• Non ci sono risultati.

Anisotropic flow in Xe–Xe collisions at sNN=5.44 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Anisotropic flow in Xe–Xe collisions at sNN=5.44 TeV"

Copied!
14
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Anisotropic

flow

in

Xe–Xe

collisions

at

s

NN

=

5

.

44 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received23May2018

Receivedinrevisedform14June2018 Accepted25June2018

Availableonline30June2018 Editor:L.Rolandi

The first measurements of anisotropic flow coefficients vn for mid-rapidity charged particlesin Xe–

Xecollisions at√sNN=5.44 TeV arepresented.Comparing thesemeasurements tothosefromPb–Pb

collisions at √sNN=5.02 TeV, v2 is found to be suppressed for mid-central collisions at the same

centrality, and enhancedfor central collisions.Thevalues ofv3 aregenerally largerinXe–Xe thanin

Pb–Pb at a givencentrality. Theseobservations are consistent with expectations from hydrodynamic

predictions. When both v2 and v3 are divided by their corresponding eccentricities for avariety of

initial state models,they generally scale with transverse density whencomparing Xe–Xe and Pb–Pb,

with somedeviations observed incentral Xe–Xe and Pb–Pbcollisions. Theseresults assist inplacing

strong constraintson boththe initial state geometry and medium response for relativistic heavy-ion

collisions.

©2018EuropeanOrganizationforNuclearResearch.PublishedbyElsevierB.V.Thisisanopenaccess

articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Relativisticheavy-ioncollisionsarebelievedtocreateaQuark– Gluon Plasma (QGP), a state of matter consisting of deconfined colorcharges.Thepressure gradientsintheQGPmedium convert spatialanisotropiesininitialconditionsofthecollisionto momen-tum anisotropies of produced particles via multiple interactions, a phenomenon referred to as anisotropicflow [1]. The magnitude of anisotropic flow can be characterized by the flow coefficients (vn),whichare obtainedfromaFourierexpansion ofthe angular

distributionofproducedparticles[2] dN d

ϕ

1

+

2 ∞



n=1 vncos

[

n(

ϕ

− 

n

)

],

(1)

where

ϕ

istheazimuthalangleoftheproducedparticle,nisthe flowharmonic,and



nis thecorresponding symmetryplane

an-gle.Forthe secondandthird orderflowcoefficients(v2 and v3),

various hydrodynamical calculations have demonstrated the ap-proximaterelation[3–7]

vn

κ

n

ε

n

,

(2)

where

ε

n isthecorrespondingeccentricitycoefficient,which

gov-erns the shape of the initial state. The variable

κ

n encodes the

responseofthemedium,andinparticularissensitivetotheshear

 E-mailaddress:alice -publications @cern .ch.

viscosity over entropydensity ratio(η

/

s)andthe lifetimeof the system. When valuesof

η

/

s are finite,this inhibits the develop-mentofmomentumanisotropies.Ithasalsoreceivedabroader in-terest,asitslowerboundisdifferentforperturbativeQCD[8] and AdS/CFT [9].Experimental data fromboth the Relativistic Heavy-Ion Collider(RHIC) andthe LargeHadron Collider(LHC) [10–16], haveimpliedvaluesof

η

/

s closetotheAdS/CFTminimumof1

/

4π [9],suggestingthattheQGPbehavesasanearperfectfluid. How-ever, uncertainties in the modeling of the initial state have pre-ventedtheextractionofmorepreciseinformation[17–19].

The datasetfromtheLHCXe–Xerun completedin2017may provide an opportunity to further constrain

η

/

s. For mid-central collisions, various initial state models predict Xe–Xe collisions at

sNN

=

5

.

44 TeV and Pb–Pb collisions at

sNN

=

5

.

02 TeV have

similar valuesof

ε

2 ata givencentrality[20,21].However, atthe

samecentralitytheXe–XesystemsizeissmallerthanPb–Pb,and the impact of a finite

η

/

s suppresses

κ

2 by 1

/

R, where R

cor-responds tothe transversesize ofthe system[21]. Therefore, ra-tios of Xe–Xe/Pb–Pb v2 coefficients in the mid-centrality range

could bedirectlysensitiveto

η

/

s,withtheinfluenceoftheinitial state largely canceling out.Furthermore, hydrodynamical calcula-tions have shown that vn

/

ε

n increases monotonically with the

transverse density 1

/

S dNch/dη (dNch/dη is thecharged particle

densityandS isthetransversearea)acrossdifferentcollision en-ergies andsystems [17,22,23]. Both

ε

n and S are quantities that

areobtainedfromaninitialstatemodel.Aviolationofthescaling canbetheresultofincorrectmodelingofthedensity(S)orthe az-imuthalgeometry(εn).Thatbeingthecase,suchanexercisewhere

onecompares vn

/

ε

nasafunctionof1

/

S dNch/dηforbothXe–Xe https://doi.org/10.1016/j.physletb.2018.06.059

0370-2693/©2018EuropeanOrganizationforNuclearResearch.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

andPb–Pbcollisionscanfurtherconstraintheinitialstate.Similar investigations using RHIC data from Cu–Cuand Au–Au collisions ledtoimportantrefinements inthisregard,suchastherelevance of initial state fluctuations [24–26] and realization of finite val-uesof

ε

n forhigher order odd values of n (n

3) [27]. On the

otherhand,anobservedviolationofthisscalingusing experimen-taldata (assuming theinitial state predictions are accurate)may reveal deficiencies in the aforementioned hydrodynamical mod-eling.Addressing how theinformation fromXe–Xe collisions can shedmorelightonboththemediumresponseandinitialstate,is thecentralgoalofthisLetter.

2. Analysisdetails

ThetwodatasetsanalyzedwererecordedbytheALICEdetector attheLHCduringtheXe–Xe(2017)andPb–Pb(2015)runsatthe centerofmassenergiesof

sNN

=

5

.

44 TeVand

sNN

=

5

.

02 TeV,

respectively.AmoredetaileddescriptionoftheALICEdetectorand itsperformancecanbefoundelsewhere [28–30].Charged-particle tracksatmid-rapidityarereconstructedusingtheTimeProjection Chamber(TPC) [28,31],theprimary trackingdetector.Information fromthe Inner Tracking System (ITS) [28,32] is used to improve thespatialandmomentumresolutionoftheTPCtracks.Thishelps to reject the backgroundfrom secondaries,which originate from weak decays,conversions, secondary hadronicinteractions in the detector material, and pile-up. The two innermost layers of the ITS, the Silicon PixelDetector (SPD), are employed for triggering andevent selection. The two V0 counters [28,33], each contain-ing 32 scintillator tiles and covering 2

.

