system was studied by applying an

approach that reformulates the system (1) into a semilinear

system of O.D.E. taking values in a Banach space. Such treatment makes it possible to investigate the continuity of the solutions beyond collision time, leading to the uniquely global solutions of this system. Also the global dissipative and multipeakon dissipative solutions of this system have

been established in [16, 17], while, as far as the authors’

concern, there is no effort made in the literature on the study of the global conservative as well as multipeakon conservative solutions of such system, another important feature associated with the system. Motivated by our recent

work [15–17], in this paper we develop a new approach to

establish a global and stable solution for the modified coupled CH2 system, which is conservative and further allows for the construction of the multipeakon conservative solution. The approach utilized in this paper makes use of a novel system

transformation, which is different from [15] and is based on a

skillfully defined characteristic and a set of newly introduced variables, where the associated energy is introduced as an additional variable so as to obtain a well-posed initial-value problem, facilitating the study on the behavior of wave breaking. It should be stressed that both global stable solution and multipeakon solution are important aspects related to the solutions near wave breaking, while there is no effort made in the literature on the study of multipeakon property

of system (1), which is another motivation of this work.

Our inspiration of investing the underlying issue mainly also

stems from the early work [10,11] in the study of the global

conservative solution of the CH equation and [13] where the

multipeakon solution is obtained for the CH equation. In this work a coupled system is dealt with where the mutual effect between two components makes the analysis more

complicated than a single one as considered in [10, 11, 13].

By utilizing the novel transformation method, the inherent

difficulty is circumvented and then the global conservative

solutions of (1) are obtained, which then allows for the

establishment of the multipeakon conservative solution of

system (1).

The remainder of this paper is organized as follows.

Section 2 presents the basic equations. In Section 3, by

introducing a set of Lagrangian variables, we transform the original system into an equivalent semilinear system and derive the global solutions of the equivalent system. We obtain a global continuous semigroup of weak conservative

solutions for the original system in Section 4 and the

multipeakon conservative solution in Section5.

2. The Original System

We first introduce an operatorΞ› = (1 βˆ’ πœ•π‘₯2)βˆ’1, which can be

expressed by its associated Green’s function𝐺 = (1/2)π‘’βˆ’|π‘₯|

such asΛ𝑓(π‘₯) = 𝐺 βˆ— 𝑓(π‘₯) = (1/2) βˆ«π‘…π‘’βˆ’|π‘₯βˆ’π‘₯σΈ€ |𝑓(π‘₯σΈ€ )𝑑π‘₯σΈ€ , for all

𝑓 ∈ 𝐿2(𝑅), where βˆ— denotes the spatial convolution. Thus we

can rewrite (1) as a form of a quasilinear evolution equation:

𝑒𝑑+ (𝑒 + V) 𝑒π‘₯+ 𝐺 βˆ— (𝑒Vπ‘₯) + πœ•π‘₯𝐺 βˆ— (𝑒2+1 2𝑒2π‘₯+ 𝑒π‘₯Vπ‘₯+21V2βˆ’12V2π‘₯) = 0, 𝑑 > 0, π‘₯ ∈ 𝑅, V𝑑+ (𝑒 + V) Vπ‘₯+ 𝐺 βˆ— (𝑒π‘₯V) + πœ•π‘₯𝐺 βˆ— (V2+12V2π‘₯+ 𝑒π‘₯Vπ‘₯+12𝑒2βˆ’12𝑒2π‘₯) = 0, 𝑑 > 0, π‘₯ ∈ 𝑅. (6)

Let us define𝑃1,𝑃2,𝑃3, and𝑃4as

𝑃1(𝑑, π‘₯) = 𝐺 βˆ— (𝑒Vπ‘₯) = 12∫ 𝑅𝑒 βˆ’|π‘₯βˆ’π‘₯σΈ€ | (𝑒Vπ‘₯) (𝑑, π‘₯σΈ€ ) 𝑑π‘₯σΈ€ , 𝑃2(𝑑, π‘₯) = 𝐺 βˆ— (𝑒2+12𝑒π‘₯2+ 𝑒π‘₯Vπ‘₯+12V2βˆ’12V2π‘₯) =1 2βˆ«π‘…π‘’ βˆ’|π‘₯βˆ’π‘₯σΈ€ | (𝑒2+1 2𝑒π‘₯2+ 𝑒π‘₯Vπ‘₯+21V2βˆ’12V2π‘₯) Γ— (𝑑, π‘₯σΈ€ ) 𝑑π‘₯σΈ€ , 𝑃3(𝑑, π‘₯) = 𝐺 βˆ— (V𝑒π‘₯) = 12∫ 𝑅𝑒 βˆ’|π‘₯βˆ’π‘₯σΈ€ | (V𝑒π‘₯) (𝑑, π‘₯σΈ€ ) 𝑑π‘₯σΈ€ , 𝑃4(𝑑, π‘₯) = 𝐺 βˆ— (V2+12V2π‘₯+ 𝑒π‘₯Vπ‘₯+12𝑒2βˆ’12𝑒2π‘₯) =1 2βˆ«π‘…π‘’ βˆ’|π‘₯βˆ’π‘₯σΈ€ | (V2+1 2V2π‘₯+ 𝑒π‘₯Vπ‘₯+21𝑒2βˆ’12𝑒2π‘₯) Γ— (𝑑, π‘₯σΈ€ ) 𝑑π‘₯σΈ€ . (7)

Then (1) can be rewritten as

𝑒𝑑+ (𝑒 + V) 𝑒π‘₯+ 𝑃1+ 𝑃2,π‘₯= 0, 𝑑 > 0, π‘₯ ∈ 𝑅,

V𝑑+ (𝑒 + V) Vπ‘₯+ 𝑃3+ 𝑃4,π‘₯= 0, 𝑑 > 0, π‘₯ ∈ 𝑅.

(3)

For regular solutions, we get that the total energy 𝐸 (𝑑) = ∫

𝑅𝑒

2(𝑑, π‘₯) + 𝑒2

π‘₯(𝑑, π‘₯) + V2(𝑑, π‘₯) + V2π‘₯(𝑑, π‘₯) 𝑑π‘₯ (9)

is constant in time. Thus (8) possesses the𝐻1-norm

conser-vation law defined as

‖𝑧‖𝐻1 = ‖𝑒‖𝐻1+ β€–V‖𝐻1 = (∫ 𝑅[𝑒 2+ 𝑒2 π‘₯+ V2+ V2π‘₯] 𝑑π‘₯) 1/2 , (10)

where𝑧(𝑑, π‘₯) = (𝑒, V)(𝑑, π‘₯) denotes the solution of system (8).

Note that𝑧 = (𝑒, V) ∈ 𝐻1 Γ— 𝐻1, and so Young’s inequality

ensures that𝑃1, 𝑃2, 𝑃3, 𝑃4∈ 𝐻1.

3. Global Solutions of the Lagrangian

Equivalent System

We reformulate system (8) as follows. For a given initial data

𝑦(0, πœ‰), we define the corresponding characteristic 𝑦(𝑑, πœ‰) as the solution of

𝑦𝑑(𝑑, πœ‰) = (𝑒 + V) (𝑑, 𝑦 (𝑑, πœ‰)) , (11)

and we define the Lagrangian cumulative energy distribution 𝐻 as

𝐻 (𝑑, πœ‰) = βˆ«π‘¦(𝑑,πœ‰)

βˆ’βˆž (𝑒

2+ 𝑒2

π‘₯+ V2+ V2π‘₯) (𝑑, π‘₯) 𝑑π‘₯. (12)

It is not hard to check that

(𝑒2+ 𝑒2π‘₯+ V2+ V2π‘₯)𝑑+ ((𝑒 + V) (𝑒2+ 𝑒2π‘₯+ V2+ V2π‘₯))π‘₯

= (𝑒3βˆ’ 2𝑒𝑃2+ V3βˆ’ 2V𝑃4)π‘₯. (13)

Then it follows from (11) and (13) that

𝑑𝐻

𝑑𝑑 = [(𝑒3βˆ’ 2𝑒𝑃2+ V3βˆ’ 2V𝑃4) (𝑑, 𝑦 (𝑑, πœ‰))]πœ‰βˆ’βˆž. (14)

Throughout the following, we use the notation

π‘ˆ (𝑑, πœ‰) = 𝑒 (𝑑, 𝑦 (𝑑, πœ‰)) , 𝑉 (𝑑, πœ‰) = V (𝑑, 𝑦 (𝑑, πœ‰)) ,

𝑀 (𝑑, πœ‰) = 𝑒π‘₯(𝑑, 𝑦 (𝑑, πœ‰)) , 𝑁 (𝑑, πœ‰) = Vπ‘₯(𝑑, 𝑦 (𝑑, πœ‰)) .

(15)

In the following, we drop the variable𝑑 for simplification.

Here, we take𝑦 as an increasing function for any fixed time 𝑑

for granted (later on we will prove this). Then after the change

of variablesπ‘₯ = 𝑦(𝑑, πœ‰) and π‘₯σΈ€ = 𝑦(𝑑, πœ‰σΈ€ ), we obtain the

follow-ing expressions for𝑃𝑖and𝑃𝑖,π‘₯(𝑖 = 1, 2, 3, 4); namely,

𝑃1(𝑑, πœ‰) = 𝑃1(𝑑, 𝑦 (𝑑, πœ‰)) = 1 2βˆ«π‘…π‘’ βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [(π‘ˆπ‘) π‘¦πœ‰] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , (16) 𝑃1,π‘₯(𝑑, πœ‰) = 𝑃1,π‘₯(𝑑, 𝑦 (𝑑, πœ‰)) = βˆ’1 2βˆ«π‘…sgn(πœ‰ βˆ’ πœ‰ σΈ€ ) π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [(π‘ˆπ‘) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , (17) 𝑃2(𝑑, πœ‰) = 𝑃2(𝑑, 𝑦 (𝑑, πœ‰)) = 1 2βˆ«π‘…π‘’ βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| Γ— [(π‘ˆ2+1 2𝑀2+ 𝑀𝑁 + 1 2𝑉2βˆ’ 1 2𝑁2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃2,π‘₯(𝑑, πœ‰) = 𝑃2,π‘₯(𝑑, 𝑦 (𝑑, πœ‰)) = βˆ’1 2βˆ«π‘…sgn(πœ‰ βˆ’ πœ‰ σΈ€ ) π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| β‹… [(π‘ˆ2+1 2𝑀2+ 𝑀𝑁 + 1 2𝑉2βˆ’ 1 2𝑁2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃3(𝑑, πœ‰) = 𝑃3(𝑑, 𝑦 (𝑑, πœ‰)) = 12∫ 𝑅𝑒 βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [(𝑉𝑀) π‘¦πœ‰] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃3,π‘₯(𝑑, πœ‰) = 𝑃3,π‘₯(𝑑, 𝑦 (𝑑, πœ‰)) = βˆ’1 2βˆ«π‘…sgn(πœ‰ βˆ’ πœ‰ σΈ€ ) π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [(𝑉𝑀) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃4(𝑑, πœ‰) = 𝑃4(𝑑, 𝑦 (𝑑, πœ‰)) = 12∫ 𝑅𝑒 βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| Γ— [(𝑉2+12𝑁2+ 𝑀𝑁 +12π‘ˆ2βˆ’12𝑀2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃4,π‘₯(𝑑, πœ‰) = 𝑃4,π‘₯(𝑑, 𝑦 (𝑑, πœ‰)) = βˆ’1 2βˆ«π‘…sgn(πœ‰ βˆ’ πœ‰ σΈ€ ) π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| β‹… [(𝑉2+12𝑁2+ 𝑀𝑁 +12π‘ˆ2βˆ’12𝑀2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ . (18)

(4)

