• Non ci sono risultati.

The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells

N/A
N/A
Protected

Academic year: 2021

Condividi "The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells"

Copied!
9
0
0

Testo completo

(1)

suppresses

triple

negative

breast

cancer

growth

by

inhibiting

tumor

infiltration

of

regulatory

T

cells

Maura

Montani

a,1

,

Gretta

V.

Badillo

Pazmay

a,b,1

,

Albana

Hysi

c,1

,

Giulio

Lupidi

b,∗∗

,

Riccardo

Pettinari

b

,

Valentina

Gambini

a

,

Martina

Tilio

a

,

Fabio

Marchetti

d

,

Claudio

Pettinari

b

,

Stefano

Ferraro

d

,

Manuela

Iezzi

c

,

Cristina

Marchini

a

,

Augusto

Amici

a,∗

aSchoolofBioscienceandVeterinaryMedicine,UniversityofCamerino,Camerino,MC,62032,Italy bSchoolofPharmacy,UniversityofCamerino,Camerino,MC,62032,Italy

cAgingResearchCentre,G.d’AnnunzioUniversity,Chieti,66100,Italy

dSchoolofScienceandTechnology,UniversityofCamerino,Camerino,MC,62032,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21September2015

Receivedinrevisedform11February2016 Accepted1March2016

Availableonline30March2016 Keywords:

Ruthenium(II)

Organometallicarenecomplexes Anticancerdrugs

Triplenegativebreastcancer Invivotests

TumorinfiltratingregulatoryTcells

a

b

s

t

r

a

c

t

Rutheniumcompoundshavebecomepromisingalternativestoplatinumdrugsbydisplayingspecific activitiesagainstdifferentcancersand favorabletoxicityand clearanceproperties.Here, weshow thattheruthenium(II)complex[Ru(p-cymene)(bis(3,5-dimethylpyrazol-1-yl)methane)Cl]Cl (UNICAM-1)exhibitspotentinvivoantitumoreffects.Whenadministeredasfour-dosecourse,byrepeatingasingle dose(52.4mgkg-1)everythreedays,UNICAM-1significantlyreducesthegrowthofA17triplenegative breastcancercellstransplantedintoFVBsyngeneicmice.Pharmacokineticstudiesindicatethat UNICAM-1israpidlyeliminatedfromkidney,liverandbloodstreamthankstoitshighhydrosolubility,exerting excellenttherapeuticactivitywithminimalsideeffects.Immunohistologicalanalysisrevealedthatthe efficacyofUNICAM-1,mainlyreliesonitscapacitytoreversetumor-associatedimmunesuppressionby significantlyreducingthenumberoftumor-infiltratingregulatoryTcells.Therefore,UNICAM-1appears verypromisingforthetreatmentofTNBC.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Breastcancerisaheterogeneousdiseaseclassifiedinto molec-ularsubtypeswithdistinctivegene expressionsignatures.Ofall themolecularsubtypes,triplenegativebreastcancer(TNBC)has the worst negative outcome and prognosis [1,2]. TNBCs occur mostfrequentlyinyoungwomenandtendtoexhibitaggressive metastatic behavior [3]. TNBCs are estrogen receptor (ER) and

∗ Correspondingauthorat:SchoolofBioscienceandVeterinaryMedicine,via GentileIIIDaVarano,UniversityofCamerino,Camerino,62032,Italy.

∗∗ Correspondingauthor.

E-mailaddresses:giulio.lupidi@unicam.it(G.Lupidi),augusto.amici@unicam.it

(A.Amici).

1 Theseauthorscontributedequallytothiswork.

progesteronereceptor (PR)-negative and alsolack high expres-sion/amplificationofHER2,limitingtargetedtherapeuticoptions [4].Newtherapiesagainstthisbreastcancersubtypearetherefore anurgentunmetmedical need.Cisplatin(cis-[PtIICl2(NH3)2])is wellestablishedasaneffectivedrugforthetreatmentoftesticular cancerand,incombinationwithotherchemotherapeuticagents, forovarian,cervical,brain,bladder,lung,andbreastcancers[5,6]. Recently, preclinical and clinical data have revealed encourag-ing anticancer activity of cisplatin as single-agent in patients with TNBC [7,8]. Despite the success of platinum-based drugs, their continued use is greatly limited by severe dose limiting side effects and intrinsic or acquired drug resistance [9–11]. In the search for anticancer agents containing nobel metals other than platinum, ruthenium compounds have turned out to be a cutting-edge class of anticancer compounds [12–18]. Accordingly, two ruthenium(III)-based compounds, namely http://dx.doi.org/10.1016/j.phrs.2016.03.032

(2)

M.Montanietal./PharmacologicalResearch107(2016)282–290 283

Fig.1.Chemicalstructuresofcisplatin,NAMI-AandUNICAM-1.

NAMI-A (imidazolium trans-[tetrachloro(dimethylsulfoxide)(1H-imidazole)ruthenate(III)]) [19] and NKP1339 sodium trans-[tetrachloridobis(1Hindazole)ruthenate(III)] [20], are cur-rently ongoing in phase II clinical trials. The different toxicity profiles between platinum- and ruthenium-based compounds couldprobablyduetodifferenttargets.Itiswidelyacceptedthat theantineoplasticpropertiesofplatinumcompoundsrelyontheir interaction withDNA, which, in turn,activates cell death[21]. Instead,themechanismsbywhichruthenium-baseddrugsexert theiranticancereffects remaintobefullyelucidatedbutrecent evidencesuggeststhatrutheniumcompoundsaremostlikelytobe multitargeted[22,23].Thus,theycouldrepresentavalid therapeu-ticalternativetoplatinum-baseddrugswhichareoftenassociated with an unfavorable toxicity profile. Among the ruthenium(II) organometallic complexes, the half sandwich arene–ruthenium subgroup,inparticular,offersagreatpromiseinthefieldofcancer therapy. Two prototypical compounds reported by Aird et al. [24] andRAPTA-Cdeveloped byScolaro etal. [25]have shown relevant therapeutic potential. We have recently reported an extensivestudyonthecoordinationchemistryofrutheniumarene fragmentswithbis(pyrazol-1-yl)methanligands[26].Inthiswork weextendourinvestigationtotheinvivoantitumoractivityofthe prototypecompound, [Ru(p-cymene)(bis(3,5-dimethylpyrazol-1-yl)methane)Cl]Cl,termedUNICAM-1(Fig.1).Theresultspresented hererevealthatUNICAM-1hassignificantanticanceractivityina murinemodelofTNBCandresultstobewelltolerated,showing considerablyreducedside-effectswhencomparedtocisplatinand NAMI-A.Theanalysisoftumorimmuneinfiltratesuggeststhatthe responsetothisnewchemotherapeuticagentreliesmainlyonits capacitytoelicitananticancerimmunosurveillance.