8

<

η

<

5

.

1 (V0A) and

3

.

7

<

η

<

1

.

7 (V0C), provideinformation fortriggering, event selection,thedeterminationofcentralityandthesymmetryplane angle [34].The triggerconditions andtheeventselection criteria aredescribedelsewhere[29].Anofflineeventselectionisapplied to remove beam-induced background (i.e., beam-gas events) and pile-upevents,whicharerejectedusinginformationfromtheITS andV0detectors.Primaryvertexinformationisprovidedbytracks reconstructedintheITSandTPC.Onlyeventswithareconstructed primaryvertexwithin10 cmfromthecenterofthedetectoralong thebeamaxis (thatpositionis denotedby P Vz) are used inthe

analysisto ensureauniformacceptancein

η

.The resultingevent sampleavailableforanalysisconsistedof

1

.

0MXe–Xeeventsin the0–70%centralityrange,and

67MeventsforPb–Pbcollisions inthesamecentralityinterval.

Thechargedtracksatmid-rapidityusedtodeterminetheflow coefficients have the kinematic values 0

.

2

<

pT

<

10 GeV/c and

|

η

|

<

0

.

8.ThetrackfitusesanSPDhitifoneexistswithinthe tra-jectory,ifnot,they are constrainedto theprimary vertex.Such a configurationleads toarelativelyflatazimuthalacceptance.Track qualityisensuredbyrequiringtrackstohaveatleast70TPCspace pointsout ofa maximumof159withanaverage

χ

2 per

degree-of-freedomforthetrackfitlowerthan2.Inaddition,thedistances ofclosestapproachtotheprimaryvertexinthexy planeandz

di-rectionarerequiredtobelessthan2.4cmand3.2cm,respectively. The charged particle track reconstruction efficiency is estimated from HIJING simulations [35,36] combined with a GEANT3 [37] transportmodel.

Inordertoextracttheflow coefficientsfromchargedparticles produced in either Xe–Xe or Pb–Pb collisions, the Scalar Prod-uct[38] andGenericFramework[39,40] methodsareused,which evaluatem particleflowcoefficientsvn

{

m

}

.Thevn

{

m

}

coefficients

characterizeflowfluctuations,andaresensitivetocorrelationsnot related to the common symmetry planes



n (“non-flow”), such

asthose due to resonances andjets. The contributionfrom flow fluctuationswasshowntodecrease vn

{

m

4

}

andincrease vn

{

2

}

relativeto



vn

[41]. Intheabsenceofflowfluctuationsand

non-flow,vn

{

m

}

isindependentofm.Bothmethodsfeaturecalculations

involvingtheQn-vectorwhichisdefinedas

Qn

=

M



i

einϕi

,

(3)

where M is the numberof particles used tobuild the Qn-vector

ina single event, and

ϕ

i isthe azimuthalangle ofparticle i.For

the Scalar Product method, the flow coefficients vn (denoted as

vn

{

2

,

|

η

|

>

2

}

)aremeasuredusing vn

{

SP

} = 

un,kQ∗n





QnQAn∗



QnQBn∗



QA nQBn∗

,

(4)

where un,k

=

exp

(

inϕk

)

is the unit flow vector ofthe particle of

interestk.Thebrackets

· · ·

denoteanaverageoverallevents,the doublebrackets

· · ·

an averageover all particlesinall events, and∗ thecomplexconjugate.ThevectorQniscalculatedfromthe

azimuthal distribution ofthe energy deposition measured in the V0A.Its x andy componentsaregivenby

Qn,x

=



j wjcos(n

ϕ

j

),

Qn,y

=



j wjsin(n

ϕ

j

),

(5)

where the sum runs over all channels j of the V0A detector ( j

=

1

32),

ϕ

j is the azimuthal angle of channel j, and wj is

theamplitude measuredinchannel j.ThevectorsQAnandQBnare

determined from the azimuthal distribution ofthe energy depo-sitionmeasured intheV0C andthe azimuthaldistribution ofthe tracksreconstructedintheITSandTPC,respectively.Thelargegap in pseudo-rapidity (

|

η

|

>

2

.

0) between thecharged particles in theTPCused todetermine vnandthose intheV0A greatly

sup-presses non-flow effects. The course

ϕ

segmentation of the V0 leads to a deterioration of resolution forhigher order flow coef-ficients(n

4),andpreventstheirmeasurements.

The flow coefficients vn

{

m

}

from two- and multi-particle

cu-mulants can also be obtainedusing the Generic Framework. The calculations using the Qn-vector are generally much more

com-plex than those shown in Eq. (4), and can be found elsewhere [40].Thisapproachprovidesacapabilityforthenecessary correc-tions ofsystematic biases fromnon-uniform detector acceptance and tracking inefficiencies, and it has been used in other mea-surements[16,42,43].Itcanalsobeusedtosuppressnon-flowby placing an

η

-gapbetweenvarious Qn-vectors. The non-flow

con-tribution to vn

{

m

4

}

in this framework is strongly suppressed

by construction without the use of an

η

-gap. The newly devel-opedsub-eventmethods[44,45],provideadditionalmeansof sup-pressing any residual non-flow contributions for vn

{

m

4

}

. The

Generic Framework isused for measurements of vn

{

2

,

|

η

|

>

1

}

and vn

{

m

4

}

(including v2

{

4

,

3 sub-event

}

) fromchargedtracks

intheTPCacceptanceonly.

When constructing Eq. (3) from charged particles to deter-mine vn

{

m

}

,particle-wiseweights areplacedtoaccount for

non-uniformities in the

ϕ

acceptance and pT dependent efficiencies.

The systematicuncertainties for vn

{

m

}

havethree sources:event

selection,tracktype/selection,andtheQn-vectorcorrection

proce-dure.The eventselectioncontributions weredeterminedby vary-ingtheP Vzranges,notapplyingthepile-uprejectioncriteria,and

usingadifferentdetectorsystem(ITS)forcentralitydetermination. The tracktype/selection uncertainties were determined by using tracks with TPC information only or tracks that always have an ITShit(whichchangesthecontributionsfromsecondaryparticles), changing the track quality cuts (such as the minimum number

(3)

Fig. 1. Toppanel:Chargedparticle vn integratedoverthetransversemomentum

range0.2<pT<3.0 GeV/c asafunctionofcentralityfromXe–Xecollisions.The

varioustechniquesareexplainedinthetext.Onlystatisticaluncertaintiesare vis-ible(thinverticallines).Bottompanel:Ratiosofv2{4}/v2{2}comparedtosome

theoreticalpredictions.Thehydrodynamicpredictionsuseashearviscosityover en-tropyratioη/s=0.047 andinitialconditionsfromtheTRENTomodel[21,46].For v2{2},theALICEmeasurementsimplementa|>2.0 gapwhichisnotusedin

themodels.

ofTPCspacepoints),andcomparing anydifferencesbetween de-termining Qn or un,k from positive or negative only TPC tracks

(bothchargesignsareusedtobuildaflowvectorforthefinal re-sults).Finally,theuncertainties inQn-vector correctionprocedure

contributionareduetouncertaintiesinthepT dependent

efficien-cies.Theindividualsourcesofsystematicuncertaintyareassumed uncorrelated and are added in quadrature to obtain the overall estimated systematic uncertainties. For the pT-integrated vn

{

m

}

coefficients, the total systematic uncertainties are typically 2–3%, andsmallerthanthemarkersizeinthecorrespondingfigures.The systematicuncertaintiesforthe pT-differentialcoefficientscanbe

larger,andaredenotedbyboxesintherelevantfigures.