Sinceπ»πœ‰= (𝑒2+ 𝑒2π‘₯+ V2+ V2π‘₯) ∘ π‘¦π‘¦πœ‰, then𝑃2,𝑃2,π‘₯,𝑃4, and𝑃4,π‘₯ can be rewritten as 𝑃2(𝑑, πœ‰) = 𝑃2(𝑑, 𝑦 (πœ‰)) =1 4βˆ«π‘…π‘’ βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [π»πœ‰+ (π‘ˆ2+ 2𝑀𝑁 βˆ’ 𝑁2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃2,π‘₯(𝑑, πœ‰) = 𝑃2,π‘₯(𝑑, 𝑦 (πœ‰)) = βˆ’1 4βˆ«π‘…sgn(πœ‰ βˆ’ πœ‰ σΈ€ ) π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| Γ— [π»πœ‰+ (π‘ˆ2+ 2𝑀𝑁 βˆ’ 𝑁2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃4(𝑑, πœ‰) = 𝑃4(𝑑, 𝑦 (πœ‰)) =1 4βˆ«π‘…π‘’ βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [π»πœ‰+ (𝑉2+ 2𝑀𝑁 βˆ’ 𝑀2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃4,π‘₯(𝑑, πœ‰) = 𝑃4,π‘₯(𝑑, 𝑦 (πœ‰)) = βˆ’1 4βˆ«π‘…sgn(πœ‰ βˆ’ πœ‰ σΈ€ ) π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| Γ— [π»πœ‰+ (𝑉2+ 2𝑀𝑁 βˆ’ 𝑀2) π‘¦πœ‰] Γ— (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ . (19)

From the definition of the characteristic, it is not hard to check that π‘ˆπ‘‘(𝑑, πœ‰) = 𝑒𝑑(𝑑, 𝑦) + 𝑒π‘₯(𝑑, 𝑦) 𝑦𝑑(𝑑, πœ‰) = (βˆ’π‘ƒ1βˆ’ 𝑃2,π‘₯) ∘ 𝑦 (𝑑, πœ‰) , 𝑉𝑑(𝑑, πœ‰) = V𝑑(𝑑, 𝑦) + Vπ‘₯(𝑑, 𝑦) 𝑦𝑑(𝑑, πœ‰) = (βˆ’π‘ƒ3βˆ’ 𝑃4,π‘₯) ∘ 𝑦 (𝑑, πœ‰) , 𝑀𝑑(𝑑, πœ‰) = 𝑒π‘₯𝑑(𝑑, 𝑦) + 𝑒π‘₯π‘₯(𝑑, 𝑦) 𝑦𝑑(𝑑, πœ‰) = (βˆ’1 2𝑀2βˆ’ 1 2𝑁2+ π‘ˆ2+ 1 2𝑉2βˆ’ 𝑃1,π‘₯βˆ’ 𝑃2) ∘ 𝑦 (𝑑, πœ‰) , 𝑁𝑑(𝑑, πœ‰) = Vπ‘₯𝑑(𝑑, 𝑦) + Vπ‘₯π‘₯(𝑑, 𝑦) 𝑦𝑑(𝑑, πœ‰) = (βˆ’1 2𝑁2βˆ’ 1 2𝑀2+ 𝑉2+ 1 2π‘ˆ2βˆ’ 𝑃3,π‘₯βˆ’ 𝑃4) ∘ 𝑦 (𝑑, πœ‰) . (20)

We introduce another variable𝜍(𝑑, πœ‰) with 𝜍(𝑑, πœ‰) = 𝑦(𝑑, πœ‰) βˆ’ πœ‰.

It will turn out that𝜍 ∈ 𝐿∞(𝑅). With these new variables, we

now derive an equivalent system of (8) as follows:

πœπ‘‘= π‘ˆ + 𝑉, π‘ˆπ‘‘= βˆ’π‘ƒ1βˆ’ 𝑃2,π‘₯, 𝑉𝑑= βˆ’π‘ƒ3βˆ’ 𝑃4,π‘₯, 𝑀𝑑= (βˆ’1 2𝑀2βˆ’ 1 2𝑁2+ π‘ˆ2+ 1 2𝑉2βˆ’ 𝑃1,π‘₯βˆ’ 𝑃2) , 𝑁𝑑= (βˆ’1 2𝑁2βˆ’ 1 2𝑀2+ 𝑉2+ 1 2π‘ˆ2βˆ’ 𝑃3,π‘₯βˆ’ 𝑃4) , 𝐻𝑑= π‘ˆ3βˆ’ 2π‘ˆπ‘ƒ2+ 𝑉3βˆ’ 2𝑉𝑃4, (21)

where𝑃1and𝑃3are given in (18), while𝑃2,𝑃2,π‘₯,𝑃4, and𝑃4,π‘₯

are given in (19). We regard system (21) as a system of ordinary

differential equations in the Banach space

𝐸 = π‘Š Γ— 𝐻1Γ— 𝐻1Γ— 𝐿2Γ— 𝐿2Γ— π‘Š (22)

endowed with the norm

‖𝑋‖𝐸= β€–πœβ€–π‘Š+ β€–π‘ˆβ€–π»1+ ‖𝑉‖𝐻1+ ‖𝑀‖𝐿2+ ‖𝑁‖𝐿2+ β€–π»β€–π‘Š,

(23)

for any𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐸. Here π‘Š = {𝑓 ∈ 𝐢(𝑅) ∩

𝐿∞(𝑅) | π‘“πœ‰ ∈ 𝐿2(𝑅)} is a Banach space with the norm given

byβ€–π‘“β€–π‘Š= β€–π‘“β€–πΏβˆž(𝑅)+ β€–π‘“πœ‰β€–πΏ2(𝑅). Note that𝐻1(𝑅) βŠ‚ π‘Š.

Differentiating (21) with respect to the variableπœ‰ yields

πœπœ‰π‘‘= π‘ˆπœ‰+ π‘‰πœ‰, π‘ˆπœ‰π‘‘ =12π»πœ‰+ (12π‘ˆ2+ 𝑀𝑁 βˆ’ 𝑁2βˆ’ 𝑃2βˆ’ 𝑃1,π‘₯) π‘¦πœ‰, π‘‰πœ‰π‘‘= 12π»πœ‰+ (12𝑉2+ 𝑀𝑁 βˆ’ 𝑀2βˆ’ 𝑃4βˆ’ 𝑃3,π‘₯) π‘¦πœ‰, π»πœ‰π‘‘= (3π‘ˆ2βˆ’ 2𝑃2) π‘ˆπœ‰βˆ’ 2π‘ˆπ‘ƒ2,π‘₯π‘¦πœ‰ + (3𝑉2βˆ’ 2𝑃4) π‘‰πœ‰βˆ’ 2𝑉𝑃4,π‘₯π‘¦πœ‰, (24)

which are semilinear with respect to the variablesπ‘¦πœ‰,π‘ˆπœ‰,π‘‰πœ‰,

andπ»πœ‰.

To obtain the uniqueness of solutions, one proceeds as follows. By proving that all functions on the right-hand side

of (21) are locally Lipschitz continuous, the local existence of

solutions will follow from the standard theory of ordinary differential equations in Banach spaces. In a second step, we will then prove that this local solution can be extended

globally in time. Note that global solutions of (21) may not

exist for all initial data in𝐸. However they exist when the

initial data𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) belongs to the set Ξ“ which

is defined as follows.

Definition 1. The setΞ“ is composed of all 𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁,

(5)

(i) (𝜍, π‘ˆ, 𝑉, 𝐻) ∈ [π‘Š1,∞(𝑅)]4, (25) (ii) π‘¦πœ‰β‰₯ 0, π»πœ‰β‰₯ 0, π‘¦πœ‰+ π»πœ‰> 0 a.e., lim πœ‰ β†’ βˆ’βˆžπ» (πœ‰) = 0, (26) (iii) π‘¦πœ‰π»πœ‰= π‘¦πœ‰2π‘ˆ2+ π‘ˆπœ‰2+ π‘¦πœ‰2𝑉2+ π‘‰πœ‰2 a.e., (27) whereπ‘Š1,∞(𝑅) = {𝑓 ∈ 𝐢(𝑅) ∩ 𝐿∞(𝑅) | π‘“πœ‰ ∈ 𝐿∞(𝑅)} and 𝑦(πœ‰) = 𝜍(πœ‰) + πœ‰.

Lemma 2. Let R1 : 𝐸 β†’ π‘Š and let R2 : 𝐸 β†’ 𝐻1, or let

R2: 𝐸 β†’ π‘Š be two locally Lipschitz maps. Then, the product

𝑋 β†’ R1(𝑋)R2(𝑋) is also a locally Lipschitz map from 𝐸 to

𝐻1or from𝐸 to π‘Š.

Theorem 3. Given initial data 𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐸,

there exists a time𝑇 depending only on ‖𝑋‖𝐸 such that the system (21) admits a unique solution in𝐢1([0, 𝑇], 𝐸).

Proof. To obtain the local existence of solutions, it suffices to

show that𝐹(𝑋), given by

𝐹 (𝑋) = (π‘ˆ + 𝑉, βˆ’π‘ƒ1βˆ’ 𝑃2,π‘₯, βˆ’π‘ƒ3βˆ’ 𝑃4,π‘₯, βˆ’21𝑀2βˆ’12𝑁2+ π‘ˆ2 +1 2𝑉2βˆ’ 𝑃1,π‘₯βˆ’ 𝑃2, βˆ’ 1 2𝑁2βˆ’ 1 2𝑀2+ 𝑉2+ 1 2π‘ˆ2 βˆ’π‘ƒ3,π‘₯βˆ’ 𝑃4, π‘ˆ3βˆ’ 2π‘ˆπ‘ƒ2+ 𝑉3βˆ’ 2𝑉𝑃4) (28)

with𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻), is a Lipchitz function on any

bounded set of𝐸 which is a Banach space.

Our main task is to prove the Lipschitz continuity of𝑃𝑖

and 𝑃𝑖,π‘₯ (𝑖 = 1, 2, 3, 4) given by (18) and (19) from 𝐸 to

𝐻1(𝑅). We first prove that 𝑃

2,π‘₯given in (19) is locally Lipschitz

continuous from𝐸 to 𝐻1(𝑅) and the others follow in the same

way. Let us write

𝑃2,π‘₯(πœ‰) = βˆ’π‘’βˆ’πœ(πœ‰) 4 βˆ«π‘…πœ’{πœ‰σΈ€ <πœ‰}𝑒 βˆ’|πœ‰βˆ’πœ‰σΈ€ | π‘’πœ(πœ‰σΈ€ ) Γ— [π»πœ‰+ (π‘ˆ2+2𝑀𝑁 βˆ’ 𝑁2) (1 + πœπœ‰)] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€  +π‘’πœ(πœ‰) 4 βˆ«π‘…πœ’{πœ‰σΈ€ >πœ‰}𝑒 βˆ’|πœ‰βˆ’πœ‰σΈ€ | π‘’βˆ’πœ(πœ‰σΈ€ ) Γ— [π»πœ‰+ (π‘ˆ2+2𝑀𝑁 βˆ’ 𝑁2) (1 + πœπœ‰)] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , (29)

whereπœ’Ξ©denotes the indicator function of a given setΞ©. Let

𝑃2,π‘₯1 (πœ‰) = βˆ’π‘’βˆ’πœ(πœ‰) 4 βˆ«π‘…πœ’{πœ‰σΈ€ <πœ‰}𝑒 βˆ’|πœ‰βˆ’πœ‰σΈ€ | π‘’πœ(πœ‰σΈ€ ) Γ— [π»πœ‰+ (π‘ˆ2+2𝑀𝑁 βˆ’ 𝑁2) (1 + πœπœ‰)] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ , 𝑃2,π‘₯2 (πœ‰) = π‘’πœ(πœ‰) 4 βˆ«π‘…πœ’{πœ‰σΈ€ >πœ‰}𝑒 βˆ’|πœ‰βˆ’πœ‰σΈ€ | π‘’βˆ’πœ(πœ‰σΈ€ ) Γ— [π»πœ‰+ (π‘ˆ2+2𝑀𝑁 βˆ’ 𝑁2) (1 + πœπœ‰)] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ . (30) We rewrite𝑃2,π‘₯1 (πœ‰) as 𝑃2,π‘₯1 (πœ‰) = βˆ’π‘’βˆ’πœ(πœ‰)2 Ξ› ∘ 𝑅 (𝑋) (πœ‰) , (31)

where𝑅 is the operator from 𝐸 to 𝐿2(𝑅) given as

𝑅 (𝑋) (πœ‰) = πœ’{πœ‰σΈ€ <πœ‰}π‘’πœ[π»πœ‰+ (π‘ˆ2+ 2𝑀𝑁 βˆ’ 𝑁2) (1 + πœπœ‰)] .