2. Materialandmethods

2.1. Compounds

NAMI-Awaspreparedaccordingtoapatentedprocedure[27]. Cisplatin was obtained by Sigma Chemical Co. (St. Louis, MO). UNICAM-1 was prepared as previously described [26] and its analyticalandspectroscopicdatahavebeenreportedinthe Sup-plementarymaterials.

2.2. Cellcultures,cellproliferationassayandlysatespreparation A17cellswereestablishedfromspontaneouslobular carcino-masthataroseina FVB/neuTmicetransgenicfor theactivated isoformofratHER-2/neuoncogene(FVB/neuT233),aspreviously described [28,29].A17 cells werecultured in Dulbecco’s Modi-fiedEagleMedium(DMEM,Invitrogen,Carlsbad,CA)supplemented

with20%fetalbovineserum(FBS,Invitrogen,Carlsbad,CA)and1% penicillin–streptomycin(Invitrogen,Carlsbad,CA).Humanbreast cancer MDA-MB 231 cells were obtainedfrom American Type CultureCollection(Rockville,MD)andculturedinDMEM supple-mentedwith10%FBSand1%penicillin-streptomycin.Cellswere growninahumidifiedatmospherewith5%CO2at37◦C.UNICAM-1 effectoncellviability,respecttocisplatinandNAMI-A,was evalu-atedbyseeding2.5×103cells/well(A17cells)or7×103cells/well (MDA-MB-231cells)inoctuplicatein96wellplatesincomplete medium.Thedayafter,freshmediumcontainingappropriate con-centrationsofUNICAM-1,NAMI-Aandcisplatin(alldissolvedin isotonicsolution,0.9%NaCl(aq))wereadded.After72hcell viabil-itywasdeterminedusinganMTT(SigmaAldrich,St.Louis,MO) assay,aspreviouslydescribed[30].Thecytotoxicityofthe com-poundswasreportedaspercentageofviablecellsrelativetocontrol cells.Alltheexperimentswererepeatedthreetimes.Forcelllysates preparation, 4×105 cells/well (A17 cells) or 8×105 cells/well (MDA-MB-231cells) wereseededin6-wellplates,treated with UNICAM-1, NAMI-Aandcisplatindrugsfor 48h, harvested,and lysedinRIPAbuffer(1%NP40,0.5%Na-deoxycolicacidand0.1%SDS inPBS)withfreshproteaseinhibitors(ProteaseInhibitorCocktail, SigmaAldrich,St.Louis,MO).

2.3. Animals

FemaleFVB/NCrlmicewereobtainedfromCharlesRiverS.r.l. (Lecco,Italy),andhousedundercontrolledconditions.Micewere treatedaccordingtotheEuropeanCommunityguidelines.The Ani-malResearchCommitteeoftheUniversityofCamerinoauthorized theexperimentalprotocol.

2.4. Treatmentsandtumorgrowth

105 A17 cells were inoculated in 200␮l of PBS into mam-mary fat pad of 8-week-old FVB females. 10days after tumor challenge,micewererandomlydividedin4groups(10miceper group)andtreatedwithUNICAM-1,NAMI-A,cisplatinorisotonic solution(vehicle) byintraperitoneal injection(via i.p)in accor-dancewithtwodifferentdosageandtreatmentschedules(protocol q3×4orq1×6)aspreviouslyreported[31].Accordingtoprotocol q1×6,35mg/kg/dayofrutheniumcomplexes(210mg/kg/dayfinal amount)and2mg/kg/dayofcisplatin(12mg/kg/dayfinalamount) wereadministeredforsixconsecutivedays.Accordingto proto-colq3×4,52.5mg/kg/dayofrutheniumcomplexes(210mg/kg/day final amount), and 3mg/kg/day ofcisplatin (12mg/kg/day final amount)wereadministeredfourtimes,onceeverythreedays.Body weightof micereceivingUNICAM-1, NAMI-Aand cisplatinwas checkedonceaweekandcomparedwithuntreatedcontrols.Tumor

(3)

Fig.2.UNICAM-1suppressedTNBCgrowthinvivo.FVBfemalemicewereinjectedwithsyngeneicA17cells(105).MiceweretreatedwithUNICAM-1,cisplatin,NAMI-A

orisotonicsolution.Treatments(q3×4schedule)startedtendaysaftercellinjections.(A)Tumorgrowthcurvesinmicereceivingq3×4treatmentschedule.Valuesare mean±SEM,n=10.(B)Effectoftreatmentsonmeanbodyweightofmice.Valuesaremean±SEM.(C)Imagesofrepresentativetumorsexplantedfromcontrolandtreated mice36daysaftertumorchallenge.(D)Averagetumordiameterintreatedvscontrolmiceatday36.Valuesaremean±SEM,n=10.*p<0.05;**p<0.01;***p<0.001; ****p<0.0001wascalculatedwithanunpairedtwo-tailedttest.Eachgroupwascomparedtocontrol.

growthwascheckedonceaweekusinganelectroniccaliperuntil theendoftheexperiment.Tumorsweresurgicallyremovedonday 39,intheq1×6protocol,orday36,intheq3×4protocol.

2.5. Histologyandimmunohistochemistry

Tumors,kidneysand liverswereharvestedattheendofthe experimentalperiod,fixedinformalinandembeddedinparaffinor fixedinPFA4%andfrozenincryo-embeddingmedium(OCT Biop-tica,Milan,Italy).Todetectpossibleorgantoxicity,kidneyandliver slideswerestainedwithhematoxylinandeosin.Histopathological evidencesof acutetissue damageweresemi-quantified accord-ingtothemethodologydescribedelsewhere[32].Foreachorgan, twoslideswereanalyzedinablindfashionevaluatingthe follow-ingparameters:centralveincongestion,inflammatoryaggregate, focal hepatic necrosis, dilated sinusoids, breakdown hepato-cytes,perivascularinflammatoryaggregate,degeneratedhepatic cord,apoptoticcells,vacuolationsforliversectionsandatrophic glomerulus, dilated proximal convoluted tubule, degenerated tubules,inflammatorycellsinfiltrate,desquamationofepithelial cellsandcastformationforkidneysections.Theseverityand inci-denceofeachparameterwasscoredasfollows:grade0=absent; grade1=mild;grade2=moderate;grade3=severe.For immuno-histochemistrytumorslides wereincubated withthe following primaryantibodies:rabbitmAbanti-cleavedcaspase-3(MAB835, R&DSystems,Milan,Italy),ratmAbanti-CD4(550278),anti-CD8␣ (550281),anti-CD11b(550282),anti-CD45R/B220(550286), anti-CD31(550274),anti-CD105(550546),anti-Gr-1(550291),(allfrom BDPharmingen,Milan,Italy);anti-CD68(ab53444Abcam, Cam-bridge,UK)and anti-Foxp3 (14-5773,eBioscience,Milan, Italy);

afterwashing, slides wereoverlaid withappropriate secondary antibodies.ImmunostainingwasdevelopedwithDABChromogen System(Dako,Milan,Italy)orVulcanFastRed(Biocare,Milan,Italy) alkalinephosphatasemethod.Thenumberof cleavedcaspase-3 positivecellsandCD31/105positivevesselswasevaluatedon digi-talimagesofcontrols,cisplatin,NAMI-AandUNICAM-1tumors(10 pergroup,5×400microscopicfieldspertumor).