3. Results

Thetoppanel ofFig.1showstwo- andmulti-particle pT

-inte-gratedvn

{

m

}

coefficientsfromXe–Xecollisionsat

sNN

=

5

.

44 TeV

asafunctionofcentrality.Astrongerdependenceofv2 with

cen-tralitycomparedwithv3 orv4,alsoobserved inPb–Pbcollisions

at LHC energies [13–16], is expected based on simple consider-ations of how the almond shaped overlap region changes with centrality for A–A collisions. Given that near-side non-flow cor-relations (where the particles involved have similar values of

ϕ

and

η

) are expected to be thelargest non-flow contribution,the similarities observed for vn

{

2

,

|

η

|

>

2

}

and vn

{

2

,

|

η

|

>

1

}

in-dicate non-flow is strongly suppressed by a gap of one unit of pseudorapidity. Theextractedvaluesof v2

{

m

4

}

use Qn-vectors

without any

η

gaps. The v2

{

4

,

3 sub-event

}

results have

η

gaps

betweenthe Qn-vectorsto suppress non-flow.The sub-event

re-gionsare

0

.

8

<

η

≤ −

0

.

4,

0

.

4

<

η

0

.

4 and0

.

4

<

η

0

.

8.The equivalencewith v2

{

4

}

(no

η

separation) demonstratesthat such

a gap is actually not required for these flow coefficients. Given

Fig. 2. Toppanel:Comparisonsofchargedparticlevn{2}integratedoverthe

trans-versemomentumrange0.2<pT<3.0 GeV/c asafunctionofcentralityfromXe–Xe

andPb–Pbcollisions.Middlepanel:Ratioofvn{2}(Xe–Xe/Pb–Pb)coefficients.

Bot-tompanel:Doubleratioofdataandtheory.Hydrodynamicalmodelpredictionsfrom EKRT[20] andV-USPHYDRO[21] areshown.Inallcases,onlystatistical uncertain-tiesarevisible(thinverticallines).

allthoseobservationsregardingnon-flow,onecaninterpret differ-encesbetween v2

{

2

}

and v2

{

4

}

, v2

{

6

}

,v2

{

8

}

tobelargely driven

by flow fluctuations [41]. To quantify these differences, in the bottom panel of Fig. 1,the ratio v2

{

4

}

/v2

{

2

,

|

η

|

>

2

}

isshown,

which is found to decrease for central collisions. The resultsare comparedtoahydrodynamiccalculationinthesamepanel,which usesan

η

/

s

=

0

.

047 tomodelthemediumresponse[21].Forthese hydrodynamiccalculations,theTRENToinitialconditionmodel[46]

is usedtodetermine theeccentricities. Thejustificationforusing p

=

0 is described later inthe Letter. Theinitial condition model implements a 129Xe

β

2 deformation (

β

2

=

0

.

162), which is

pre-dicted forthe 129Xe nucleus [47], but has never been measured directly.ItmodifiestheWoods–Saxondistributionasfollows[48]

ρ

(

r

, θ )

=

ρ

0

1

+

e(rR0−R0β2Y20(θ ))/a

,

(6)

where

ρ

0 is thedensityatthecenterof thenucleus, R0 the

nu-clearradius,r isthedistanceawayfromthecenter,Y20isaBessel

functionofthesecondkind,anda istheskindepth.Accordingto Eq. (2),the ratioofflow coefficients v2

{

4

}

/v2

{

2

}

should be

iden-ticalto theratioof initialstate eccentricities

ε

2

{

4

}/

ε

2

{

2

}

.To test

this relation,the bottom panel ofFig. 1 alsoshows theflow co-efficient ratios andthe eccentricity ratios from the same model. The difference between the two curves shows that Eq. (2) only holdsapproximately.Thehydrodynamiccalculationsgenerally pre-dictlowerratioscomparedtothedata,withthelargestdeviations beinginthesemi-centralregion(10–50%).

(4)

Fig. 3. Toppanel:Comparisonsofchargedparticlevn{2}integratedoverthe

trans-versemomentumrange 0.2<pT<3.0 GeV/c from Xe–XeandPb–Pb collisions

forfinercentrality binsincentral collisions.Statisticaland systematic uncertain-tiesareshownaslinesandboxes,respectively.Bottompanel:Correspondingratio ofvn{2}(Xe–Xe/Pb–Pb)coefficients.

Fig.2 showscomparisons of two-particle pT-integrated vn

{

2

}

coefficients from Xe–Xe and Pb–Pb collisions as a function of centrality.The differencesbetween thetwo systems are typically within 10% except for v2

{

2

}

in central 0–5% collisions where

the Xe–Xe values are

35% higher. For the V-USPHYDRO and EKRTmodels [20,21] shown, both sets ofthe used initial condi-tion models demonstrate

ε

2

{

2

}

(Xe–Xe)/ε2

{

2

}

(Pb–Pb)

1 for the

semi-central range 20–60% (not shown in the figure). However,

v2

{

2

}

(Xe–Xe)/v2

{

2

}

(Pb–Pb)

0.9 from the data, which might be

the result of the viscous effects described in the Introduction. When implementing the hydrodynamical response, both models

alsoshowasimilarsuppressionforthesmallerXe–Xesystem, al-beit withdifferencesofup to

5% comparedtothedata.Onthe otherhand,despiteusingdifferentvaluesof

η

/

s,bothmodels pre-dict similar ratios in the semi-central range. Some assumptions used ineach ofthe models (suchasthe freeze-outtemperature) are different, and investigating the impact of those assumptions on v2

{

2

}

(Xe–Xe)/v2

{

2

}

(Pb–Pb) ratio should be a topic of further

theoreticalinvestigations.