(32)

Since the operator Ξ› (given in Section 2) is linear and

continuous fromπ»βˆ’1(𝑅) to 𝐻1(𝑅) and 𝐿2(𝑅) is continuously

embedded inπ»βˆ’1(𝑅), we have Ξ›βˆ˜π‘…(𝑋) ∈ 𝐻1. It is not hard to

check that𝑅 is locally Lipschitz continuous from 𝐸 to 𝐿2(𝑅)

and therefore from𝐸 to π»βˆ’1(𝑅). Thus Ξ›βˆ˜π‘… is locally Lipschitz

continuous from𝐸 to 𝐻1(𝑅). Since the mapping 𝑋 β†’ π‘’βˆ’πœis

locally Lipschitz continuous from𝐸 to π‘Š, by Lemma2, we

deduce that𝑃2,π‘₯1 (πœ‰) is locally Lipschitz continuous from 𝐸 to

𝐻1(𝑅). Similarly, 𝑃2,π‘₯2 (πœ‰) is also locally Lipschitz continuous

and therefore 𝑃2,π‘₯(πœ‰) is locally Lipschitz continuous. One

proceeds in the same way and proves that𝑃1,𝑃1,π‘₯, 𝑃3, and

𝑃3,π‘₯defined by (18) and𝑃2,𝑃4, and𝑃4,π‘₯defined by (19) are

locally Lipschitz continuous from𝐸 to 𝐻1(𝑅). We rewrite the

solutions of (21) as

𝑋 (𝑑) = 𝑋 + βˆ«π‘‘

0𝐹 (𝑋 (𝜏)) π‘‘πœ. (33)

Thus the theorem follows from the standard contraction argument of ordinary differential equations.

It remains to prove the existence of global solutions of

(21). Theorem3gives us the existence of local solutions of (21)

for initial data in𝐸. In the following, we will only consider

initial data that belongs to ̃𝐸 given by ̃𝐸 = 𝐸 ∩ [(π‘Š1,∞(𝑅))3∩

(𝐿2)2∩ π‘Š1,∞(𝑅)]. To obtain that the solution of (21) belongs

to ̃𝐸, we have to specify the initial condition for (24). Let

Ξ© = {πœ‰ ∈ 𝑅 | σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœπœ‰(πœ‰)󡄨󡄨󡄨󡄨󡄨 β‰€σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πœπœ‰σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž, σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘ˆπœ‰(πœ‰)󡄨󡄨󡄨󡄨󡄨 β‰€σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘ˆπœ‰σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž,

󡄨󡄨󡄨󡄨

σ΅„¨π‘‰πœ‰(πœ‰)󡄨󡄨󡄨󡄨󡄨 β‰€σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘‰πœ‰σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž, σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π»πœ‰(πœ‰)󡄨󡄨󡄨󡄨󡄨 β‰€σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π»πœ‰σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž} .

(6)

We have meas(Ω𝑐) = 0. For πœ‰ ∈ Ω𝑐, (𝜍

πœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(0, πœ‰)

is taken as (0, 0, 0, 0), and (πœπœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(0, πœ‰) is given as

(πœπœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(πœ‰), for πœ‰ ∈ Ξ©.

The global existence of the solution for initial data inΞ“

relies essentially on the fact that the setΞ“ is preserved by the

flow as the next lemma shows.

Lemma 4. Given initial data 𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ Ξ“,

one considers the local solution𝑋(𝑑) = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻)(𝑑) ∈

𝐢([0, 𝑇], 𝐸) of (21) with initial data𝑋 for some 𝑇 > 0. One

then gets that𝑋(𝑑) ∈ Ξ“ for all 𝑑 ∈ [0, 𝑇]. Moreover, for a.e.

𝑑 ∈ [0, 𝑇], π‘¦πœ‰(𝑑, πœ‰) > 0, for a.e. πœ‰ ∈ 𝑅, and limπœ‰ β†’ ±∞𝐻(𝑑, πœ‰)

exists and is independent of time for all𝑑 ∈ [0, 𝑇].

Proof. We first show that𝑋(𝑑) ∈ Ξ“ for all 𝑑 ∈ [0, 𝑇]. For

any given initial data𝑋 ∈ ̃𝐸, we get that the local solution

(𝜍, π‘ˆ, 𝑉, 𝐻)(𝑑) of (21) belongs to[π‘Š1,∞(𝑅)]4, which satisfies

(25) for all𝑑 ∈ [0, 𝑇]. We now show that (27) holds for any

πœ‰ ∈ Ξ© and therefore a,e.. Consider a fixed πœ‰ ∈ Ξ© and drop it in the notation if there is no ambiguity. On the one hand, it

follows from (24) that

(π‘¦πœ‰π»πœ‰)𝑑 = π‘¦πœ‰π‘‘π»πœ‰+ π‘¦πœ‰π»πœ‰π‘‘ = (π‘ˆπœ‰+ π‘‰πœ‰) π»πœ‰+ π‘¦πœ‰[(3π‘ˆ2βˆ’ 2𝑃2) π‘ˆπœ‰+ (3𝑉2βˆ’ 2𝑃4) π‘‰πœ‰ βˆ’2π‘ˆπ‘ƒ2,π‘₯π‘¦πœ‰βˆ’ 2𝑉𝑃4,π‘₯π‘¦πœ‰] = π‘ˆπœ‰π»πœ‰+ π‘‰πœ‰π»πœ‰+ 3π‘ˆ2π‘ˆ πœ‰π‘¦πœ‰βˆ’ 2𝑃2π‘ˆπœ‰π‘¦πœ‰+ 3𝑉2π‘‰πœ‰π‘¦πœ‰ βˆ’ 2𝑃4π‘‰πœ‰π‘¦πœ‰βˆ’ 2π‘ˆπ‘ƒ2,π‘₯π‘¦πœ‰2βˆ’ 2𝑉𝑃4,π‘₯𝑦2πœ‰, (35) and, on the other hand,

(π‘¦πœ‰2π‘ˆ2+ π‘ˆπœ‰2+ π‘¦πœ‰2𝑉2+ π‘‰πœ‰2)𝑑 = 2π‘¦πœ‰π‘¦πœ‰π‘‘π‘ˆ2+ 2𝑦2 πœ‰π‘ˆπ‘ˆπ‘‘+ 2π‘ˆπœ‰π‘ˆπœ‰π‘‘+ 2π‘¦πœ‰π‘¦πœ‰π‘‘π‘‰2 + 2𝑦2πœ‰π‘‰π‘‰π‘‘+ 2π‘‰πœ‰π‘‰πœ‰π‘‘ = π‘ˆπœ‰π»πœ‰+ π‘‰πœ‰π»πœ‰+ 3π‘ˆ2π‘ˆπœ‰π‘¦πœ‰+ 3𝑉2π‘‰πœ‰π‘¦πœ‰βˆ’ 2𝑃2π‘ˆπœ‰π‘¦πœ‰ βˆ’ 2𝑃4π‘‰πœ‰π‘¦πœ‰βˆ’ 2π‘ˆπ‘ƒ2,π‘₯π‘¦πœ‰2βˆ’ 2𝑉𝑃4,π‘₯π‘¦πœ‰2. (36)

Hence, (π‘¦πœ‰π»πœ‰)𝑑 = (π‘¦πœ‰2π‘ˆ2+ π‘ˆπœ‰2+ 𝑦2πœ‰π‘‰2+ π‘‰πœ‰2)𝑑. Notice that

π‘¦πœ‰π»πœ‰(0) = (𝑦2

πœ‰π‘ˆ2 + π‘ˆπœ‰2 + π‘¦πœ‰2𝑉2 + π‘‰πœ‰2)(0); then π‘¦πœ‰π»πœ‰(𝑑) =

(𝑦2

πœ‰π‘ˆ2 + π‘ˆπœ‰2 + π‘¦πœ‰2𝑉2 + π‘‰πœ‰2)(𝑑) for all 𝑑 ∈ [0, 𝑇] and (27)

has been proved. We now prove the inequalities in (26). Set

π‘‘βˆ—= sup{𝑑 ∈ [0, 𝑇]|π‘¦πœ‰(𝑑󸀠) β‰₯ 0 for all π‘‘σΈ€ βˆˆ [0, 𝑑]}. Assume that

π‘‘βˆ— < 𝑇. Since 𝑦

πœ‰(𝑑) is continuous with respect to 𝑑, we have

π‘¦πœ‰(π‘‘βˆ—) = 0. It follows from (27) thatπ‘ˆπœ‰(π‘‘βˆ—) = π‘‰πœ‰(π‘‘βˆ—) = 0.

Furthermore, (24) implies thatπ‘¦πœ‰π‘‘(π‘‘βˆ—) = π‘ˆπœ‰(π‘‘βˆ—) + π‘‰πœ‰(π‘‘βˆ—) =

0 and π‘¦πœ‰π‘‘π‘‘(π‘‘βˆ—) = (π‘ˆ

πœ‰π‘‘ + π‘‰πœ‰π‘‘)(π‘‘βˆ—) = π»πœ‰(π‘‘βˆ—). If π»πœ‰(π‘‘βˆ—) =

0, then (π‘¦πœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(π‘‘βˆ—) = (0, 0, 0, 0) which implies that

(π‘¦πœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(𝑑) = 0 for all 𝑑 ∈ [0, 𝑇] by the uniqueness

of the solution of system (24). This contradicts the fact that

π‘¦πœ‰(0)+π»πœ‰(0) > 0 for all πœ‰ ∈ Ξ©. If π»πœ‰(π‘‘βˆ—) < 0, then 𝑦

πœ‰π‘‘π‘‘(π‘‘βˆ—) < 0.

Sinceπ‘¦πœ‰(π‘‘βˆ—) = π‘¦πœ‰π‘‘(π‘‘βˆ—) = 0, there exists a neighborhood πœ› of

π‘‘βˆ—such thatπ‘¦πœ‰(𝑑) < 0 for all 𝑑 ∈ πœ›/{π‘‘βˆ—}. This contradicts the

definition ofπ‘‘βˆ—. Hence,π»πœ‰(π‘‘βˆ—) > 0. We now have π‘¦πœ‰π‘‘π‘‘(π‘‘βˆ—) > 0,

which conversely implies thatπ‘¦πœ‰(𝑑) > 0 for all 𝑑 ∈ πœ›/{π‘‘βˆ—},

which contradicts the fact thatπ‘‘βˆ— < 𝑇. Thus we have proved

π‘¦πœ‰(𝑑) β‰₯ 0 for all 𝑑 ∈ [0, 𝑇]. We now prove that π»πœ‰ β‰₯ 0

for all𝑑 ∈ [0, 𝑇]. This follows from (27) whenπ‘¦πœ‰(𝑑) > 0. If

π‘¦πœ‰(𝑑) = 0, then π‘ˆπœ‰(𝑑) = π‘‰πœ‰(𝑑) = 0 from (27). As we have

seen,π»πœ‰ < 0 would imply that π‘¦πœ‰(𝑑󸀠) < 0 for some 𝑑󸀠 in

a punctured neighborhood of𝑑, which is impossible. Hence,

π»πœ‰ β‰₯ 0 for all 𝑑 ∈ [0, 𝑇]. Now we get that π‘¦πœ‰(𝑑) + π»πœ‰(𝑑) β‰₯ 0

for all 𝑑 ∈ [0, 𝑇]. If π‘¦πœ‰(𝑑󸀠) + π»πœ‰(𝑑󸀠) = 0 for some 𝑑󸀠, it

then follows that(π‘¦πœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(𝑑󸀠) = 0 which implies that

(π‘¦πœ‰, π‘ˆπœ‰, π‘‰πœ‰, π»πœ‰)(𝑑) = 0 for all 𝑑 ∈ [0, 𝑇], which contradicts

the fact that π‘¦πœ‰(0) + π»πœ‰(0) > 0 for all πœ‰ ∈ Ξ©. Hence,

π‘¦πœ‰(𝑑) + π»πœ‰(𝑑) > 0. This completes the proof that 𝑋(𝑑) ∈ Ξ“

for all𝑑 ∈ [0, 𝑇].