2.6. Metaltraceexamination

Rutheniumandplatinumcontentinexplantedliversand kid-neys from mice treated with UNICAM-1, NAMI-A, cisplatin or isotonicsolutionwereevaluatedbyInductivelyCoupled Plasma-MassSpectrometry(ICP-MS).Metalcontentinseraofmicewere measuredat7,14,30and60daysfromthebeginningofthe treat-ments.Allsolutionswerepreparedusingultrapurewaterobtained froma MilliporeMilli-Qsystem(resistivity 18.2M cm). Opti-mizeddigestionofsamples(SupplementaryTableI)wascarried outin amicrowavedigestor(Berghof Speedwavefour,Berghof, Eningen,Germany)with5mlofHNO3 (65%).Fiftymicrolitersof iridiumsolution(20mg)wasaddedasrecoverystandard.Digested solutionsweredilutedwithultrapurewatertoobtainasolution withthecorrectacidconcentrationinordertoperformanalysis. Theconcentrationsofrutheniumintheprocessedsampleswere measuredbyICP-MS (7500cxseries)withthe operating condi-tionsdescribedelsewhere[33].Calibrationcurveswereobtained usingaqueousstandard solutions (1.5%nitricacid) with appro-priatestockstandardsdilutions(FlukaAnalytical,Aldrich,Milan, Italy).

(4)

M.Montanietal./PharmacologicalResearch107(2016)282–290 285

Table1

Half Maximal Inhibitory concentration(IC50)values were calculatedfor A17

andMDA-MB231cellstreatedfor72hwithincreasingconcentrationsoftested compounds.

IC50(␮M)±SD

Cisplatin NAMI-A UNICAM-1 A17 6.93±0.14 485.58±0.02 230.66±0.02 MDA-MB231 38.70±0.03 840.21±0.03 409.89±0.04

2.7. Immunoblottinganalysis

Tumor lysates were obtained as previously described for celllysatespreparation. Lysates(40␮g/lane)wereseparatedby 4–20%gradientprecastSDS-PAGE(Bio-Rad)andtransferredonto polyvinylidenedifluoride(PVDF)membranes(ImmobilonP, Mil-lipore).RabbitmonoclonalantibodiesagainstCOX2andcleaved caspase-3andrabbitpolyclonalantibodyagainstcaspase-3were fromCellSignaling(Beverly,MA,USA).Secondaryantibody con-jugatedwithperoxidasewasfromSigma–Aldrich(St.Louis,MO, USA).TheimmunoreactivebandsweredetectedbyusingLiteAblot PLUS(Euroclone)detectingreagentsandpictureswereacquired withChemiDocImagingSystem(Bio-Rad).

2.8. Statisticalanalysis

Quantitativedataarepresentedasmeans±SEMfromatleast threeindependentexperiments.Thesignificanceofdifferenceswas evaluatedwithtwo-tailedStudentst-test,oronewayANOVA fol-lowedbyBonferroniposttest.Statisticalanalysiswascarriedout withGraphPadPrism5Software(SanDiego,CA,USA).p≤0.05was usedasthecriticallevelofsignificance.

3. Resultsanddiscussion

3.1. UNICAM-1inhibitedTNBCgrowthinvitro

TheeffectofUNICAM-1,compared withthat ofNAMI-Aand cisplatin, on cancer cell viability was estimated by MTT assay at72htreatmentusingthe humanMDA-MB-231cells andthe murineA17cellsasmodelsofTNBC.A17cellswereestablished fromanFVB/neuTtransgenicmammarytumorand were previ-ouslydescribed as strongly related toTNBC [34]. Althoughthe

ruthenium(II)complexesshowedalowereffectivenessrespectto cisplatin,theyareabletoinhibitviabilityofboth celllinesina dose-dependentmanner,whereUNICAM-1provedmoreefficient thanNAMI-AasreportedinTable1andSupplementaryFig.1.We nextstudiedwhethertheseinhibitoryeffectsofruthenium(II) com-plexesoncellsviabilityweretheresultofapoptosis.Interestingly, onlyUNICAM-1resultedintheinductionofcelldeathbythe acti-vationoftheapoptotic“executioner”caspase-3(Supplementary Fig.2)whencomparedtoNAMI-Aorcisplatintreatments.Taken together,theseresultssuggestthatUNICAM-1leadstoapoptosis ofTNBCcells,showingpromisinginvitroanticanceractivity. 3.2. UNICAM-1inhibitedTNBCgrowthinvivo

We next investigated the in vivo antineoplastic effects of UNICAM-1 against A17 cells, able to give rise to aggressive mesenchymal tumors when injected into syngeneic mice. A17 cellssharemolecularsignaturewithTNBC,includingexpression of vimentin, cytokeratin 14, and N-cadherin as we previously described[28,34].AkeyfeatureofA17-signatureisalsothe over-expressionofCOX2,amesenchymalhallmarkintumors,whose relevance in growth,vasculogenesis and invasiveness has been widelydocumentedinvarioustypesofcarcinoma,bothin clin-icalandexperimentalstudies[35,36].Herewehaveshownthat UNICAM-1isabletosignificantlyreduceA17transplantabletumors growthinFVBsyngeneicmice(Fig.2).Theefficacyof UNICAM-1asantitumoralagentwascompared withthatofcisplatinand NAMI-A.Inanattempttooptimizeatreatmentschedule,resulting in a powerful anticancer action associated with minimal side-effects, the same final concentration of UNICAM-1(210mg/kg) orcisplatin(12mg/kg)orNAMI-A(210mg/kg)wasadministered accordingtotwo differentprotocols:a)treatmentcalledq1×6 (intraperitoneal (i.p.) injection of UNICAM-1 (35mg/kg/day) or cisplatin(2mg/kg/day) or NAMI-A(35mg/kg/day), repeatedfor 6consecutivedays);b)treatmentcalledq3×4(i.p.injectionof UNICAM-1(52.5mg/kg/day)orcisplatin(3mg/kg/day)orNAMI-A (52.5mg/kg/day),repeated4timesatintervalsof3days).Although bothprotocolswereeffective(SupplementaryFig.3),tumorgrowth inhibition became more significantin q3×4 treatment, where UNICAM-1 displayed the same anticancer activity of cisplatin (Fig.2),suggestingthattheprotocolofadministration,notonlythe dosages,arecriticalfeatures.Focusingonq3×4drugregimen,itis

Table2

Semiquantitativeanalysisofmorphologicalinjuryparametersinliverandkidneyofcontrol,UNICAM-1,cisplatinandNAMI-Agroups.