Bothsetsofmodelpredictions(V-USPHYDROandEKRT) imple-menta129Xedeformationusing

β

2

=

0

.

162.Thevalueof

β

2iszero

forthe208Pbnucleus,asitis adoublemagicnucleus. The defor-mation fortheXe–XeV-USPHYDROpredictions contributes

20% to the observed v2

{

2

}

for central collisions (compared with the

case whereno deformation is implemented), and hasno impact onv2

{

2

}

forcentralitiesabove15%.Regardingv3

{

2

}

,itisgenerally

largerin Xe–Xe,whichreflectsthe factthat theinitial conditions fromboth models show

ε

3

{

2

}

(Xe–Xe)

>

ε

3

{

2

}

(Pb–Pb) ata given

centrality forthe entirecentralityrange presented.The hydrody-namicpredictions for v3

{

2

}

aresimilar forthe two models,with

maximumdeviations of

5%fromthe data.The

β

3 deformation

forboth theXe andPb nucleiiszero[47], withbothmodels as-sumingsuchavalue.

InFig.3,similarcomparisonsaremadeinfinercentralitybins ascomparedwithFig.2forcentralcollisions.Thetransitionwhere Xe–Xe v2

{

2

}

becomes larger than the Pb–Pb values occurs fora

centrality of

15%. For 0–1% central collisions, where the over-lapgeometryisexpectedtoplayaminimalroleforbothsystems,

v2

{

2

}

is

60% larger for Xe–Xecollisions. In terms of theinitial

state,thisisexpectedfortwo reasons.Thefirstrelatestothefact that the 129Xe nucleus is deformed while the 208Pb nucleus is not,andthesecond relatesto theroleofinitial statefluctuations and thenumber of sources that contribute to

ε

n

{

2

}

. It has been

previously shown that

ε

n

{

2

}

decreases asthe number ofsources

increasesforasphericalsystem[49],andifthenumberofsources were infinite,then

ε

n

{

2

}

would be zero in this centrality range.

GiventhataverycentralPb–Pbcollisionisexpectedtohavemore sourcesthanavery centralXe–Xecollision,fluctuationswouldbe expected togive riseto larger values of

ε

2

{

2

}

forthe latter.The

same lineof reasoning can explain why v3

{

2

}

isobserved to be

larger inXe–Xe compared to Pb–Pb inthe samecentrality inter-val.

Fig. 4 shows comparisons of two-particle pT-differential

v2

{

2

,

|

η

|

>

2

}

coefficients from Xe–Xe and Pb–Pb collisions in

Fig. 4. ThepT-differentialv2forchargedparticlesfromXe–Xecollisionsat√sNN=5.44 TeVandPb–Pbcollisionsat√sNN=5.02 TeVforvariouscentralityclasses.Statistical

(5)

Fig. 5. ThepT-differentialv3forchargedparticlesfromXe–Xecollisionsat√sNN=5.44 TeVandPb–Pbcollisionsat√sNN=5.02 TeVforvariouscentralityclasses.Statistical

andsystematicuncertaintiesareshownaslinesandboxes,respectively.

various centrality bins. As mentioned, the larger

|

η

|

gap mea-surements use both the TPC andthe V0 detectors, which maxi-mizes the numberof particles used to build the Qn-vectors. The

corresponding reduction in statisticaluncertainties is particularly usefulforthehigherpTmeasurements.Asexpected,thecentrality

dependenceof v2

{

2

,

|

η

|

>

2

}

fromXe–Xecollisions followsthat

observed in Fig.1. Comparedwith Pb–Pb collisions in the semi-centralbins,itappearsthedifferencesobservedinFig.2arelarger in the mid-pT region, and this will be investigated more

quan-titatively. Fig. 5 shows the same comparison for pT-differential

v3

{

2

,

|

η

|

>

2

}

coefficients. The Xe–Xe coefficients are typically

largerthan fromPb–Pb collisionsat agivencentralityatlow pT,

whereas the larger statistical uncertainties for the Xe–Xe coeffi-cientsathigherpTmakeitdifficulttoestablishwhetherthereare

anydifferencesbetweenthetwosystems.

Fig.6showsthe pT-integratedvn

{

2

}/

ε

n

{

2

}

ratiosasafunction

of1

/

S dNch/dηinXe–XeandPb–Pbcollisions,whereS and

ε

n

{

2

}

are obtained using various initial state models. The vn

{

2

}/

ε

n

{

2

}

ratioprovides estimatesof

κ

n asperEq. (2).Asmentioned,when

comparing vn

/

ε

n from differentsystems, a violation of the

scal-ing with 1

/

S dNch/dη (which increases with centrality), maybe

indicativeofshortcomingsinthemodelingoftheinitialstate(and its fluctuations). Regarding the model parameters used for this exercise, in the transverse plane for a single event, both the ec-centricities andareas are calculated inthe center ofmass frame respectivelyaccordingto

ε

n

=





r ncos(nφ

)

2

+ 

r nsin(nφ

)

2



r n

,

(7) S

=

4

π σ

x

σ

y

,

(8)

whichisdefinedsuch that thesources that contribute tothe ec-centricityandarea havetheproperty



x

= 

y

=

0,wherex

,

y

and

ϕ

,

r arethecartesianandthepolarcoordinatesofthesource, respectively.Thequantities

σ

x and

σ

y representthestandard

de-viations ofthe source distributions. The event averages used for Fig.6are

ε

n

{

2

}

=





ε

n

2

+

σ

ε2n and



S

.Thenormalizationofthe

area is chosen such that for a Gaussian distribution the average densitycoincideswithNpart

/

S (Npart isthenumberof

participat-ingnucleons),andwasusedinaprevious ALICEpublication[53]. Adeformation of

β

2

=

0

.

18

±

0

.

02 for the 129Xe nucleusisused

[30,54].Thevalue wasobtainedfromextrapolatingmeasurements

of

β

2 fromnearbyisotopes(128Xeand130Xe),andtheoretical

cal-culations [47,55,56], with the uncertainty reflecting the different values obtained from each approach. The box errors in the fig-urerepresentthecorrespondinguncertaintiesontheratio.Forthe Monte Carlo (MC) Glauber and KLN models, the values of

ε

n

{

2

}

and S fora given V0based centralityclass were extractedusing a method described in a previous publication [34]. The multi-plicity of charged particles in the acceptance of the V0 detector is generated accordingto a negative binomial distribution, based onthe numberofparticipantnucleonsandbinary collisionsfrom each initial state model. The parameters used for this approach can be found elsewhere [52,54], and were optimized todescribe the multiplicity distributionfromthedata.Regarding theTRENTo

model,followingother approaches[21,46],themultiplicity inthe acceptanceoftheV0detectorwasmodeledbyscalingtheentropy production, againto matchthe multiplicity distributionfrom the data.