We now prove thatπ‘¦πœ‰(𝑑, πœ‰) > 0 for almost all 𝑑. Define the

setΘ = {(𝑑, πœ‰) ∈ [0, 𝑇] Γ— 𝑅 | π‘¦πœ‰(𝑑, πœ‰) = 0}. It follows from

Fubini’s theorem that

meas(Θ) = ∫

𝑅meas(Ξ˜πœ‰) π‘‘πœ‰ = ∫[0,𝑇]meas(Ξ˜π‘‘) 𝑑𝑑, (37)

whereΞ˜πœ‰ = {𝑑 ∈ [0, 𝑇] | π‘¦πœ‰(𝑑, πœ‰) = 0} and Ξ˜π‘‘ = {πœ‰ ∈ 𝑅 |

π‘¦πœ‰(𝑑, πœ‰) = 0}. From the above proof, we know that, for all

πœ‰ ∈ Ξ©, Ξ˜πœ‰consists of isolated points that are countable. This

means that meas(Ξ˜πœ‰) = 0. Since meas(Ω𝑐) = 0, it thus follows

from (37) that meas(Ξ˜π‘‘) = 0 for almost every 𝑑 ∈ [0, 𝑇]. This

implies thatπ‘¦πœ‰(𝑑, πœ‰) > 0 for almost all 𝑑 and therefore 𝑦(𝑑, πœ‰)

is strictly increasing and invertible with respect toπœ‰.

For any given𝑑 ∈ [0, 𝑇], since π»πœ‰(𝑑) β‰₯ 0 and 𝐻(𝑑, πœ‰) ∈

𝐿∞(𝑅), we know that 𝐻(𝑑, ±∞) exist. We have the following:

𝐻 (𝑑, πœ‰) = 𝐻 (0, πœ‰) + βˆ«π‘‘

0(π‘ˆ

3βˆ’ 2𝑃

2π‘ˆ + 𝑉3βˆ’ 2𝑃4𝑉) (𝜏, πœ‰) π‘‘πœ.

(38)

Letπœ‰ β†’ ±∞. Since π‘ˆ, 𝑉, 𝑃2,𝑃4are bounded in𝐿∞([0, 𝑇] Γ—

𝑅) and limπœ‰ β†’ Β±βˆžπ‘ˆ(𝑑, πœ‰) = limπœ‰ β†’ Β±βˆžπ‘‰(𝑑, πœ‰) = 0 as π‘ˆ(𝑑, β‹…),

𝑉(𝑑, β‹…) ∈ 𝐻1(𝑅) for all 𝑑 ∈ [0, 𝑇], (38) implies that𝐻(𝑑, ±∞) =

𝐻(0, ±∞) for all 𝑑 ∈ [0, 𝑇]. Since 𝑋 ∈ Ξ“, it follows that 𝐻(0, ±∞) = 0 for all 𝑑 ∈ [0, 𝑇].

Theorem 5. For any initial data 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ Ξ“, there exists a unique global solution 𝑋(𝑑) = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁,

𝐻)(𝑑) ∈ 𝐢1(𝑅+, 𝐸) for the system (21). Moreover, for all𝑑 ∈ 𝑅+,

we have𝑋(𝑑) ∈ Ξ“, which constructs a continuous semigroup. Proof. To ensure that the local solution𝑋 = (𝜍, π‘ˆ, 𝑉, 𝑀, 𝑁,

𝐻) ∈ 𝐢([0, 𝑇], 𝐸) of system (21) can be extended to a global

solution, it suffices to show that sup

π‘‘βˆˆ[0,𝑇)β€–πœ (𝑑, β‹…) , π‘ˆ (𝑑, β‹…) , 𝑉 (𝑑, β‹…) , 𝑀 (𝑑, β‹…) , 𝑁 (𝑑, β‹…) , 𝐻 (𝑑, β‹…)‖𝐸<∞.

(7)

Since 𝐻(𝑑, πœ‰) is an increasing function with respect to πœ‰

for all 𝑑 and limπœ‰ β†’ ∞𝐻(𝑑, πœ‰) = limπœ‰ β†’ ∞𝐻(0, πœ‰), we have

supπ‘‘βˆˆ[0,𝑇)‖𝐻(𝑑, β‹…)β€–πΏβˆž(𝑅) = β€–π»β€–πΏβˆž(𝑅) < ∞. We now consider

a fixed𝑑 ∈ [0, 𝑇) and drop it for simplification. Since π‘ˆπœ‰(πœ‰) =

π‘‰πœ‰(πœ‰) = 0 when π‘¦πœ‰(πœ‰) = 0 and π‘¦πœ‰(πœ‰) > 0, for a. e. πœ‰, it follows

from (27) that π‘ˆ2(πœ‰) = 2 βˆ«πœ‰ βˆ’βˆžπ‘ˆ (πœ‰ σΈ€ ) π‘ˆ πœ‰(πœ‰σΈ€ ) π‘‘πœ‰σΈ€  = 2 ∫ {πœ‰σΈ€ <πœ‰|𝑦 πœ‰(πœ‰σΈ€ )>0} π‘ˆ (πœ‰σΈ€ ) π‘ˆ πœ‰(πœ‰σΈ€ ) π‘‘πœ‰σΈ€  ≀ ∫ {πœ‰σΈ€ <πœ‰|𝑦 πœ‰(πœ‰σΈ€ )>0} (π‘¦πœ‰π‘ˆ2+π‘ˆ 2 πœ‰ π‘¦πœ‰) (πœ‰σΈ€ ) π‘‘πœ‰σΈ€  ≀ ∫ π‘…π»πœ‰(πœ‰ σΈ€ ) π‘‘πœ‰σΈ€ = 𝐻 (πœ‰) , (40)

which implies that sup π‘‘βˆˆ[0,𝑇)σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘ˆ 2(𝑑, β‹…)σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©πΏβˆžβ‰€ sup π‘‘βˆˆ[0,𝑇)‖𝐻 (𝑑, β‹…)β€–πΏβˆž(𝑅)= σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π»σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž(𝑅)< ∞, (41) and therefore sup π‘‘βˆˆ[0,𝑇)β€–π‘ˆ (𝑑, β‹…)β€–πΏβˆž< ∞. (42) Similarly, sup π‘‘βˆˆ[0,𝑇)‖𝑉 (𝑑, β‹…)β€–πΏβˆž < ∞. (43)

We can obtain from the governing equation (21) that

σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ(𝑑,πœ‰)󡄨󡄨󡄨󡄨 ≀ σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ(0,πœ‰)󡄨󡄨󡄨󡄨 + sup

π‘‘βˆˆ[0,𝑇)(β€–π‘ˆ (𝑑, β‹…)‖𝐿

∞+ ‖𝑉 (𝑑, β‹…)β€–πΏβˆž) 𝑇,

(44)

and then supπ‘‘βˆˆ[0,𝑇)β€–πœ(𝑑, β‹…)β€–πΏβˆž < ∞. We can also get from the

governing equation (21) that

sup

π‘‘βˆˆ[0,𝑇)‖𝑀 (𝑑, β‹…)β€–πΏβˆž< ∞, π‘‘βˆˆ[0,𝑇)sup ‖𝑁 (𝑑, β‹…)β€–πΏβˆž< ∞. (45)

From the identityπ»πœ‰= (π‘ˆ2+𝑀2+𝑉2+𝑁2)π‘¦πœ‰, we can deduce

that 󡄨󡄨󡄨󡄨

󡄨(π‘ˆ2+ 2𝑀𝑁 βˆ’ 𝑁2) π‘¦πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨ ≀ (π‘ˆ2+ 𝑀2+ 𝑁2+ 𝑁2) π‘¦πœ‰β‰€ 2π»πœ‰,

(46) which implies that

󡄨󡄨󡄨󡄨𝑃2,π‘₯󡄨󡄨󡄨󡄨 ≀ 12σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨βˆ« 𝑅𝑒 βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| [π»πœ‰+ (π‘ˆ2+2𝑀𝑁 βˆ’ 𝑁2) π‘¦πœ‰] (πœ‰σΈ€ ) π‘‘πœ‰σΈ€ σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨ ≀ 1 2σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨βˆ«π‘…π‘’ βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| 3π»πœ‰(πœ‰σΈ€ ) π‘‘πœ‰σΈ€ σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨ ≀ 𝐢 sup π‘‘βˆˆ[0,𝑇)‖𝐻 (𝑑, β‹…)‖𝐿 ∞(𝑅)< ∞. (47)

Therefore,‖𝑃2,π‘₯β€–πΏβˆž < ∞. It is not hard to know that ‖𝑃2,π‘₯‖𝐿2≀

πΆβ€–π‘’βˆ’π‘¦(πœ‰)‖𝐿2β‹… supπ‘‘βˆˆ[0,𝑇)‖𝐻(𝑑, β‹…)β€–πΏβˆž(𝑅) < ∞. Similarly, one can

obtain that the bounds hold for𝑃1,𝑃1,π‘₯,𝑃2,𝑃3,𝑃3,π‘₯,𝑃4, and

𝑃4,π‘₯. Let

𝑍 (𝑑) = β€–π‘ˆ (𝑑, β‹…)‖𝐿2+ σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘ˆπœ‰(𝑑, β‹…)󡄩󡄩󡄩󡄩󡄩𝐿2+ ‖𝑉 (𝑑, β‹…)‖𝐿2

+ σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘‰πœ‰(𝑑, β‹…)󡄩󡄩󡄩󡄩󡄩𝐿2+ σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πœπœ‰(𝑑, β‹…)󡄩󡄩󡄩󡄩󡄩𝐿2+ σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π»πœ‰(𝑑, β‹…)󡄩󡄩󡄩󡄩󡄩𝐿2.

(48)

Using the integrated version of (21) and (24), after taking the

𝐿2-norms on both sides, we obtain

𝑍 (𝑑) ≀ 𝑍 (0) + 𝐢 βˆ«π‘‘

0𝑍 (𝜏) π‘‘πœ. (49)

It follows from Gronwall’s inequality that supπ‘‘βˆˆ[0,𝑇)𝑍(𝑑) < ∞.

Hence, we infer that the map𝑆𝑑: Ξ“ β†’ Ξ“ Γ— 𝑅+defined as

𝑆𝑑(𝑋) = 𝑋 (𝑑) (50)

generates a continuous semigroup from the standard theory of ordinary differential equations.

4. Global Conservative Solutions of the

Original System

We show that the global solution of the equivalent system (21)

yields a global conservative solution of the original system

(8), which constructs a continuous semigroup in this section.

To obtain the global conservative solution of the original system, we have to establish the correspondence between the Lagrangian equivalent system and the original system.