CONTROLS UNICAM-1(52.5mg/Kg) CISPLATIN(3mg/Kg) NAMI-A(52.5mg/Kg) Liver

Centralveincongestion(CVC) 0.8333±0.4082 0.3333±0.2582*,*** 1.167±0.7528 0.5833±0.5845

Inflammatoryaggregate(IA) 0.8333±0.4082 0.5833±0.5845# 1.417±0.7360 1.667±0.9309

Focalhepaticnecrosis(FHN) 0.4167±0.3764 0.6667±0.5164 0.7500±0.6892 0.6667±0.4082 Dilatedsinusoids(DS) 0.6667±0.4082 0.7500±0.5244 1.000±0.4472 0.9167±0.3764 Moderatebreakdownhepatocytes(MBH) 0.7500±0.5244 0.4167±0.4916 1.000±0.6325 1.000±0.7071

Perivascularinflammatoryaggregate(PIA) 0.9167±0.5845 0.5000±0.3162***,# 1.417±0.8612 1.500±0.7071

Degeneratedhepaticcord(DHC) 0.6667±0.2582 1.250±0.2739** 1.250±0.6892 1.500±0.6325*

Apoptoticcells(AC) 0.0±0.0 0.5000±0.4472* 1.167±0.6831** 0.3333±0.2582*,***

Vacuolations(V) 0.08333±0.2041 1.000±1.581 0.8333±1.211 0.4167±0.8010 Kidney

Atrophicglomerulus(G) 0.5833±0.3764 1.083±0.2041* 0.7500±0.6892 1.167±0.6055

Dilatedproximalconvolutedtubule(PCT) 0.8333±0.2582 0.9167±0.3764 0.7500±0.6892 0.9167±0.5845

Degeneratedtubules(T) 0.3333±0.2582 0.8333±0.4082* 0.6667±0.4082 1.250±0.6124**

Inflammatorycellsinfiltrate(I) 0.5833±1.201 0.3333±0.4082 0.9167±1.281 0.08333±0.2041 Desquamationofepithelialcells(D) 0.2500±0.4183 0.8333±0.4082* 0.7500±0.4183 0.7500±0.8216

Castformation(C) 0.08333±0.2041 0.1667±0.2582 0.1667±0.2582 0.1667±0.2582

Valuesaregivenasmean±SD.Thegroupwiththehigherscoreforeachanalyzedinjuryparameterisevidencedbyboldcharacter.

*p<0.05vs.Controlgroup. **p<0.01vs.Controlgroup. ***p<0.05vs.Cisplatingroup.

(5)

Fig.3. Histopathologicalanalysisofliverusinghematoxylinandeosin(H&E)staining.Representativesectionsofliverfromdifferenttreatmentgroupsareshown.CV, centralvein;CVC,centralveincongestion;IA,inflammatoryaggregate;FHN,focalhepaticnecrosis;DS,dilatedsinusoids;DHC,degeneratedhepaticcord;PIA,perivascular inflammatoryaggregate.

possibletoappreciatehowA17tumorgrowrate(Fig.2A)andthe finaltumordimensions(Fig.2CandD)weresignificantlyreduced intheUNICAM-1-andcisplatin-treatedgroupscomparedtothe controlgroup,whereasNAMI-Awaslesseffective.Whileall con-trolmicedevelopedpalpabletumorsaftertwo weeksfromA17 cellchallenge,twoofthetotaltenmicetreatedwithUNICAM-1 didnotdeveloppalpabletumorsuntiltheendoftheexperiment. Ofnote,asshowninthetumorgrowthgraph,tumorsdeveloped incontrolmicedisplayedarapidgrowthrate,reachingan aver-agediameterof7mm attheend ofthestudy(on day36 after challenge),whereastumorsdevelopedintheUNICAM-1treated miceremainedverysmall,withanaveragediameternever exceed-ing3mm.Interestingly,body weightdidnot significantlydiffer betweenUNICAM-1-treatedandcontrolmice(Fig.2B), suggest-ingtheabsenceofdrugtoxicityattheselecteddoselevel.Onthe contrary,bothNAMI-A-andcisplatin-treatmentswereassociated withweighloss(Fig.2B).

3.3. UNICAM-1exhibitedmarkedlyreducedlivertoxicity comparedtocisplatin

Anextensivehistopathologicalanalysiswiththeevaluationof severaltissue injury parameters was carried out on explanted liverandkidney,commontargetsofchemotherapydrugs toxic-ity.Table2showsmoderatekidneytoxicitylevelssimilarforthe threedrugs,exceptforthepresenceofinflammatorycellsinfiltrate onlyincisplatintreatedkidneys.Importantly,livertoxicitywas muchlessevidentinUNICAM-1thanincisplatinorNAMI-Atreated mice(Table2andFig.3).Pharmacokineticstudiesindicatedthat UNICAM-1wasrapidlylostfromtheorgansandthebloodstream

thankstoitshighhydrosolubility,inagreementwithlackofserious sideeffects.Inparticular,analysisoftracesofrutheniumand plat-inumintheliversandkidneysoftreatedmiceclearlydemonstrated ahigheliminationofUNICAM-1.Incontrast,repeated administra-tionsofNAMI-Aandcisplatinleadtoanaccumulationofruthenium andplatinumrespectively,preferentiallyinthekidneys(Fig.4A). Moreover,bloodanalysisdemonstratedthatrutheniumand plat-inumwerestillcirculatingsevendaysafterthelastadministration ofNAMI-Aandcisplatin,whereasrutheniumtraceswerealmost undetectableoneweekafterthelastUNICAM-1treatment(Fig.4B). 3.4. UNICAM-1impairedtumorangiogenesisandinduced

apoptosisinTNBC

Histologicalandimmunohistochemicalanalysescarriedouton explantedtumorsshowedseveraldifferencesamongcontroland treatedmice.Notably,whileallthreetreatmentsprovokea reduc-tioninthenumberofvessels,asignificantlyincreasednumberof apoptoticcells(cleavedcaspase-3positivecells)wasvisibleonly inUNICAM-1treatedtumors(Fig.5),suggestingthattheinhibitory activityofUNICAM-1ontumorgrowthwasdue,atleastinpart,to celldeathinductionthroughapoptosis.

3.5. UNICAM-1suppressedTNBCgrowthbyinhibitingtumor infiltrationofregulatoryTcells

Chemotherapyseemstobeefficientifitsucceedsineliciting anticancerimmunosurveillance,thatimpliestheactivationofan immuneresponsespecificfor malignantcells[37]. Antineoplas-ticagentsmaystimulateimmunosurveillancebyactingoncancer

(6)

M.Montanietal./PharmacologicalResearch107(2016)282–290 287

Fig.4.Rutheniumandplatinumcontentinliverandkidney(A)andserum(B)frommiceinjectedwithUNICAM-1,NAMI-AorcisplatinevaluatedbyInductivelyCoupled Plasma-MassSpectrometry(ICP-MS).Thedataarepresentedas%injecteddosepergramoftissue(%IDperg).Valuesaremean±SEM,n=10.*p<0.05;**p<0.01;***p<0.001; ****p<0.0001wascalculatedwithanunpairedtwo-tailedt-test.Eachgroupwascomparedtocontrol.