Thetopleftpanelshowsaninvestigationofsuchascalingwith the MC Glauber model [57,58], which uses nucleon positions as the sources. In particular, for v2

{

2

}

in central Xe–Xe and Pb–Pb

collisions, this model does not provide a clear scaling, and was already observed for v2 from Au–Au and U–U collisions at RHIC

usingthe samemodel[59].The scalingusingthe MCKLNmodel (version 32)[51,60],whichassumesgluonsourcesandusesaColor Glass Condensateapproach to determinethe gluon spatial distri-bution, is shown in the top middle panel. The MC KLN scaling appears to work well for v3

{

2

}

,but failsfor v2

{

2

}

withthe Xe–

XepointsbeingabovePb–Pbformorecentralcollisions.Asudden rise isalsoobserved forcentral Pb–Pbcollisions. Thisbehavior is in contrast to the MC Glauber nucleon model, where the Xe–Xe points are belowPb–Pbforcentral collisions.The toprightpanel investigates thescalingusingtheTRENToinitial state model[46].

In thismodel,the distributionofnuclearmatter withinthe colli-sionzoneofA–Acollisionsiscontrolledbythepparameter,with p

=

0 mimicking IP-Glasma initial conditions [61,62]. The choice of parameterwas determined using Bayesianstatistics froma si-multaneous fitofchargedhadron multiplicitydistributions, mean transverse momentum measurements, andintegratedflow coeffi-cients vn in Pb–Pb collisions at

sNN

=

2

.

76 TeV [63]. The

IP-Glasma approachuses ColorGlass Condensatecalculationsto de-termine thedistributionof gluonsintheinitial state. Thismodel provides a better scaling compared withthe previous two other models. However forcentral Pb–Pb collisions, a dropis observed for v2

{

2

}/

ε

2

{

2

}

.ThedropisalsoobservedintheMCGlauber

(6)

nu-Fig. 6. Comparisonsofvn{2}/εn{2}integratedoverthetransversemomentumrange0.2<pT<3.0 GeV/c asafunctionof1/S dNch/dηinXe–XeandPb–Pbcollisions,where S andεn{2}arefromvariousinitialstatemodels[46,50,51].Themodelsareexplainedinthetext.The129Xedeformationimplementedisβ2=0.18±0.02,withthebox

errorsrepresentingtheuncertaintyinβ2.MeasurementsofdNch/dη(|η|<0.5)fromXe–XeandPb–Pbcollisionswereobtainedfromseparatestudies[30,52].

cleonmodel,andappearstobepresentforthecentralXe–Xedata. Suchadropisunexpectedfromhydrodynamiccalculations[17,23], which show a continuous increase of v2

/

ε

2 with 1

/

S dNch/dη.

It may point to deficiencies in the initial state modeling of the regionsinXe–Xe andPb–Pb collisions whereinitialstate fluctua-tions play the largest role in generatingsecond order eccentrici-ties.

Thebottompanelsshowratiosderivedfromconstituentquark MCGlauber calculations,which usequarkscontainedinnucleons asthesources whichcontribute to the eccentricity[50]. The pa-rameterqreferstothenumberofconstituentquarkspernucleon. All implementations ofquark sources (3, 5, or7) appearto give areasonable scaling for v2 and v3, howeversome deviationsare

observedin central Xe–Xe andPb–Pb collisions. The value q

=

5 wasfoundtodescribethechargedparticleyieldsbetterthanq

=

3 atLHC energies (assumingthe yields should scale withthe total number of quarks) [50], and there are hints of a slightly better scalingwithq

=

5 forv2

{

2

}

incentral Xe–Xecollisions compared

toq

=

3.Thesemodelimplementationsagainshowadropfor cen-tral Pb–Pb collisions, which is least pronounced for q

=

7. This suggestsinitialstatemodelsneedahighernumberofsourcesper nucleoninorder toachieve a continuous increase of v2

{

2

}/

ε

2

{

2

}

formorecentralPb–Pbcollisions,andatransversedensityscaling whencomparingXe–XetoPb–Pb.

Finally, in Fig. 7, an investigation of whether the transverse density scaling holds as a function of pT is shown. Two Xe–Xe

andPb–Pb centrality bins with similar transverse densities (1

/

S

dNch/dη

10 fm−2) are selected, and the pT-differential values

of v2

{

2

}/

ε

2

{

2

}

are shown. The pT-integratedvalues forthe

con-stituentquark MC Glauber modelchosen (q

=

3) are observedto besimilarintheleftbottompanelofFig.6.Inthatfigure,theXe– Xecentralitybincorrespondstothefourthpointgoinglefttoright, whilethePb–Pbcentralitybincorrespondstothethirdpoint.The ratiointhebottompanelofFig.7usesaninterpolationofthePb– Pbdatapoints.Theratioisindependentoftheinitialstatemodel used,asallgivevery similarvaluesof

ε

2

{

2

}

(Xe–Xe)/ε2

{

2

}

(Pb–Pb).

Additionally, the transverse sizes (R

=

S

/

π)

are very similar, so the previously mentioned viscous corrections should cancel.

Fig. 7. Toppanel:ComparisonofpT-differentialv2{2}/ε2{2}fromXe–XeandPb–Pb

collisionsforaselectionofcentralitybins.Statisticalandsystematicuncertainties areshownaslinesandboxes,respectively.Bottompanel:Ratiosofthescaled coef-ficientsfromthetoppanel.ThePb–Pbpointsareinterpolatedinordertodetermine theratio.ThecirclemarkersshowXe–Xe20–30%/Pb–Pb30–40%whilethesquare makersshowXe–Xe30–40%/Pb–Pb30–40%.

The influence of radial flow should be very similar as



pT

=

0

.

710

±

0

.

004 GeV/c (Xe–Xe)and



pT

=

0

.

716

±

0

.

004 GeV/c (Pb–

Pb) for charged hadrons [64]. The ratio is close to 1 and shows no significant pT dependence. This indicates when such a

(7)

the pT-differentialmediumresponse (κ2

(

pT

)

) iscontrolledbythe

transverse densityand size, independent of the collision system. A comparisonofthescaledpT-differentialcoefficientsforthesame

30–40% centrality bin from Xe–Xe and Pb–Pb collisions is also shown. Inthiscase, the eccentricitiesare similar (the differences arewithin1%),howeverthetransversesizeanddensityoftheXe– Xe system is smaller. The ratio appears to mildly decrease with increasing pT.Whetherthisistheresultofviscous effectsrelated

tothetransversesizeofthesysteminfluencingthemid-pTregion

more, ora smaller radial flow in Xe–Xe, remains an open ques-tion.