Let us first introduce the subsets𝐹 and 𝐹𝛼ofΞ“ given by

𝐹 = {𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ Ξ“ | 𝑦 + 𝐻 ∈ 𝐺} ,

𝐹𝛼= {𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ Ξ“ | 𝑦 + 𝐻 ∈ 𝐺𝛼} , (51)

where𝐺 is defined as

𝐺 = {𝑓 is invertible | 𝑓 βˆ’ 𝐼𝑑,

π‘“βˆ’1βˆ’ 𝐼𝑑 both belong to π‘Š1,∞(𝑅)} . (52)

And, for any𝛼 > 1, the subsets 𝐺𝛼of𝐺 are given by

𝐺𝛼= {𝑓 ∈ 𝐺 | 󡄩󡄩󡄩󡄩𝑓 βˆ’ πΌπ‘‘σ΅„©σ΅„©σ΅„©σ΅„©π‘Š1,∞(𝑅)+ σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘“βˆ’1βˆ’ πΌπ‘‘σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘Š1,∞(𝑅)≀ 𝛼} ,

(53)

with a useful characterization. If𝑓 ∈ 𝐺𝛼(𝛼 β‰₯ 0), then 1/(1 +

𝛼) ≀ π‘“πœ‰β‰€ 1 + 𝛼 a.e. Conversely, if 𝑓 is absolutely continuous,

𝑓 βˆ’ 𝐼𝑑 ∈ 𝐿∞(𝑅) and there exists 𝑐 β‰₯ 1 such that 1/𝑐 ≀ 𝑓

πœ‰β‰€ 𝑐

a.e., and then𝑓 ∈ 𝐺𝛼for some𝛼 depending only on 𝑐 and

‖𝑓 βˆ’ πΌπ‘‘β€–πΏβˆž(𝑅). With this useful characterization of𝐺𝛼, it is not

hard to prove that the space𝐹 is preserved by the governing

equation (21). Notice that the map(𝑓, 𝑋) β†’ 𝑋 ∘ 𝑓 defines a

group action of𝐺 on 𝐹; we consider the quotient space 𝐹/𝐺 of

𝐹 with respect to the group action. The equivalence relation

(8)

𝑓 ∈ 𝐺 such that 𝑋󸀠 = 𝑋 ∘ 𝑓, we claim that 𝑋 and 𝑋󸀠are equivalent.

We denote the projectionΞ  : 𝐹 β†’ 𝐹/𝐺 by Ξ (𝑋) =

[𝑋]. For any 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐹, we introduce the

mappingΞ₯ : 𝐹 β†’ 𝐹0 given by Ξ₯(𝑋) = 𝑋 ∘ (𝑦 + 𝐻)βˆ’1.

It is not hard to prove thatΞ₯(𝑋) = 𝑋 when 𝑋 ∈ 𝐹0 and

Ξ₯(𝑋 ∘ 𝑓) = Ξ₯(𝑋) for any 𝑋 ∈ 𝐹 and 𝑓 ∈ 𝐺. Hence, we

can define the map ΜƒΞ₯ : 𝐹/𝐺 β†’ 𝐹0as ΜƒΞ₯([𝑋]) = Ξ₯(𝑋), for

any representative[𝑋] ∈ 𝐹/𝐺 of 𝑋 ∈ 𝐹. For any 𝑋 ∈ 𝐹0, we

have ΜƒΞ₯ ∘ Ξ (𝑋) = Ξ₯(𝑋) = 𝑋. Hence, ΜƒΞ₯ ∘ Ξ |𝐹0 = 𝐼𝑑|𝐹0 and

any topology defined on𝐹0is naturally transported into𝐹/𝐺

by this isomorphism. That is, if we equip𝐹0with the metric

induced by the𝐸-norm; that is, 𝑑𝐹0(𝑋, 𝑋󸀠) = ‖𝑋 βˆ’ 𝑋󸀠‖𝐸, for

all𝑋, 𝑋󸀠 ∈ 𝐹0, which is complete, then the topology on𝐹/𝐺

is defined by a complete metric given by𝑑𝐹/𝐺([𝑋], [𝑋󸀠]) =

β€–Ξ₯(𝑋) βˆ’ Ξ₯(𝑋󸀠)β€–

𝐸for any[𝑋], [𝑋󸀠] ∈ 𝐹/𝐺. Let us denote by

𝑆 : 𝐹 Γ— 𝑅+ β†’ 𝐹 the continuous semigroup which to any

initial data𝑋 ∈ 𝐹 associates the solution 𝑋(𝑑) of (21). The

system (8) is invariant with respect to relabeling. That is, for

any𝑑 > 0, 𝑆𝑑(𝑋 ∘ 𝑓) = 𝑆𝑑(𝑋) ∘ 𝑓, for an 𝑋 ∈ 𝐹 and 𝑓 ∈ 𝐺.

Thus the map ̃𝑆𝑑 : 𝐹/𝐺 β†’ 𝐹/𝐺 given by ̃𝑆𝑑([𝑋]) = [𝑆𝑑𝑋] is

well-defined, which generates a continuous semigroup.

To obtain a semigroup of solution for (8), we have to

consider the space𝐷, which characterizes the solutions in the

original system:

𝐷 = {(𝑧, πœ‡) | 𝑧 ∈ 𝐻1(𝑅) Γ— 𝐻1(𝑅) ,

πœ‡ac= (𝑒2+ 𝑒2π‘₯+ V2+ V2π‘₯) 𝑑π‘₯} , (54)

where𝑧 = (𝑒, V) and πœ‡ is a positive finite Radon measure with

πœ‡acas its absolute continuous part.

We now establish a bijection between𝐹/𝐺 and 𝐷 to

trans-port the continuous semigroup obtained in the Lagrangian

equivalent system (functions in𝐹/𝐺) into the original system

(functions in𝐷).

We first introduce the mapping𝐿 : 𝐷 β†’ 𝐹/𝐺, which

transforms the original system into the Lagrangian equivalent system defined as follows.

Definition 6. For any(𝑧, πœ‡) ∈ 𝐷, let

𝑦 (πœ‰) = sup {𝑦 | πœ‡ (βˆ’βˆž, 𝑦) + 𝑦 < πœ‰} , (55)

π‘ˆ (πœ‰) = 𝑒 ∘ 𝑦 (πœ‰) , 𝑉 (πœ‰) = V ∘ 𝑦 (πœ‰) ,

𝑀 (πœ‰) = 𝑒π‘₯∘ 𝑦 (πœ‰) , 𝑁 (πœ‰) = Vπ‘₯∘ 𝑦 (πœ‰) ,

(56)

𝐻 (πœ‰) = πœ‰ βˆ’ 𝑦 (πœ‰) , (57)

with𝑧 = (𝑒, V). We define 𝐿(𝑧, πœ‡) ∈ 𝐹/𝐺 as the equivalence

class of(𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻).

Remark 7. From the definition of𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻 in (55)–

(57), we can check that𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐸, which

also satisfies (25). Moreover, we have 𝑦 + 𝐻 = 𝐼𝑑 from

(57), which implies that 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐹0.

Furthermore, ifπœ‡ is absolutely continuous, then πœ‡ = (𝑒2+

𝑒2 π‘₯+ V2+ V2π‘₯)𝑑π‘₯ and βˆ«π‘¦(πœ‰) βˆ’βˆž (𝑒 2+ 𝑒2 π‘₯+ V2+ V2π‘₯) 𝑑π‘₯ + 𝑦 (πœ‰) = πœ‰, (58) for allπœ‰ ∈ 𝑅.

We are led to the mapping𝑀, which corresponds to the

transformation from the Lagrangian equivalent system into the original system. In the other direction, we obtain the

energy densityπœ‡ in the original system, by pushing forward

by𝑦 the energy density π»πœ‰π‘‘πœ‰ in the Lagrangian equivalent

system, where the push-forward 𝑓#] of a measure ] by a

measurable function𝑓 is defined as

𝑓#] (𝐡) = ] (π‘“βˆ’1(𝐡)) , (59)

for all the Borel set𝐡. Give any element [𝑋] ∈ 𝐹/𝐺, and let

(𝑧, πœ‡) be defined as

𝑧 (π‘₯) = 𝑍 (πœ‰) for any πœ‰ such that π‘₯ = 𝑦 (πœ‰) , (60)

πœ‡ = 𝑦#(π»πœ‰π‘‘πœ‰) , (61)

where𝑧(π‘₯) = (𝑒, V)(π‘₯) and 𝑍(πœ‰) = (π‘ˆ, 𝑉)(πœ‰). We get that

(𝑧, πœ‡) ∈ 𝐷, which does not depend on the representative 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐹 of [𝑋] that we choose. We

denote by𝑀 : 𝐹/𝐺 β†’ 𝐷 the map to any [𝑋] ∈ 𝐹/𝐺 and

(𝑧, πœ‡) ∈ 𝐷 given by (60)-(61), which conversely transforms

the Lagrangian equivalent system into the original system. We claim that the transformation from the original system into the Lagrangian equivalent system is a bijection.

Theorem 8. The maps 𝑀 and 𝐿 are well-defined and πΏβˆ’1 = 𝑀.

That is,

𝐿 ∘ 𝑀 = 𝐼𝑑𝐹/𝐺, 𝑀 ∘ 𝐿 = 𝐼𝑑𝐷. (62)

Proof. Let[𝑋] in 𝐹/𝐺 be given. We consider 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀,

𝑁, 𝐻) = ΜƒΞ₯([𝑋]) as a representative of [𝑋] and (𝑧, πœ‡) given by

(60)-(61) for this particular𝑋. From the definition of ΜƒΞ₯, we

have𝑋 ∈ 𝐹0. Let𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) be the representative

of𝐿(𝑧, πœ‡) in 𝐹0given by Definition6. We have to prove that

𝑋 = 𝑋 and therefore 𝐿 ∘ 𝑀 = 𝐼𝑑𝐹/𝐺. Let

𝑔 (π‘₯) = sup {πœ‰ ∈ 𝑅 | 𝑦 (πœ‰) < π‘₯} . (63)

Using the fact that𝑦 is increasing and continuous, it follows

that

𝑦 (𝑔 (π‘₯)) = π‘₯ (64)

and π‘¦βˆ’1((βˆ’βˆž, π‘₯)) = (βˆ’βˆž, 𝑔(π‘₯)). From (61) and since

𝐻(βˆ’βˆž) = 0, for any π‘₯ ∈ 𝑅, we get the following: πœ‡ ((βˆ’βˆž, π‘₯)) = ∫

π‘¦βˆ’1((βˆ’βˆž,π‘₯))π»πœ‰π‘‘πœ‰ = ∫

𝑔(π‘₯)

βˆ’βˆž π»πœ‰π‘‘πœ‰ = 𝐻 (𝑔 (π‘₯)) .

(9)

Since𝑋 ∈ 𝐹0and𝑦 + 𝐻 = 𝐼𝑑, we have

πœ‡ ((βˆ’βˆž, π‘₯)) + π‘₯ = 𝑔 (π‘₯) . (66)

From the definition of𝑦, it follows that

𝑦 (πœ‰) = sup {π‘₯ ∈ 𝑅 | 𝑔 (π‘₯) < πœ‰} . (67)

For any given πœ‰ ∈ 𝑅, using the fact that 𝑦 is increasing

and (64), it follows that𝑦(πœ‰) ≀ 𝑦(πœ‰). If 𝑦(πœ‰) < 𝑦(πœ‰), there

then existsπ‘₯ such that 𝑦(πœ‰) < π‘₯ < 𝑦(πœ‰) and (67) implies

that𝑔(π‘₯) β‰₯ πœ‰. Conversely, since 𝑦 is increasing, then π‘₯ =

𝑦(𝑔(π‘₯)) < 𝑦(πœ‰) implies that 𝑔(π‘₯) < πœ‰, which gives us a

contradiction. Hence, we have𝑦 = 𝑦. Since 𝑦 + 𝐻 = 𝐼𝑑, it

follows directly from the definitions that𝐻 = 𝐻, π‘ˆ = π‘ˆ, 𝑉 =

𝑉, 𝑀 = 𝑀, and 𝑁 = 𝑁. We thus proved that 𝐿 ∘ 𝑀 = 𝐼𝑑𝐹/𝐺.