Fig.5.AnalysisofapoptoticcellsandvesselnumberinA17tumors.Representativeimagesofcleavedcaspase-3andCD31/105positiveimmunohistochemicalsectionsof control,cisplatin,NAMI-AandUNICAM-1treatedtumorsonday36(upperpanel).Quantificationofcleavedcaspase-3positivecellsandnumberofvesselsincontroland treatedtumorswasdeterminedasdescribedintheexperimentalsection(lowerpanel).Resultsarerepresentedasmeans±SEMfrom5×400microscopicfieldspertumor (n=10).*p<0.05;**p<0.01;***p<0.001;****p<0.0001wascalculatedwithanunpairedtwo-tailedttest.Eachgroupwascomparedtocontrol.

cellsin severalways, forexample,bydepletionof immunosup-pressivecellsfromthetumorbed[38],orthroughdirecteffects onmalignant cells that then elevate theirimmunogenicityand theirsusceptibility to immune control by cytotoxicT and nat-uralkiller(NK) cells.Certainchemotherapeuticsenhancetumor immunogenicitybecausetheyinduceaformofapoptosisin can-cer cells, known as “immunogenic cell death”, that favors the transfer of tumor antigens to dendritic cells (DC), which ulti-mately“cross-prime” and activate anti-tumorigenic CD4+/CD8+ T-cell immunity. Accordingly, numerous studies have reported

a linkbetween response toconventional therapies, and tumor immuneinfiltrateinseveraldifferentsolidtumortypes, includ-ingbreastcancer[39].Immunohistochemicalanalysisoftumors explantedfrommicetreatedwithcisplatin,NAMI-Aand UNICAM-1revealedasignificantlyhigherleveloftumorimmuneinfiltrates incomparisonwithcontrolmice(Fig.6).Ourresultsare concor-dantwitharecentstudybyDenkertetal.[40],showingthattumor infiltratinglymphocytelevelscorrelatepositivelywithpatient sur-vivalandpredictpathologiccompleteresponsetochemotherapyin humanTNBC.Infact,thepresenceoftumor-infiltratingT

(7)

lympho-Fig.6. SemiquantitativeanalysisofinflammatoryinfiltrationinA17tumorsfromcontrol,cisplatin,NAMI-AandUNICAM-1treatedmice(protocolq3×4).Datawereanalyzed asdescribedintheexperimentalsection.Resultsarerepresentedasmeans±SEMfrom5×400microscopicfieldspertumor(n=5).CD4+cells:T-helperlymphocytes;CD8+ cells:cytotoxic-Tlymphocytes;CD11b+cells:dendriticcells;CD68+cells:macrophages;B220+cells:Blymphocytes;Foxp3cells:regulatoryTlymphocytes.*p<0.05; **p<0.01;***p<0.001;****p<0.0001wascalculatedwithanunpairedtwo-tailedttest.Eachgroupwascomparedtocontrol.

cytesindicatesthehostimmuneresponsetotumorantigensandis consideredasapositivemarkerofresponsetochemotherapy. How-ever,humantumorsalsopromoteaccumulationofCD4+CD25+ immunosuppressiveregulatoryTcells(Treg,Foxp3positivecells) inthetumorbedorintheblood.Thesecellsareknownasthekey contributortomaintenanceofimmunetolerance[41].Emerging evidencesuggeststhatTregcellshaveanimportant immunopatho-logic role in humantumor growthby suppressing endogenous tumor-associatedantigen-specificT-cellimmunity[42,43].Tregs cansuppressproliferationofactivatedeffector Tcellsby direct contact,inhibitingtheirclonalexpansion[44],orcaninducedirect killingofeffectorcellsthroughreleaseofgranzymeandperforin [45,46].Transforminggrowthfactor-b(TGF-b)andIL-10secreted byTregshavealsobeeninvolvedininhibitionoftumor-specificCTL cytotoxicityinvivo[47].Interestingly,followingUNICAM-1 treat-mentthelevelsofCD4+andcytotoxicCD8+Tlymphocyteswere increased,concomitantlywithastrongreductionofFoxp3 regu-latoryT-cellinfiltration(Fig.6,SupplementaryFigs.4,5).Recently, animmunologicsignatureconsistingoftheabsenceofFoxp3cells andthepresenceofahighnumberofCD8Tcellsonfinalsurgical biopsyofbreasttumortreatedbyneoadjuvantchemotherapyhas beenassociatedwithpathologiccompleteresponses[38,48].Ahigh CD8/Tregratiohasbeenalsoassociatedwithfavorableprognosis inepithelialovariancancer[49].However,althoughinductionand expansionofTregsinthetumormicroenvironmentareconsidered criticalstepsinevasionoftheimmune responseand tumorcell survival,themolecularmechanismsunderlyingTregcells recruit-mentintheprimarytumorremainunclear.Clinicalstudiesofbreast cancerpatientshaveshownacorrelationbetweenincreasedCOX2 expressionwithhighTregrecruitment[50]andrecently Karavi-tisetal.provideddirectevidencethatCOX2,andsubsequentPGE2

overexpression,resultsinatumorenvironmentthatpromotesTreg recruitmentandattenuationofthenormalimmuneresponse[51]. COX2isassociatedwithabasal-liketranscriptionpatterninhuman breasttumors[34]andit wasfoundsignificantlyoverexpressed inA17tumors,whereitcorrelateswiththeirmesenchymal signa-ture[29,34,35,52,53].Besideitsimmunosuppressiveeffect,COX2 expressionhasbeenalsolinkedtocancerprogressionduetoits ability to promote cell proliferation and angiogenesis [36]. We thereforeevaluated ifthereis a correlationbetweenCOX2 lev-elsandTregrecruitmentinA17tumorsexplantedfromcontrol andtreatedanimals.Ofnote,westernblotanalysesrevealeda sig-nificantreductionofCOX2expressionuponUNICAM-1treatment (Fig.7),supportingtheassociationbetweenCOX2levelsandTreg infiltrationandunravelingthemolecularmechanismwhichmight mediatetheantitumoral and immunomodulatoryaction of this rutheniumcompound.Inaddition,UNICAM-1inducesan enhance-mentofrecruitmentandinfiltrationintotumorsofcellsexpressing thedendritic markerCD11band themacrophagemarkerCD68 (Fig.6).Althoughtheroleoftumorassociatedmacrophagesisstill controversial,tumor-infiltratingmacrophagesoftenparticipatein thehostresponsetowardthetumor,killingtumorcells [54,55]. Inagreementwiththisfinding,highmacrophageinfiltrationhas been correlated to improvedsurvival in colorectal cancer[56]. Overall,wereportthatUNICAM-1hasarelevanttherapeutic effi-cacyagainstTNBCanditsuniqueimmunomodulatoryactionmight explaintheobservedanticancereffects.