4. Summary

The first measurements of anisotropic flow coefficients vn in

Xe–Xe collisions at

sNN

=

5

.

44 TeV collisions from the ALICE

detector at the LHC have been presented. Hydrodynamical pre-dictionsreproduce measurements of v2

{

4

}

/v2

{

2

}

ratios from Xe–

Xe collisions to within

15% (Fig. 1). In semi-central collisions, it is found that the v2

{

2

}

coefficient is lower in Xe–Xe

colli-sions at

sNN

=

5

.

44 TeV compared with Pb–Pb collisions at

sNN

=

5

.

02 TeV atthe same centrality. The v3

{

2

}

coefficient is

larger, consistent with expectations from hydrodynamical mod-els that reproduce the differences for both systems within

5% (Figs.2and3).Thedifferencesforv2

{

2

}

arepredictedtobedriven

largelybythehydrodynamicalresponseofthesystem. Forcentral collisions, v2

{

2

}

is found to be larger inXe–Xe collisions, which

agreeswithpredictionsfromhydrodynamic models,butthe devi-ationstend tobe larger than

5% with respectto thesemodels. The differencesbetweentwo-particle pT-differential v2

{

2

}

coeffi-cientsfrom Xe–Xe compared to Pb–Pb are found to be larger at mid-pT compared to low-pT, whereas no such trend isobserved

for v3

{

2

}

within uncertainties (Figs.4 and5). The studies ofthe

modeling of the initial state via eccentricity scaling with trans-versedensity(Fig.6)havedemonstratedthatboththeMCGlauber (constituentquarks)andtheTRENTomodelsprovidethemost

sat-isfactorydescriptions.However,thedropobservedforv2

{

2

}/

ε

2

{

2

}

incentralXe–XeandPb–Pbcollisionsisnotexpectedfrom hydro-dynamiccalculations. InthecaseoftheMC Glauber implementa-tions, the drop is more pronounced for nucleon and constituent quark(q

=

3)sources,andmayrequiresomeimprovementsinthe initialstatemodelingfortheregioninXe–XeandPb–Pbcollisions where

ε

2

{

2

}

has the largest contribution from initial state

fluc-tuations.Finally, fortwo Xe–XeandPb–Pb centralitybins witha similartransversedensityandsize,itisfoundthatthedouble ra-tio [v2

{

2

}/

ε

2

{

2

}

(Xe–Xe)]/[v2

{

2

}/

ε

2

{

2

}

(Pb–Pb)] is largely

indepen-dentof pT (Fig. 7).Thismay indicatethe pT-differentialmedium

responseiscontrolledbythetransversedensityandsize, indepen-dentofthecollisionsystem.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechnicians fortheir invaluablecontributionstothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcenters and theWorldwide LHCComputing Grid(WLCG) collaboration. The ALICE Collaboration acknowledges the follow-ingfundingagenciesfortheirsupportinbuildingandrunningthe ALICEdetector:A.I.AlikhanyanNationalScienceLaboratory (Yere-vanPhysicsInstitute) Foundation(ANSL),State Committee of Sci-enceandWorldFederationofScientists(WFS),Armenia; Austrian AcademyofSciencesandNationalstiftungfürForschung, Technolo-gie und Entwicklung, Austria; Ministry of Communications and

High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Fi-nanciadoradeEstudoseProjetos(Finep)andFundaçãodeAmparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China;Ministry of Science and Education, Croatia; Min-istryofEducation,Youth andSportsofthe CzechRepublic, Czech Republic; The Danish Council for Independent Research | Natu-ral Sciences, the Carlsberg Foundation and Danish National Re-search Foundation (DNRF), Denmark; Helsinki Institute ofPhysics (HIP),Finland;Commissariatàl’EnergieAtomique(CEA)and Insti-tut National de Physique Nucléaire et de Physique des Particules (IN2P3) andCentre Nationalde la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schw-erionenforschung GmbH, Germany; General Secretariat for Re-search and Technology,Ministry ofEducation, Researchand Reli-gions,Greece;NationalResearch,DevelopmentandInnovation Of-fice, Hungary;DepartmentofAtomicEnergyGovernmentofIndia (DAE),DepartmentofScienceandTechnology,GovernmentofIndia (DST), University Grants Commission,Government ofIndia (UGC) andCouncil ofScientificandIndustrialResearch(CSIR), India; In-donesian Institute of Science, Indonesia; Centro Fermi – Museo StoricodellaFisicaeCentroStudieRicercheEnricoFermiand Isti-tutoNazionalediFisicaNucleare(INFN),Italy;Institutefor Innova-tive ScienceandTechnology,NagasakiInstituteofAppliedScience (IIST),Japan SocietyforthePromotion ofScience(JSPS)KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONA-CYT)yTecnología,throughFondodeCooperaciónInternacionalen Ciencia yTecnología(FONCICYT) andDirección Generalde Asun-tos delPersonalAcademico(DGAPA),Mexico;Nederlandse Organ-isatie voorWetenschappelijkOnderzoek (NWO),Netherlands; The ResearchCouncilofNorway,Norway;CommissiononScienceand Technology forSustainableDevelopmentintheSouth(COMSATS), Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Ministryof ScienceandHigherEducationandNationalScienceCentre,Poland; KoreaInstituteofScienceandTechnologyInformationandNational ResearchFoundationofKorea(NRF),RepublicofKorea;Ministryof Education andScientific Research,Institute ofAtomicPhysicsand RomanianNationalAgencyforScience,TechnologyandInnovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of EducationandScienceoftheRussianFederationandNational Re-search Centre Kurchatov Institute, Russia; Ministry of Education, Science, ResearchandSportof theSlovak Republic, Slovakia; Na-tionalResearchFoundationofSouthAfrica,SouthAfrica;Centrode AplicacionesTecnológicasyDesarrolloNuclear (CEADEN), Cubaen-ergía,CubaandCentrodeInvestigacionesEnergéticas, Medioambi-entales yTecnológicas(CIEMAT),Spain;SwedishResearchCouncil (VR)andKnut&AliceWallenbergFoundation(KAW),Sweden; Eu-ropean Organization for Nuclear Research, Switzerland; National Science andTechnology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Educa-tionCommissionunderNRUprojectofThailand,Thailand;Turkish Atomic Energy Agency (TAEK), Turkey;National Academy of Sci-encesofUkraine,Ukraine;ScienceandTechnologyFacilities Coun-cil (STFC), United Kingdom; National Science Foundation of the United States ofAmerica (NSF) andUnited StatesDepartment of Energy,OfficeofNuclearPhysics(DOENP),UnitedStatesof Amer-ica.