Given (𝑧, πœ‡) in 𝐷, we denote by (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) the

representative of 𝐿(𝑧, πœ‡) in 𝐹0 given by Definition 6. Let

(𝑧, πœ‡) = 𝑀 ∘ 𝐿(𝑧, πœ‡) and 𝑔 be defined as before by (63). The

same computation that leads to (66) now gives

πœ‡ ((βˆ’βˆž, π‘₯)) + π‘₯ = 𝑔 (π‘₯) . (68)

Given πœ‰ ∈ 𝑅, we consider an increasing sequence π‘₯𝑖

converging to 𝑦(πœ‰) which is guaranteed by (55) such that

πœ‡((βˆ’βˆž, π‘₯𝑖)) + π‘₯𝑖 < πœ‰. Let 𝑖 tend to infinity. Since

𝐹(π‘₯) = πœ‡((βˆ’βˆž, π‘₯)) is lower semi-continuous, we have πœ‡((βˆ’βˆž, 𝑦(πœ‰))) + 𝑦(πœ‰) ≀ πœ‰. Take πœ‰ = 𝑔(π‘₯) and then we get

πœ‡ ((βˆ’βˆž, π‘₯)) + π‘₯ ≀ 𝑔 (π‘₯) . (69)

By the definition of𝑔, there exists an increasing sequence πœ‰π‘–

converging to𝑔(π‘₯) such that 𝑦(πœ‰π‘–) < π‘₯. It follows from the

definition of𝑦 in (55) thatπœ‡((βˆ’βˆž, π‘₯)) + π‘₯ β‰₯ πœ‰π‘–. Passing to the

limit, we obtainπœ‡((βˆ’βˆž, π‘₯)) + π‘₯ β‰₯ 𝑔(π‘₯) which, together with

(69), yields

πœ‡ ((βˆ’βˆž, π‘₯)) + π‘₯ = 𝑔 (π‘₯) . (70)

We obtain thatπœ‡ = πœ‡ by comparing (70) and (68). It is clear

from the definitions that𝑧 = 𝑧. Hence, (𝑧, πœ‡) = (𝑧, πœ‡) and

𝑀 ∘ 𝐿 = 𝐼𝑑𝐷.

The topology defined in𝐹/𝐺 can be transported into 𝐷,

which is guaranteed by the fact that we have established a bijection between the two equivalent systems. We define the

metric𝑑𝐷on𝐷 as

𝑑𝐷((𝑧, πœ‡) , (𝑧, πœ‡)) = 𝑑𝐹/𝐺(𝐿 (𝑧, πœ‡) , 𝐿 (𝑧, πœ‡)) , (71)

which makes the bijection 𝐿 between 𝐷 and 𝐹/𝐺 into an

isometry. Since𝐹/𝐺 equipped with 𝑑𝐹/𝐺is a complete metric

space, 𝐷 equipped with the metric 𝑑𝐷 is also a complete

metric space. For each𝑑 ∈ 𝑅, we define the mapping 𝑇𝑑 :

𝐷 β†’ 𝐷 as

𝑇𝑑= 𝑀̃𝑆𝑑𝐿. (72)

Then a continuous semigroup of conservative weak solutions for the original system is obtained as the following theorem shows.

Theorem 9. Let (𝑧, πœ‡) ∈ 𝐷 be given. If one denotes by 𝑑 β†’

(𝑧(𝑑), πœ‡(𝑑)) = 𝑇𝑑(𝑧, πœ‡) the corresponding trajectory, then 𝑧 =

(𝑒, V) is a weak solution of the modified coupled two-component

Camassa-Holm equation (8), which constructs a continuous

semigroup. Moreover, πœ‡ is a weak solution of the following transport equation for the energy density:

πœ‡π‘‘+ [(𝑒 + V) πœ‡]π‘₯= (𝑒3βˆ’ 2𝑃

2𝑒 + V3βˆ’ 2𝑃4V)π‘₯. (73)

Furthermore, for all𝑑, it holds that

πœ‡ (𝑑) (𝑅) = πœ‡ (0) (𝑅) (74)

and, for almost all𝑑,

πœ‡ (𝑑) (𝑅) = πœ‡ac(𝑑) (𝑅) = ‖𝑧 (𝑑)β€–2𝐻1

= ‖𝑒 (𝑑)β€–2𝐻1+ β€–V (𝑑)β€–2𝐻1 = πœ‡ (0) (𝑅) .

(75)

Thus the unique solution described here is a conservative weak solution of the system (8).

Proof. To prove that 𝑧 = (𝑒, V) is a weak solution of the

original system (8), it suffices to show that, for all πœ™ ∈

𝐢∞(𝑅+Γ— 𝑅) with compact support,

∫ 𝑅+×𝑅[βˆ’π‘’πœ™π‘‘+ (𝑒 + V) 𝑒π‘₯πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑 = βˆ’ ∫ 𝑅+×𝑅[(𝑃1+ 𝑃2,π‘₯) πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑, ∫ 𝑅+×𝑅[βˆ’Vπœ™π‘‘+ (𝑒 + V) Vπ‘₯πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑 = βˆ’ ∫ 𝑅+×𝑅[(𝑃3+ 𝑃4,π‘₯) πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑, (76)

where 𝑃1, 𝑃2,π‘₯, 𝑃3, and 𝑃4,π‘₯ are given by (8). Let the

solution(𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻)(𝑑) of (21) be a representative of

𝐿(𝑧(𝑑), πœ‡(𝑑)). On the one hand, since 𝑦(𝑑, πœ‰) is Lipschitz

continuous and invertible with respect toπœ‰, for almost all 𝑑,

we then can use the change of variablesπ‘₯ = 𝑦(𝑑, πœ‰) and obtain

∫ 𝑅+×𝑅[βˆ’π‘’πœ™π‘‘+ (𝑒 + V) 𝑒π‘₯πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑 = ∫ 𝑅+×𝑅[βˆ’ (π‘ˆπ‘¦πœ‰) (𝑑, πœ‰) πœ™π‘‘(𝑑, 𝑦 (𝑑, πœ‰)) + ((π‘ˆ + 𝑉) π‘ˆπœ‰) (𝑑, πœ‰) πœ™ (𝑑, 𝑦 (𝑑, πœ‰))] π‘‘πœ‰ 𝑑𝑑. (77)

By using the identities𝑦𝑑= π‘ˆ + 𝑉 and π‘¦πœ‰π‘‘= π‘ˆπœ‰+ π‘‰πœ‰, it then

follows from (21) that

∫ 𝑅+×𝑅[βˆ’π‘ˆπ‘¦πœ‰πœ™π‘‘(𝑑, 𝑦) + (π‘ˆ + 𝑉) π‘ˆπœ‰πœ™ (𝑑, 𝑦)] π‘‘πœ‰ 𝑑𝑑 = 1 2βˆ«π‘…+×𝑅2{βˆ’π‘ˆπ‘π‘¦πœ‰+ 1 2sgn(πœ‰ βˆ’ πœ‰σΈ€ ) Γ— [π»πœ‰+ (π‘ˆ2+ 2𝑀𝑁 βˆ’ 𝑁2) 𝑦 πœ‰] } (πœ‰σΈ€ ) β‹… π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| πœ™ (𝑑, 𝑦 (πœ‰)) π‘¦πœ‰(πœ‰) π‘‘πœ‰σΈ€ π‘‘πœ‰ 𝑑𝑑. (78)

(10)

On the other hand, using the change of variablesπ‘₯ = 𝑦(𝑑, πœ‰)

andπ‘₯σΈ€  = 𝑦(𝑑, πœ‰σΈ€ ) and since 𝑦 is increasing with respect to πœ‰,

we have the following: βˆ’ ∫ 𝑅+×𝑅[(𝑃1+ 𝑃2,π‘₯) πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑 = 12∫ 𝑅+×𝑅2[βˆ’π‘’Vπ‘₯+ sgn (πœ‰ βˆ’ πœ‰ σΈ€ ) Γ— (𝑒2+12𝑒2π‘₯+ 𝑒π‘₯Vπ‘₯+12V2βˆ’12V2π‘₯)] Γ— (𝑑, 𝑦 (πœ‰σΈ€ )) β‹… π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )| Γ— πœ™ (𝑑, 𝑦 (πœ‰)) π‘¦πœ‰(πœ‰σΈ€ ) π‘¦πœ‰(πœ‰) π‘‘πœ‰σΈ€ π‘‘πœ‰ 𝑑𝑑. (79)

We obtain from (27) that

βˆ’ ∫ 𝑅+×𝑅[(𝑃1+ 𝑃2,π‘₯) πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑 = 1 2βˆ«π‘…+×𝑅2{βˆ’π‘ˆπ‘π‘¦πœ‰+ 1 2sgn(πœ‰ βˆ’ πœ‰σΈ€ ) Γ— [π»πœ‰+ (π‘ˆ2+ 2𝑀𝑁 βˆ’ 𝑁2) π‘¦πœ‰] } (πœ‰σΈ€ ) β‹… π‘’βˆ’|𝑦(πœ‰)βˆ’π‘¦(πœ‰σΈ€ )|πœ™ (𝑑, 𝑦 (πœ‰)) π‘¦πœ‰(πœ‰) π‘‘πœ‰σΈ€ π‘‘πœ‰ 𝑑𝑑. (80)

By comparing (78) and (80), we know that

∫

𝑅+×𝑅[βˆ’π‘ˆπ‘¦πœ‰πœ™π‘‘(𝑑, 𝑦) + (π‘ˆ + 𝑉) π‘ˆπœ‰πœ™ (𝑑, 𝑦)] π‘‘πœ‰ 𝑑𝑑

= βˆ’ ∫

𝑅+×𝑅[(𝑃1+ 𝑃2,π‘₯) πœ™] (𝑑, π‘₯) 𝑑π‘₯ 𝑑𝑑.

(81)

Hence, the first identity in (76) holds. The second identity in

(76) follows in the same way. One can easily check thatπœ‡(𝑑) is

solution of (73). From the definitionπœ‡ in (61), we get

πœ‡ (𝑑) (𝑅) = ∫

π‘…π»πœ‰π‘‘πœ‰ = 𝐻 (𝑑, ∞) , (82)

which is constant in time from Lemma 2. Thus, we have

proved (74).

Sinceπ‘¦πœ‰(𝑑, πœ‰) > 0 a.e., for almost every πœ‰ ∈ 𝑅, it then

follows from (27) that

πœ‡ (𝑑) (𝐡) = ∫ π‘¦βˆ’1(𝐡)π»πœ‰π‘‘πœ‰ = ∫ π‘¦βˆ’1(𝐡)(π‘ˆ 2+π‘ˆπœ‰2 𝑦2 πœ‰ + 𝑉2+𝑉 2 πœ‰ 𝑦2 πœ‰ ) π‘¦πœ‰π‘‘πœ‰, (83)

for any Borel set𝐡. Since 𝑦 is one-to-one and 𝑒π‘₯∘ π‘¦π‘¦πœ‰ = π‘ˆπœ‰,

Vπ‘₯∘ π‘¦π‘¦πœ‰= π‘‰πœ‰a.e. and then (83) implies that

πœ‡ (𝑑) (𝐡) = ∫

𝐡(𝑒

2+ 𝑒2

π‘₯+ V2+ V2π‘₯) (𝑑, π‘₯) 𝑑π‘₯. (84)

Hence, (75) is proved (and the solution is conservative),

which completes the proof.

5. Multipeakon Conservative Solutions of

the Original System

In this section, we will derive a new system of ordinary differential equations for the multipeakon solutions which is well posed even when collisions occur, and the variables (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) will be used to characterize multipeakons in a way that avoids the problems related to blowing up.