4. Conclusion

Cancer remains a major cause of mortality worldwide. Chemotherapyisoneofthemostpotentstrategiestotreattumors,

(8)

M.Montanietal./PharmacologicalResearch107(2016)282–290 289

Fig.7. UNICAM-1targetedCOX2expressioninA17transplantedtumors.Western blotanalysisfortheexpressionlevelsofCOX2and␤-actin(loadingcontrol)inA17 tumorsfromFVBmicereceivingisotonicsolution(control),cisplatin,UNICAM-1,or NAMI-A(upperpanel).DensitometricquantificationofCOX2expressionnormalized on␤-actinwasperformedwithImageJSoftware(lowerpanel).Statisticalanalysis wasexecutedwithGraphPadPrismSoftware(SanDiego,CA,USA),usingp<0.05as thecriticallevelofsignificance(****p<0.0001;***p<0.001).

howeverthetoxicityofcurrentlyavailableanticancerdrugs repre-sentsoneofthemostcriticalissues.Newtherapies,characterized byhighefficiencyandlowtoxicity,arethereforeanurgentunmet medicalneed.Conventionalcancertherapies,suchas chemother-apies, have been developed based on the concept that cancer constitutesacell-autonomousgeneticorepigeneticdisease.Asa consequence,theircytostaticand/orcytotoxiceffectshavebeen testedinvitro,onculturedhumantumorcells,andonhuman can-cerxenograftsgrowinginimmunodeficientmice.Littleattention hasbeengiventothehostimmune systemintermsof progno-sisandpotentialresponsetotherapy[57].Ontheotherhand,the roleoftheimmunesystemincancerhaslongbeenknownand accumulatingevidenceindicatesthatthetherapeuticefficacyof severalantineoplasticagentsreliesontheircapacitytoinfluence thetumor-hostinteractionandtofavorablymodifytheimmune microenvironment.

Our studies were focused on the development and valida-tionofanorganometallicruthenium(II)-arenecomplex,wecalled UNICAM-1,asnovelanticancerdrug.Overall,UNICAM-1exhibitsa markedanti-tumoralactivityinvivoagainstanexperimentalTNBC model,associatedwithlowtoxicityandfavorableclearance proper-ties.TherapeuticefficacyofUNICAM-1seemstorelyonitscapacity toinfluencethetumor-hostinteraction,leadingtoactivationof animmuneresponsespecificformalignantcells,supportingthe hypothesisthatchemotherapyisefficientifitsucceedsineliciting anticancerimmunosurveillance[37].

Acknowledgments

ThisstudywassupportedbyA.Amici’sF.A.R.2015ofthe Uni-versityofCamerino.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.phrs.2016.03. 032.

References

[1]T.O.Nielsen,F.D.Hsu,K.Jensen,M.Cheang,G.Karaca,Z.Hu,T.

Hernandez-Boussard,C.Livasy,D.Cowan,L.Dressler,L.A.Akslen,J.Ragaz, A.M.Gown,C.B.Gilks,M.vandeRijn,C.M.Perou,Immunohistochemicaland clinicalcharacterizationofthebasal-likesubtypeofinvasivebreast carcinoma,Clin.CancerRes.10(2004)5367–5374.

[2]M.C.Cheang,D.Voduc,C.Bajdik,S.Leung,S.McKinney,S.K.Chia,C.M.Perou, T.O.Nielsen,Basal-likebreastcancerdefinedbyfivebiomarkershassuperior prognosticvaluethantriple-negativephenotype,Clin.CancerRes.14(2008) 1368–1376.

[3]F.Bertucci,P.Finetti,D.Birnbaum,Basalbreastcancer:acomplexanddeadly molecularsubtype,Curr.Mol.Med.12(2012)96–110.

[4]W.D.Foulkes,I.E.Smith,J.S.Reis-Filho,Triple-negativebreastcancer,N.Engl. J.Med.363(20)(2010)1938–1948.

[5]L.Kelland,Theresurgenceofplatinum-basedcancerchemotherapy,Nat.Rev. Cancer7(2007)573–584.

[6]M.J.Piccart,H.Lamb,J.B.Vermorken,Currentandfuturepotentialrolesofthe platinumdrugsinthetreatmentofovariancancer,Ann.Oncol.12(2001) 1195–1203.

[7]M.Tian,Y.Zhong,F.Zhou,C.Xie,Y.Zhou,Z.Liao,Platinum-basedtherapyfor triple-negativebreastcancertreatment:ameta-analysis,Mol.Clin.Oncol.3 (2015)720–724.

[8]D.P.Silver,A.L.Richardson,A.C.Eklund,Z.C.Wang,Z.Szallasi,Q.Li,N.Juul, C.O.Leong,D.Calogrias,A.Buraimoh,A.Fatima,R.S.Gelman,P.D.Ryan,N.M. Tung,A.DeNicolo,S.Ganesan,A.Miron,C.Colin,D.C.Sgroi,L.W.Ellisen,E.P. Winer,J.E.Garber,Efficacyofneoadjuvantcisplatinintriple-negativebreast cancer,J.Clin.Oncol.28(2010)1145–1153.

[9]N.J.Wheate,S.Walker,G.E.Craig,R.Oun,Thestatusofplatinumanticancer drugsintheclinicandinclinicaltrials,DaltonTrans.39(2010)8113–8127.

[10]F.Muggia,BRCA-deficientanimalmodelsandcisplatinresistance,Gynecol. Oncol.112(2009)275–281.

[11]J.Liu,X.Chen,T.Ward,M.Pegram,K.Shen,Combinedniclosamidewith cisplatininhibitsepithelial-mesenchymaltransitionandtumorgrowthin cisplatin-resistanttriple-negativebreastcancer,TumourBiol.(2016)1–11.

[12]L.Kelland,Rutheniumantimetastaticagents,Nat.Rev.Cancer7(2007) 573–584.

[13]N.P.Barry,P.J.Sadler,Explorationofthemedicalperiodictable:towardsnew targets,Chem.Commun.49(2013)5106–5131.

[14]A.L.Noffke,A.Habtemariam,M.A.Pizarro,P.J.Sadler,Designing organometalliccompoundsforcatalysisandtherapy,Chem.Commun.48 (2012)5219–5246.

[15]G.Gasser,I.Ott,N.Metzler-Nolte,Organometallicanticancercompounds,J. Med.Chem.54(2011)3–25.

[16]G.S.Smith,B.Therrien,Targetedandmultifunctionalareneruthenium chemotherapeutics,DaltonTrans.40(2011)10793–10800.