(8)

References

[1]J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229–245.

[2]S. Voloshin, Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665–672, arXiv:hep -ph /9407282.

[3]H. Holopainen, H. Niemi, K.J. Eskola, Event-by-event hydrodynamics and elliptic flow from fluctuating initial state, Phys. Rev. C 83 (2011) 034901, arXiv:1007. 0368 [hep -ph].

[4]G.-Y. Qin, H. Petersen, S.A. Bass, B. Muller, Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions, Phys. Rev. C 82 (2010) 064903, arXiv:1009 .1847 [nucl -th].

[5]Z. Qiu, U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911, arXiv:1104 .0650 [nucl -th].

[6]C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Event-by-event anisotropic flow in heavy-ion collisions from combined Yang–Mills and vis-cous fluid dynamics, Phys. Rev. Lett. 110 (1) (2013) 012302, arXiv:1209 .6330 [nucl -th].

[7]H. Niemi, G.S. Denicol, H. Holopainen, P. Huovinen, Event-by-event distribu-tions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87 (5) (2013) 054901, arXiv:1212 .1008 [nucl -th].

[8]S.C. Huot, S. Jeon, G.D. Moore, Shear viscosity in weakly coupled N=4 super Yang–Mills theory compared to QCD, Phys. Rev. Lett. 98 (2007) 172303, arXiv: hep -ph /0608062.

[9]P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601, arXiv: hep -th /0405231.

[10]B.B. Back, et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28–101, arXiv:nucl -ex /0410022.

[11]STAR Collaboration, J. Adams, et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assess-ment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl -ex /0501009.

[12]PHENIX Collaboration, K. Adcox, et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184–283, arXiv:nucl -ex / 0410003.

[13]ALICE Collaboration, K. Aamodt, et al., Higher harmonic anisotropic flow mea-surements of charged particles in Pb–Pb collisions at √sNN=2.76 TeV, Phys.

Rev. Lett. 107 (2011) 032301, arXiv:1105 .3865 [nucl -ex].

[14]ATLAS Collaboration, G. Aad, et al., Measurement of the azimuthal anisotropy for charged particle production in √sNN=2.76 TeV lead-lead collisions with

the ATLAS detector, Phys. Rev. C 86 (2012) 014907, arXiv:1203 .3087 [hep -ex]. [15]CMS Collaboration, S. Chatrchyan, et al., Measurement of higher-order

har-monic azimuthal anisotropy in PbPb collisions at √sNN=2.76 TeV, Phys. Rev.

C 89 (4) (2014) 044906, arXiv:1310 .8651 [nucl -ex].

[16]ALICE Collaboration, J. Adam, et al., Anisotropic flow of charged particles in Pb–Pb collisions at √sNN=5.02 TeV, Phys. Rev. Lett. 116 (13) (2016) 132302,

arXiv:1602 .01119 [nucl -ex].

[17]H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301, arXiv:1011.2783 [nucl -th], Erratum: Phys. Rev. Lett. 109 (2012) 139904. [18]U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion

collisions, Annu. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826 [nucl -th].

[19]H. Song, Y. Zhou, K. Gajdosova, Collective flow and hydrodynamics in large and small systems at the LHC, Nucl. Sci. Tech. 28 (7) (2017) 99, arXiv:1703 .00670 [nucl -th].

[20]K.J. Eskola, H. Niemi, R. Paatelainen, K. Tuominen, Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider, Phys. Rev. C 97 (3) (2018) 034911, arXiv:1711.09803 [hep -ph]. [21]G. Giacalone, J. Noronha-Hostler, M. Luzum, J.-Y. Ollitrault, Hydrodynamic

pre-dictions for 5.44 TeV Xe+Xe collisions, Phys. Rev. C 97 (3) (2018) 034904, arXiv:1711.08499 [nucl -th].

[22]S.A. Voloshin, A.M. Poskanzer, The physics of the centrality dependence of el-liptic flow, Phys. Lett. B 474 (2000) 27–32, arXiv:nucl -th /9906075.

[23]H. Song, U.W. Heinz, Multiplicity scaling in ideal and viscous hydrodynamics, Phys. Rev. C 78 (2008) 024902, arXiv:0805 .1756 [nucl -th].

[24]PHOBOS Collaboration, B. Alver, et al., System size, energy, pseudorapidity, and centrality dependence of elliptic flow, Phys. Rev. Lett. 98 (2007) 242302, arXiv: nucl -ex /0610037.

[25]PHOBOS Collaboration, B. Alver, et al., Event-by-event fluctuations of azimuthal particle anisotropy in Au+Au Collisions at √sNN=200 GeV, Phys. Rev. Lett.

104 (2010) 142301, arXiv:nucl -ex /0702036.

[26]PHOBOS Collaboration, B. Alver, et al., Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at √sN N=200 GeV, Phys. Rev. C 81 (2010)

034915, arXiv:1002 .0534 [nucl -ex].

[27]B. Alver, G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905, arXiv:1003 .0194 [nucl -th], Erratum: Phys. Rev. C 82 (2010) 039903.

[28]ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, JINST 3 (2008) S08002.

[29]ALICE Collaboration, B.B. Abelev, et al., Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476 [nucl -ex].

[30]ALICE Collaboration, S. Acharya, et al., Centrality and pseudorapidity de-pendence of the charged-particle multiplicity density in Xe–Xe collisions at √s

NN=5.44 TeV, arXiv:1805 .04432 [nucl -ex].

[31]J. Alme, et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Methods A 622 (2010) 316–367, arXiv:1001.1950 [physics .ins -det].

[32]ALICE Collaboration, K. Aamodt, et al., Alignment of the ALICE Inner Track-ing System with cosmic-ray tracks, JINST 5 (2010) P03003, arXiv:1001.0502 [physics .ins -det].

[33]ALICE Collaboration, E. Abbas, et al., Performance of the ALICE VZERO system, JINST 8 (2013) P10016, arXiv:1306 .3130 [nucl -ex].

[34]ALICE Collaboration, B. Abelev, et al., Centrality determination of Pb–Pb col-lisions at √sNN=2.76 TeV with ALICE, Phys. Rev. C 88 (4) (2013) 044909,

arXiv:1301.4361 [nucl -ex].

[35]X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet produc-tion in p p, p A and A A collisions, Phys. Rev. D 44 (1991) 3501–3516. [36]M. Gyulassy, X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and

particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl -th /9502021 [nucl -th].