Solutions of the modified coupled two-component Camassa-Holm system may experience wave breaking in the sense that the solution develops singularities in finite

time, while keeping the𝐻1-norm finite. Continuation of the

solution beyond wave breaking imposes significant challenge as can be illustrated in the case of multipeakons, which are special solutions of the modified coupled two-component Camassa-Holm system of the following form:

𝑒 (𝑑, π‘₯) =βˆ‘π‘› 𝑖=1 𝑝𝑖(𝑑) π‘’βˆ’|π‘₯βˆ’π‘žπ‘–(𝑑)|, V (𝑑, π‘₯) =βˆ‘π‘› 𝑖=1 π‘Ÿπ‘–(𝑑) π‘’βˆ’|π‘₯βˆ’π‘žπ‘–(𝑑)|, (85)

where(𝑝𝑖(𝑑), π‘Ÿπ‘–(𝑑), π‘žπ‘–(𝑑)) satisfy the explicit system of ordinary

differential equations: ̇𝑝 𝑖= 𝑛 βˆ‘ 𝑗=1,𝑖 ΜΈ= 𝑗(𝑝𝑖𝑝𝑗+ π‘Ÿπ‘–π‘Ÿπ‘—) sgn (π‘žπ‘—βˆ’ π‘žπ‘–) 𝑒 βˆ’|π‘žπ‘–βˆ’π‘žπ‘—|, Μ‡π‘Ÿ 𝑖= 𝑛 βˆ‘ 𝑗=1,𝑖 ΜΈ= 𝑗 (𝑝𝑖𝑝𝑗+ π‘Ÿπ‘–π‘Ÿπ‘—) sgn (π‘žπ‘—βˆ’ π‘žπ‘–) π‘’βˆ’|π‘žπ‘–βˆ’π‘žπ‘—|, Μ‡π‘ž 𝑖= βˆ’ 𝑛 βˆ‘ 𝑗=1 (𝑝𝑗+ π‘Ÿπ‘—) π‘’βˆ’|π‘žπ‘–βˆ’π‘žπ‘—|. (86)

Peakons interact in a way similar to that of solitons of the CH equation, and wave breaking may appear when at least

two of theπ‘žπ‘–coincide. Clearly, if theπ‘žπ‘–remain distinct, the

system (86) allows for a global smooth solution. It is not hard

to see that𝑧 = (𝑒, V) is a global weak solution of system (8) by

inserting that solution into (85). In the case where𝑝𝑖(0) and

π‘Ÿπ‘–(0) have the same sign for all 𝑖 = 1, 2, . . . , 𝑛, (86) admits a

unique global solution, where theπ‘žπ‘–(𝑑) remain distinct and

the peakons are traveling in the same direction. However, when two peakons have opposite signs, collisions may occur,

and, if so, the system (86) blows up.

Let us consider initial data𝑧 = (𝑒, V) given by

𝑒 (π‘₯) =βˆ‘π‘› 𝑖=1𝑝𝑖𝑒 βˆ’|π‘₯βˆ’πœ‰π‘–|, V (π‘₯) =βˆ‘π‘› 𝑖=1 π‘Ÿπ‘–π‘’βˆ’|π‘₯βˆ’πœ‰π‘–|. (87)

Without loss of generality, we assume that the 𝑝𝑖 and π‘Ÿπ‘–

are all nonzero and that the πœ‰π‘– are all distinct. The aim is

to characterize the unique and global weak solution from

(11)

𝑝𝑖 and π‘Ÿπ‘– blow up at collisions, they are not appropriate to

define a multipeakon in the form of (85). We consider the

fol-lowing characterization of multipeakons given as continuous

solutions𝑧 = (𝑒, V), which are defined on intervals [𝑦𝑖, 𝑦𝑖+1]

as the solutions of the Dirichlet problem

𝑧 βˆ’ 𝑧π‘₯π‘₯= 0, (88)

with boundary conditions𝑧(𝑑, 𝑦𝑖(𝑑)) = 𝑧𝑖(𝑑) and 𝑧(𝑑, 𝑦𝑖+1

(𝑑)) = 𝑧𝑖+1(𝑑). The variables 𝑦𝑖 denote the position of the

peaks, and the variables𝑧𝑖denote the values of𝑧 at the peaks.

In the following we will show that this property persists for conservative solutions.

Let us set𝐴 = 𝑅 \ {πœ‰1, . . . , πœ‰π‘›}. The next lemma gives us

the functionsπ‘ˆ, 𝑉, and 𝐻 which belong to 𝐢2(𝐴) (they even

belong to𝐢∞(𝐴)).

Lemma 10. Let 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) ∈ 𝐹 such that (𝑦, π‘ˆ,

𝑉, 𝐻) ∈ [𝐢2(𝐴)]4is given, and then the solution(𝑦, π‘ˆ, 𝑉, 𝐻)

of (21) with initial data𝑋 belongs to 𝐢1(𝑅+, [𝐢2(𝐴)]4).

Proof. To prove this Lemma, one proceeds as in Theorem3

by using the contraction argument and replacing𝐸 by

𝐸 = 𝐸 ∩ [(𝐢2(𝐴))3∩ (𝐿2)2∩ 𝐢2(𝐴)] , (89)

endowed with the norm

‖𝑋‖𝐸= ‖𝑋‖𝐸+ 󡄩󡄩󡄩󡄩𝑦 βˆ’ πΌπ‘‘σ΅„©σ΅„©σ΅„©σ΅„©π‘Š2,∞(𝐴)+ β€–π‘ˆβ€–π‘Š2,∞(𝐴)

+ β€–π‘‰β€–π‘Š2,∞(𝐴)+ β€–π»β€–π‘Š2,∞(𝐴).

(90)

Our main task is to prove the Lipschitz continuity of𝑃𝑖

and𝑃𝑖,π‘₯(𝑖 = 1, 2, 3, 4) from 𝐸 to 𝐻1(𝑅)∩𝐢2(𝐴). We first show

that𝑃2,π‘₯is Lipschitz continuous from𝐸 to 𝐻1(𝑅) ∩ 𝐢2(𝐴)

and the others follow in the same way. Given a bounded set

𝐡 = {𝑋 ∈ 𝐸 | ‖𝑋‖𝐸 ≀ 𝐢𝐡} where 𝐢𝐡is a positive constant,

from Theorem3, we get that

σ΅„©σ΅„©σ΅„©σ΅„©

󡄩𝑃2,π‘₯(𝑋) βˆ’ 𝑃2,π‘₯(𝑋)σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž(𝑅)≀ 𝐢󡄩󡄩󡄩󡄩󡄩𝑋 βˆ’ 𝑋󡄩󡄩󡄩󡄩󡄩𝐸≀ 𝐢󡄩󡄩󡄩󡄩󡄩𝑋 βˆ’ 𝑋󡄩󡄩󡄩󡄩󡄩𝐸

(91)

for a constant𝐢 depending only on 𝐢𝐡. We can compute the

derivative of𝑃2,π‘₯given as

𝑃2,π‘₯πœ‰= βˆ’1

2π»πœ‰+ (𝑃2βˆ’

1

2π‘ˆ2βˆ’ 𝑀𝑁 + 𝑁2)(1 + πœπœ‰) . (92)

From Lemma2,𝑃2,π‘₯πœ‰is Lipschitz continuous from𝐸 to 𝐢(𝐴)

and therefore𝑃2,π‘₯is Lipschitz continuous from𝐸 to 𝐢1(𝐴).

Similarly, we obtain the same results for𝑃1,𝑃2,𝑃3, and𝑃4and

𝑃1,π‘₯,𝑃3,π‘₯,𝑃4,π‘₯. We can also compute the derivative of𝑃2,π‘₯πœ‰on

𝐴 as follows:

𝑃2,π‘₯πœ‰πœ‰= βˆ’12π»πœ‰πœ‰+ (𝑃2,π‘₯π‘¦πœ‰βˆ’ π‘ˆπ‘ˆπœ‰βˆ’ π‘€πœ‰π‘ βˆ’ π‘€π‘πœ‰+ 2π‘π‘πœ‰) π‘¦πœ‰

+ (𝑃2βˆ’1

2π‘ˆ2βˆ’ 𝑀𝑁 + 𝑁2) π‘¦πœ‰πœ‰.

(93)

Since 𝑃2,π‘₯πœ‰πœ‰ is locally Lipschitz maps from 𝐸 to 𝐢(𝐴), we

then get that𝑃2,π‘₯is locally Lipschitz continuous from𝐸 to

𝐢2(𝐴). The same results can be obtained for the other 𝑃𝑖

and𝑃𝑖,π‘₯(𝑖 = 1, 2, 3, 4) by the same way. From the standard

contraction argument, the local existence of solutions of (21)

can be proved in𝐸. As far as global existence is concerned,

β€–π‘‹β€–π‘Š1,∞(𝑅)does not blow up for initial data inπ‘Š1,∞(𝑅). For

the second derivative, for anyπœ‰ ∈ 𝐴, we get that

π‘¦πœ‰πœ‰π‘‘= π‘ˆπœ‰πœ‰+ π‘‰πœ‰πœ‰, π‘ˆπœ‰πœ‰π‘‘= 1 2π»πœ‰πœ‰+ ( 1 2π‘ˆ2+ 𝑀𝑁 βˆ’ 𝑁2βˆ’ 𝑃2βˆ’ 𝑃1,π‘₯) π‘¦πœ‰πœ‰ + (π‘ˆπ‘ˆπœ‰+ π‘€πœ‰π‘ + π‘€π‘πœ‰βˆ’ 2π‘π‘πœ‰) π‘¦πœ‰ βˆ’ (𝑃2,π‘₯+ 𝑃1βˆ’ π‘ˆπ‘) 𝑦2πœ‰, π‘‰πœ‰πœ‰π‘‘= 12π»πœ‰πœ‰+ (12𝑉2+ 𝑀𝑁 βˆ’ 𝑀2βˆ’ 𝑃4βˆ’ 𝑃3,π‘₯) π‘¦πœ‰πœ‰ + (π‘‰π‘‰πœ‰+ π‘πœ‰π‘€ + π‘π‘€πœ‰βˆ’ 2π‘€π‘πœ‰) π‘¦πœ‰ βˆ’ (𝑃4,π‘₯+ 𝑃3βˆ’ 𝑉𝑀) π‘¦πœ‰2, π»πœ‰πœ‰π‘‘= βˆ’ (2π‘ˆπ‘ƒ2,π‘₯+ 2𝑉𝑃4,π‘₯) π‘¦πœ‰πœ‰+ (3π‘ˆ2βˆ’ 2𝑃2) π‘ˆπœ‰πœ‰ + (3𝑉2βˆ’ 2𝑃 4) π‘‰πœ‰πœ‰+ 6π‘ˆπ‘ˆπœ‰2βˆ’ 4𝑃2,π‘₯π‘ˆπœ‰π‘¦πœ‰ + 6π‘‰π‘‰πœ‰2βˆ’ 4𝑃4,π‘₯π‘‰πœ‰π‘¦πœ‰βˆ’ 2π‘ˆπ‘ƒ2𝑦2πœ‰+ π‘ˆ3π‘¦πœ‰2 + 2π‘ˆπ‘€π‘π‘¦πœ‰2βˆ’ 2π‘ˆπ‘2π‘¦πœ‰2+ π‘ˆπ»πœ‰π‘¦πœ‰βˆ’ 2𝑉𝑃4π‘¦πœ‰2 + 𝑉3𝑦2πœ‰+ 2π‘‰π‘€π‘π‘¦πœ‰2βˆ’ 2𝑉𝑀2π‘¦πœ‰2+ π‘‰π»πœ‰π‘¦πœ‰. (94)

The system (94) is affine with respect toπ‘¦πœ‰πœ‰,π‘ˆπœ‰πœ‰,π‘‰πœ‰πœ‰,π»πœ‰πœ‰.

Thus, we get that σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©π‘‹πœ‰πœ‰(𝑑, β‹…)σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž(𝐴) ≀ σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘‹πœ‰πœ‰(0, β‹…)σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž(𝐴)+ 𝐢 + 𝐢 ∫ 𝑑 0σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©π‘‹πœ‰πœ‰(𝜏, β‹…)σ΅„©σ΅„©σ΅„©σ΅„©σ΅„©πΏβˆž(𝐴)π‘‘πœ, (95)

where𝐢 is a constant depending only on supπ‘‘βˆˆ[0,𝑇)β€–π‘‹β€–π‘Š1,∞(𝑅)

which is bounded on any time interval[0, 𝑇). It follows from

Gronwall’s lemma that β€–π‘‹β€–π‘Š2,∞(𝐴) does not blow up and

therefore the solution is globally defined in𝐸.