[17]G.Sava,A.Bergamo,P.J.Dyson,Metal-basedantitumourdrugsinthe post-genomicera:whatcomesnext?DaltonTrans.40(2011)9069–9075.

[18]A.F.Peacock,P.J.Sadler,Medicinalorganometallicchemistry:designingmetal arenecomplexesasanticanceragents,Chem.AsianJ.3(2008)1890–1899.

[19]E.Alessio,G.Mestroni,A.Bergamo,G.Sava,Rutheniumanticancerdrugs, Curr.Top.Med.Chem.4(2004)1525–1535.

[20]R.Trondl,P.Heffeter,C.R.Kowol,M.A.Jakupec,W.Berger,B.K.Keppler, NKP-1339,thefirstruthenium-basedanticancerdrugontheedgetoclinical application,Chem.Sci.5(2014)2925–2932.

[21]B.Lippert,Z.Cisplat,Chemistrybiochemistryofaleadinganticancerdrug.The mechanismofactionofcisplatin:fromadductstoapoptosis,4,111–134.Ed.; VerlagHelveticaChimicaActa:Zurich;Wiley-VCH:Weinheim,Germany (1999).

[22]Z.Adhireksan,G.E.Davey,P.Campomanes,M.Groessl,C.M.Clavel,H.Yu,A.A. Nazarov,H.F.Yeo,W.H.Ang,P.Droge,U.Rothlisberger,P.J.Dyson,C.A.Davey, Ligandsubstitutionsbetweenruthenium-cymenecompoundscancontrol proteinversusDNAtargetingandanticanceractivity,Nat.Commun.5(2014) 3462.

[23]A.Casini,C.G.Hartinger,A.A.Nazarov,P.J.Dyson,Organometallicantitumour agentswithalternativemodesofaction,Top.Organomet.Chem.32(2010) 57–80.

[24]R.E.Aird,J.Cummings,A.A.Ritchie,M.Muir,R.E.Morris,H.Chen,P.J.Sadler, D.I.Jodrell,Invitroandinvivoactivityandcrossresistanceprofilesofnovel ruthenium(II)organometallicarenecomplexesinhumanovariancancer,Br.J. Cancer86(2002)1652–1657.

[25]C.Scolaro,A.Bergamo,L.Brescacin,R.Delfino,M.Cocchietto,G.Laurenczy, T.J.Geldbach,G.Sava,P.J.Dyson,Invitroandinvivoevaluationof ruthenium(II)-arenePTAcomplexes,J.Med.Chem.48(2005)4161–4171.

[26]F.Marchetti,C.Pettinari,R.Pettinari,A.Cerquetella,C.DiNicola,A.Macchioni, D.Zuccaccia,M.Monari,F.Piccinelli,Synthesisandintramolecularand interionicstructuralcharacterizationofhalf-sandwich(arene)ruthenium(II) derivativesofbis(pyrazolyl)alkanes,Inorg.Chem.47(2008)11593–11603.

[27]G.Mestroni,E.Alessio,G.Sava,PCTInt.Appl.WO980004311998. [28]M.Galiè,C.Sorrentino,M.Montani,L.Micossi,E.DiCarlo,T.D’Antuono,L.

Calderan,P.Marzola,D.Benati,F.Merigo,F.Orlando,A.Smorlesi,C.Marchini, A.Amici,A.Sbarbati,Mammarycarcinomaprovideshighlytumourigenicand invasivereactivestromalcells,Carcinogenesis26(2005)1868–1878.

[29]M.Galiè,G.Konstantinidou,D.Peroni,I.Scambi,C.Marchini,V.Lisi,M. Krampera,P.Magnani,F.Merigo,M.Montani,F.Boschi,P.Marzola,R.Orrù,P. Farace,A.Sbarbati,A.Amici,Mesenchymalstemcellssharemolecular

(9)

Ramadori,F.Gabrielli,A.Baruzzi,G.Berton,F.Merigo,S.Fin,M.Iezzi,B. Bisaro,A.Sbarbati,M.Zerani,M.Galiè,A.Amici,Mesenchymal/stromalgene expressionsignaturerelatestobasal-likebreastcancers,identifiesbone metastasisandpredictsresistancetotherapies,PLoSOne5(2010)e14131.

[35]B.Bisaro,M.Montani,G.Konstantinidou,C.Marchini,L.Pietrella,M.Iezzi,M. Galiè,F.Orso,A.Camporeale,S.M.Colombo,P.DiStefano,G.Tornillo,M.P. Camacho-Leal,E.Turco,D.Taverna,S.Cabodi,A.Amici,P.Defilippi, p130Cas/Cyclooxygenase-2axisinthecontrolofmesenchymalplasticityof breastcancercells,BreastCancerRes.14(2012)R137.

[36]G.Singh-Ranger,M.Salhab,K.Mokbel,Theroleofcyclooxygenase-2inbreast cancer:review,BreastCancerRes.Treat.109(2008)189–198.

[37]L.Zitvogel,L.Galluzzi,M.J.Smyth,G.Kroemer,Mechanismofactionof conventionalandtargetedanticancertherapies:reinstating immunosurveillance,Immunity39(2013)74–88.

[38]S.Ladoire,L.Arnould,L.Apetoh,B.Coudert,F.Martin,B.Chauffert,P. Fumoleau,F.Ghiringhelli,Pathologiccompleteresponsetoneoadjuvant chemotherapyofbreastcarcinomaisassociatedwiththedisappearanceof tumor-infiltratingfoxp3+regulatoryTcells,Clin.CancerRes.14(2008) 2413–2420.

[39]S.Demaria,M.D.Volm,R.L.Shapiro,H.T.Yee,R.Oratz,S.C.Formenti,F. Muggia,W.F.Symmans,Developmentoftumor-infiltratinglymphocytesin breastcancerafterneoadjuvantpaclitaxelchemotherapy,Clin.CancerRes.7 (2001)3025–3030.

[40]C.Denkert,G.vonMinckwitz,J.C.Brase,B.V.Sinn,S.Gade,R.Kronenwett,B.M. Pfitzner,C.Salat,S.Loi,W.D.Schmitt,C.Schem,K.Fisch,S.Darb-Esfahani,K. Mehta,C.Sotiriou,S.Wienert,P.Klare,F.André,F.Klauschen,J.U.Blohmer,K. Krappmann,M.Schmidt,H.Tesch,S.Kümmel,P.Sinn,C.Jackisch,M.Dietel,T. Reimer,M.Untch,S.Loibl,Tumor-infiltratinglymphocytesandresponseto neoadjuvantchemotherapywithorwithoutcarboplatininhumanepidermal growthfactorreceptor2-positiveandtriple-negativeprimarybreastcancers, J.Clin.Oncol.33(2015)983–991.