We now prove that𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) is a

repre-sentative of 𝑧 = (𝑒, V) in the Lagrangian system; that is,

[𝑋] = 𝐿(𝑧, πœ‡), where 𝑋 = (𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) is given by 𝑦 (πœ‰) = πœ‰, (96a) π‘ˆ (πœ‰) = 𝑒 (πœ‰) , 𝑉 (πœ‰) = V (πœ‰) , 𝑀 (πœ‰) = 𝑒π‘₯(πœ‰) , 𝑁 (πœ‰) = Vπ‘₯(πœ‰) , (96b) 𝐻 (πœ‰) = βˆ«πœ‰ βˆ’βˆž(𝑒 2+ 𝑒2 π‘₯+ V2+ V2π‘₯) 𝑑π‘₯. (96c)

(12)

We first check that𝑋 ∈ 𝐹. Since 𝑧 = (𝑒, V) is a multipeakon,

we get that𝑧 = (𝑒, V) ∈ π‘Š1,∞(𝑅) ∩ 𝐻1(𝑅) from (87). Hence,

π‘ˆ, 𝑉, and 𝐻 all belong to π‘Š1,∞(𝑅) while 𝑦 βˆ’ 𝐼𝑑 is identically

zero. Due to the exponential decay of(𝑒, V) and (𝑒π‘₯, Vπ‘₯) and

π»πœ‰ ∈ 𝐿∞(𝑅), we get that 𝐻

πœ‰ ∈ 𝐿2(𝑅). The properties (25)–

(27) are straightforward to check. It is not hard to check that

𝑀([𝑋]) = (𝑧, (𝑒2 + 𝑒2

π‘₯ + V2 + V2π‘₯)𝑑π‘₯) and, therefore, since

𝐿 ∘ 𝑀 = 𝐼𝑑, we get that [𝑋] = 𝐿(𝑧, (𝑒2+ 𝑒2π‘₯+ V2+ V2π‘₯)𝑑π‘₯).

Theorem 11. Let initial data be given in (87). The solution

given by Theorem9satisfies𝑧 βˆ’ 𝑧π‘₯π‘₯= 0 between the peaks. Proof. Let us first prove that𝑒 βˆ’ 𝑒π‘₯π‘₯ = 0. Assuming that

π‘¦πœ‰(𝑑, πœ‰) ΜΈ= 0, we get that 𝑒π‘₯∘ 𝑦 = 𝑀, 𝑒π‘₯π‘₯∘ 𝑦 = π‘€πœ‰ π‘¦πœ‰ = (π‘ˆπœ‰πœ‰π‘¦πœ‰βˆ’ π‘¦πœ‰πœ‰π‘ˆπœ‰) 𝑦3 πœ‰ , (97) and therefore (𝑒 βˆ’ 𝑒π‘₯π‘₯) ∘ 𝑦 = (π‘ˆπ‘¦ 3 πœ‰βˆ’ π‘ˆπœ‰πœ‰π‘¦πœ‰+ π‘¦πœ‰πœ‰π‘ˆπœ‰) 𝑦3 πœ‰ . (98) We set 𝑅 = π‘ˆπ‘¦πœ‰3βˆ’ π‘ˆπœ‰πœ‰π‘¦πœ‰+ π‘¦πœ‰πœ‰π‘ˆπœ‰. (99)

For a givenπœ‰ ∈ 𝐴, differentiating (99) with respect to𝑑 and

after using (21), (24), and (94), we obtain

𝑑𝑅 𝑑𝑑 = 3π‘ˆπ‘¦πœ‰2π‘¦πœ‰π‘‘+ π‘ˆπ‘‘π‘¦3πœ‰βˆ’ π‘ˆπœ‰πœ‰π‘‘π‘¦πœ‰βˆ’ π‘ˆπœ‰πœ‰π‘¦πœ‰π‘‘+ π‘¦πœ‰πœ‰π‘‘π‘ˆπœ‰+ π‘¦πœ‰πœ‰π‘ˆπœ‰π‘‘ = 2π‘ˆπ‘ˆπœ‰π‘¦πœ‰2+ 2π‘ˆπ‘‰πœ‰π‘¦πœ‰2βˆ’π»πœ‰πœ‰2π‘¦πœ‰ βˆ’ (π‘€πœ‰π‘ + π‘πœ‰π‘€ βˆ’ 2π‘π‘πœ‰) π‘¦πœ‰2βˆ’ π‘ˆπœ‰πœ‰π‘‰πœ‰ + π‘‰πœ‰πœ‰π‘ˆπœ‰+π»πœ‰π‘¦πœ‰πœ‰ 2 = 2π‘ˆ (π‘ˆπœ‰+ π‘‰πœ‰) π‘¦πœ‰2βˆ’ 2𝑁 (π‘€πœ‰βˆ’ π‘πœ‰) π‘¦πœ‰2 βˆ’π»πœ‰πœ‰π‘¦πœ‰ 2 + π»πœ‰π‘¦πœ‰πœ‰ 2 . (100)

Differentiating (27) with respect toπœ‰, we get

π‘¦πœ‰πœ‰π»πœ‰+ π‘¦πœ‰π»πœ‰πœ‰= 2π‘¦πœ‰π‘¦πœ‰πœ‰π‘ˆ2+ 2𝑦2

πœ‰π‘ˆπ‘ˆπœ‰+ 2π‘ˆπœ‰π‘ˆπœ‰πœ‰

+ 2π‘¦πœ‰π‘¦πœ‰πœ‰π‘‰2+ 2π‘¦πœ‰2π‘‰π‘‰πœ‰+ 2π‘‰πœ‰π‘‰πœ‰πœ‰. (101)

After inserting the value ofπ‘¦πœ‰π»πœ‰πœ‰given by (101) into (100) and

multiplying the equation byπ‘¦πœ‰, we obtain that

π‘¦πœ‰β‹…π‘‘π‘…

𝑑𝑑

= π‘ˆπ‘ˆπœ‰π‘¦πœ‰3βˆ’ π‘ˆπœ‰π‘ˆπœ‰πœ‰π‘¦πœ‰+ (π»πœ‰π‘¦πœ‰βˆ’ π‘¦πœ‰2π‘ˆ2βˆ’ π‘¦πœ‰2𝑉2βˆ’ π‘‰πœ‰2) π‘¦πœ‰πœ‰

+ π‘ˆπ‘‰πœ‰π‘¦πœ‰3βˆ’ π‘ˆπœ‰πœ‰π‘‰πœ‰π‘¦πœ‰+ π‘ˆπœ‰π‘‰πœ‰π‘¦πœ‰πœ‰.

(102)

It follows from (27), and sinceπ‘¦πœ‰π‘‘= (π‘ˆπœ‰+ π‘‰πœ‰), that

π‘¦πœ‰β‹… 𝑑𝑅

𝑑𝑑 = π‘¦πœ‰π‘‘β‹… 𝑅. (103)

We claim that, for any time𝑑 such that π‘¦πœ‰(𝑑) ΜΈ= 0,

𝑑 𝑑𝑑( 𝑅 π‘¦πœ‰) = π‘…π‘‘π‘¦πœ‰βˆ’ π‘¦πœ‰π‘‘π‘… 𝑦2 πœ‰ = 0. (104)

We have to prove that𝑅/π‘¦πœ‰is𝐢1in time. Since

𝑅 π‘¦πœ‰ = π‘ˆπ‘¦πœ‰2βˆ’ π‘ˆπœ‰πœ‰+ π‘¦πœ‰πœ‰π‘ˆπœ‰ π‘¦πœ‰ = π‘ˆπ‘¦πœ‰2βˆ’ π‘ˆπœ‰πœ‰+π‘¦π‘¦πœ‰πœ‰π‘ˆπœ‰ πœ‰+ π»πœ‰ + π‘¦πœ‰πœ‰π‘€π»πœ‰ π‘¦πœ‰+ π»πœ‰ = 𝐽 (𝑋, π‘‹πœ‰, π‘‹πœ‰πœ‰) π‘¦πœ‰+ π»πœ‰ , (105)

for some polynomial𝐽 and 𝑋 ∈ 𝐢1(𝑅, 𝐸), we get that 𝑋, π‘‹πœ‰,

andπ‘‹πœ‰πœ‰are𝐢1in time. Since𝑋(𝑑) remains in Ξ“, for all 𝑑, from

(26), we haveπ‘¦πœ‰+ π»πœ‰> 0 and therefore 1/(π‘¦πœ‰+ π»πœ‰) is 𝐢1in

time, which implies that𝑅/π‘¦πœ‰is𝐢1in time. Hence, it holds

that

𝑅 (𝑑, πœ‰) = 𝐾 (πœ‰) π‘¦πœ‰(𝑑, πœ‰) , (106)

for some constant𝐾(πœ‰) which is independent of time, which

leads to

𝑦2πœ‰(𝑒 βˆ’ 𝑒π‘₯π‘₯) ∘ 𝑦 = 𝐾 (πœ‰) . (107)

For the multipeakons at time𝑑 = 0, we have 𝑦(0, πœ‰) = πœ‰ and

(𝑒 βˆ’ 𝑒π‘₯π‘₯)(0, πœ‰) = 0 for all πœ‰ ∈ 𝐴. Hence,

𝑅

π‘¦πœ‰(𝑑, πœ‰) = 0, (108)

for all time𝑑 and all πœ‰ ∈ 𝐴. Thus, (𝑒 βˆ’ 𝑒π‘₯π‘₯)(𝑑, πœ‰) = 0. Similarly,

(V βˆ’ Vπ‘₯π‘₯)(𝑑, πœ‰) = 0.

For solutions with multipeakon initial data, we have

the following result. Ifπ‘¦πœ‰(𝑑, πœ‰) vanishes at some point πœ‰ in

the interval (πœ‰π‘–, πœ‰π‘–+1), then π‘¦πœ‰(𝑑, πœ‰) vanishes everywhere in

(πœ‰π‘–, πœ‰π‘–+1). Moreover, for given initial multipeakon solution

𝑧(π‘₯) = (𝑒, V)(π‘₯) = (βˆ‘π‘›π‘–=1π‘π‘–π‘’βˆ’|π‘₯βˆ’πœ‰π‘–|, βˆ‘π‘›

𝑖=1π‘Ÿπ‘–π‘’βˆ’|π‘₯βˆ’πœ‰π‘–|), let (𝑦, π‘ˆ, 𝑉,

𝑀, 𝑁, 𝐻) be the solution of system (21) with initial data

(𝑦, π‘ˆ, 𝑉, 𝑀, 𝑁, 𝐻) given by (96a), (96b) and (96c), and then,

between adjacent peaks, ifπ‘₯𝑖 = 𝑦(𝑑, πœ‰π‘–) ΜΈ= π‘₯𝑖+1 = 𝑦(𝑑, πœ‰π‘–+1),

the solution𝑧(𝑑, π‘₯) = (𝑒, V)(𝑑, π‘₯) is twice differentiable with

respect to the space variable and we have(𝑧 βˆ’ 𝑧π‘₯π‘₯) = 0, for

π‘₯ ∈ (π‘₯𝑖, π‘₯𝑖+1).

We now start the derivation of a system of ordinary differential equations for multipeakons.

Riferimenti

Documenti correlati

We allow for discontinuous coefficients and random initial condition and, under suitable assumptions, we prove that in the limit as the number of particles grows to infinity

However, in depth analysis of our results to witness a higher percent of elements underwent high stresses in dry conditions compared to submerged conditions raised the concern

Il rilievo di Treviso e di Ceneda, entrambe sedi di ducato nel regno longobardo, all’interno di quella porzione nordorientale dello stesso che, dall’VIII secolo, le fonti

At the biochemical level we found that both these pathways converge at GSK3b to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways

Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal.. Real

Peculiarity of such integrable systems is that the generating functions for the corresponding hierarchies, which obey Euler-Poisson-Darboux equation, contain information about

This study has two major purposes: (1) to investigate the science behind blockchain, the technology and its main applications from Bitcoin and cryptocurrency to Ethereum and

GENI ACQUISITI OVERESPRESSIONE OVERESPRESSIONE DEI SISTEMI DI DEI SISTEMI DI EFFLUSSO EFFLUSSO PERDITA PERDITA \ \ MODIFICAZIONE MODIFICAZIONE DELLE PORINE DELLE