[41]S.Sakaguchi,M.Ono,R.Setoguchi,H.Yagi,S.Hori,Z.Fehervari,J.Shimizu,T. Takahashi,T.Nomura,Foxp3+CD25+CD4+naturalregulatoryTcellsin dominantself-toleranceandautoimmunedisease,Immunol.Rev.212(2006) 8–27.

[42]T.J.Curiel,G.Coukos,L.Zou,X.Alvarez,P.Cheng,P.Mottram,M. Evdemon-Hogan,J.R.Conejo-Garcia,L.Zhang,M.Burow,Y.Zhu,S.Wei,I. Kryczek,B.Daniel,A.Gordon,L.Myers,A.Lackner,M.L.Disis,K.L.Knutson,L. Chen,W.Zou,SpecificrecruitmentofregulatoryTcellsinovariancarcinoma fostersimmuneprivilegeandpredictsreducedsurvival,Nat.Med.10(2004) 942–949.

[43]G.J.Bates,S.B.Fox,C.Han,R.D.Leek,J.F.Garcia,A.L.Harris,A.H.Banham, QuantificationofregulatoryTcellsenablestheidentificationofhigh-risk

Rello-Varona,C.Locher,V.Poirier-Colame,M.Talbot,A.Valent,F.Berardinelli, A.Antoccia,F.Ciccosanti,G.M.Fimia,M.Piacentini,A.Fueyo,N.L.Messina,M. Li,C.J.Chan,V.Sigl,G.Pourcher,C.Ruckenstuhl,D.Carmona-Gutierrez,V. Lazar,J.M.Penninger,F.Madeo,C.López-Otín,M.J.Smyth,L.Zitvogel,M. Castedo,G.Kroemer,Animmunosurveillancemechanismcontrolscancercell ploidy,Science337(2012)1678–1684.

[49]E.Sato,S.H.Olson,J.Ahn,B.Bundy,H.Nishikawa,F.Qian,A.A.Jungbluth,D. Frosina,S.Gnjatic,C.Ambrosone,J.Kepner,T.Odunsi,G.Ritter,S.Lele,Y.T. Chen,H.Ohtani,L.J.Old,K.Odunsi,IntraepithelialCD8+tumor-infiltrating lymphocytesandahighCD8+/regulatoryTcellratioareassociatedwith favorableprognosisinovariancancer,Proc.Natl.Acad.Sci.U.S.A.102(2005) 18538–18543.

[50]B.A.Pockaj,G.D.Basu,L.B.Pathangey,R.J.Gray,J.L.Hernandez,S.J.Gendler,P. Mukherjee,ReducedT-cellanddendriticcellfunctionisrelatedto cyclooxygenase-2overexpressionandprostaglandinE2secretioninpatients withbreastcancer,Ann.Surg.Oncol.11(2004)328–339.

[51]J.Karavitis,L.M.Hix,Y.H.Shi,R.F.Schultz,K.Khazaie,M.Zhang,Regulationof COX2expressioninmousemammarytumorcellscontrolsbonemetastasis andPGE2-inductionofregulatoryTcellmigration,PLoSOne7(9)(2012) e46342.

[52]C.Garulli,C.Kalogris,L.Pietrella,C.Bartolacci,C.Andreani,M.Falconi,C. Marchini,C.Amici,Dorsomorphinreversesthemesenchymalphenotypeof breastcancerinitiatingcellsbyinhibitionofbonemorphogeneticprotein signaling,Cell.Signal.26(2014)352–362.

[53]C.Kalogris,C.Garulli,L.Pietrella,V.Gambini,S.Pucciarelli,C.Lucci,M.Tilio, M.E.Zabaleta,C.Bartolacci,C.Andreani,M.Giangrossi,M.Iezzi,B.Belletti,C. Marchini,A.Amici,Sanguinarinesuppressesbasal-likebreastcancergrowth throughdihydrofolatereductaseinhibition,Biochem.Pharmacol.90(3) (2014)226–234,http://dx.doi.org/10.1016/j.bcp.2014.05.014.

[54]S.Cui,J.S.Reichner,R.B.Mateo,J.E.Albina,Activatedmurinemacrophages induceapoptosisintumorcellsthroughnitricoxide-dependentor -independentmechanisms,CancerRes.54(1994)2462–2467.

[55]J.H.Martin,S.W.Edwards,Changesinmechanismsof

monocyte/macrophage-mediatedcytotoxicityduringcultureReactiveoxygen intermediatesareinvolvedinmonocyte-mediatedcytotoxicity,whereas reactivenitrogenintermediatesareemployedbymacrophagesintumorcell killing,J.Immunol.150(1993)3478–3486.

[56]J.Forssell,A.Oberg,M.L.Henriksson,R.Stenling,A.Jung,R.Palmqvist,High macrophageinfiltrationalongthetumorfrontcorrelateswithimproved survivalincoloncancer,Clin.CancerRes.13(2007)1472–1479.

[57]C.Jochems,J.Schlom,Tumor-infiltratingimmunecellsandprognosis:the potentiallinkbetweenconventionalcancertherapyandimmunity,Exp.Biol. Med.236(2011)567–579.

Figura

Fig. 1. Chemical structures of cisplatin, NAMI-A and UNICAM-1.
Fig. 2. UNICAM-1 suppressed TNBC growth in vivo. FVB female mice were injected with syngeneic A17 cells (10 5 )
Fig. 3. Histopathological analysis of liver using hematoxylin and eosin (H&amp;E) staining
Fig. 4. Ruthenium and platinum content in liver and kidney (A) and serum (B) from mice injected with UNICAM-1, NAMI-A or cisplatin evaluated by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
+3

Riferimenti

Documenti correlati

Organrzzazlone, pianificazione e coordinamento delle attività degli operatorr sanitan funZIOnalmente attribUiti, m Situazioni di routlne e di emergenza

f) qualora l’attività sia inserita in palestre o altri esercizi, potranno essere utilizzati i servizi accessori (servizi igienici, ripostigli e spogliatoi) propri

3126/2013, Normativa Tecnica di Attuazione – testo coordinato; Relazione geologica relativa alla fattibilità dell’intervento di ampliamento del parcheggio posto a

nell’Accordo - sottoscritto ai sensi dell’art. 6/2004 tra i Comuni del Circondario Imolese, la Provincia di Bologna e la Regione Emilia-Romagna ai fini dell’unificazione

57 mapp.le 128 parte sito in Comune di Castel San Pietro, le aree necessarie per la realizzazione dell’intervento di ampliamento e riqualificazione del Parcheggio nord della

- ENTE NAZIONALE PROTEZIONE ANIMALI – Sezione di Castel San Pietro Terme - si avvarrà, nella gestione delle oasi feline del territorio comunale di Castel

RILEVATO che in base alla documentazione suddetta risulta che la quota, come sopra conteggiata, di competenza del Comune di Castel San Pietro Terme per la gestione in

where N is the number of sampled PES locations and H ij (t k ) is the ij matrix element at the time- step t k. We believe that a very representative collection of Hessian