[37] R.Brun,F.Bruyant,F.Carminati,S.Giani,M.Maire,A.McPherson,G.Patrick,L. Urban,GEANTDetectorDescriptionandSimulationTool,CERN-W5013,1994. [38]STAR Collaboration, C. Adler, et al., Elliptic flow from two and four particle

correlations in Au+Au collisions at √sNN=130 GeV, Phys. Rev. C 66 (2002)

034904, arXiv:nucl -ex /0206001.

[39]A. Bilandzic, R. Snellings, S. Voloshin, Flow analysis with cumulants: direct cal-culations, Phys. Rev. C 83 (2011) 044913, arXiv:1010 .0233 [nucl -ex].

[40]A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen, Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal corre-lations, Phys. Rev. C 89 (6) (2014) 064904, arXiv:1312 .3572 [nucl -ex]. [41]S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in

non-central nuclear collisions, Landolt-Bornstein 23 (2010) 293–333, arXiv:0809 . 2949 [nucl -ex].

[42]ALICE Collaboration, J. Adam, et al., Correlated event-by-event fluctuations of flow harmonics in Pb–Pb collisions at √sNN=2.76 TeV, Phys. Rev. Lett. 117

(2016) 182301, arXiv:1604 .07663 [nucl -ex].

[43]ALICE Collaboration, S. Acharya, et al., Systematic studies of correlations be-tween different order flow harmonics in Pb–Pb collisions at √sNN=2.76 TeV,

arXiv:1709 .01127 [nucl -ex].

[44]J. Jia, M. Zhou, A. Trzupek, Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants, Phys. Rev. C 96 (3) (2017) 034906, arXiv:1701.03830 [nucl -th].

[45]P. Huo, K. Gajdošová, J. Jia, Y. Zhou, Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems, Phys. Lett. B 777 (2018) 201–206, arXiv:1710 .07567 [nucl -ex].

[46]J.S. Moreland, J.E. Bernhard, S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (1) (2015) 011901, arXiv:1412 .4708 [nucl -th].

[47]P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM (2012), At. Data Nucl. Data Tables 109–110 (2016) 1–204, arXiv:1508 .06294 [nucl -th].

[48]K. Hagino, N.W. Lwin, M. Yamagami, Deformation parameter for diffuse density, Phys. Rev. C 74 (2006) 017310, arXiv:nucl -th /0604048.

[49]A. Bzdak, P. Bozek, L. McLerran, Fluctuation induced equality of multi-particle eccentricities for four or more particles, Nucl. Phys. A 927 (2014) 15–23, arXiv: 1311.7325 [hep -ph].

[50]C. Loizides, Glauber modeling of high-energy nuclear collisions at the subnu-cleon level, Phys. Rev. C 94 (2) (2016) 024914, arXiv:1603 .07375 [nucl -ex]. [51]H.-J. Drescher, Y. Nara, Eccentricity fluctuations from the color glass condensate

at RHIC and LHC, Phys. Rev. C 76 (2007) 041903, arXiv:0707.0249 [nucl -th]. [52]ALICE Collaboration, J. Adam, et al., Centrality dependence of the

charged-particle multiplicity density at midrapidity in Pb–Pb collisions at √sNN=

5.02 TeV, Phys. Rev. Lett. 116 (22) (2016) 222302, arXiv:1512 .06104 [nucl -ex]. [53]ALICE Collaboration, J. Adam, et al., Event shape engineering for inclusive spec-tra and elliptic flow in Pb–Pb collisions at √sNN=2.76 TeV, Phys. Rev. C 93 (3)

(2016) 034916, arXiv:1507.06194 [nucl -ex].

[54] ALICECollaboration,CentralitydeterminationusingtheGlaubermodelinXe– Xecollisionsat√sNN=5.44 TeV,http://cds .cern .ch /record /2315401.

[55]S. Raman, C.W. Nestor Jr, P. Tikkanen, Transition probability from the ground to the first-excited 2+ state of even–even nuclides, At. Data Nucl. Data Tables 78 (2001) 1–128.

[56]E. Zoltan, J. Timar, Nuclear data sheets for A=128, Nucl. Data Sheets 129 (2015) 191–436.

(9)

[57]B. Alver, M. Baker, C. Loizides, P. Steinberg, The PHOBOS glauber Monte Carlo, arXiv:0805 .4411 [nucl -ex].

[58]C. Loizides, J. Nagle, P. Steinberg, Improved version of the PHOBOS glauber Monte Carlo, SoftwareX 1–2 (2015) 13–18, arXiv:1408 .2549 [nucl -ex]. [59]STAR Collaboration, L. Adamczyk, et al., Azimuthal anisotropy in U+U and

Au+Au collisions at RHIC, Phys. Rev. Lett. 115 (22) (2015) 222301, arXiv: 1505 .07812 [nucl -ex].

[60]J.L. Albacete, A. Dumitru, A model for gluon production in heavy-ion collisions at the LHC with rcBK unintegrated gluon densities, arXiv:1011.5161 [hep -ph]. [61]B. Schenke, P. Tribedy, R. Venugopalan, Fluctuating Glasma initial conditions

and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301, arXiv: 1202 .6646 [nucl -th].

[62]B. Schenke, P. Tribedy, R. Venugopalan, Event-by-event gluon multiplicity, en-ergy density, and eccentricities in ultrarelativistic heavy-ion collisions, Phys. Rev. C 86 (2012) 034908, arXiv:1206 .6805 [hep -ph].

[63]J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu, U. Heinz, Applying Bayesian pa-rameter estimation to relativistic heavy-ion collisions: simultaneous character-ization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2) (2016) 024907, arXiv:1605 .03954 [nucl -th].

[64]ALICE Collaboration, S. Acharya, et al., Transverse momentum spectra and nu-clear modification factors of charged particles in Xe–Xe collisions at √sNN=

5.44 TeV, arXiv:1805 .04399 [nucl -ex].

ALICECollaboration

S. Acharya

138

, F.T. Acosta

22

,

D. Adamová

94

,

J. Adolfsson

81

,

M.M. Aggarwal

98

, G. Aglieri Rinella

36

,

M. Agnello

33

,

N. Agrawal

49

,

Z. Ahammed

138

,

S.U. Ahn

77

,

S. Aiola

143

,

A. Akindinov

65

,

M. Al-Turany

104

,

S.N. Alam

138

,

D.S.D. Albuquerque

120

,

D. Aleksandrov

88

, B. Alessandro

59

,

R. Alfaro Molina

73

,

Y. Ali

16

,

A. Alici

11

,

54

,

29

,

A. Alkin

3

,

J. Alme

24

,

T. Alt

70

,

L. Altenkamper

24

, I. Altsybeev

137

,

M.N. Anaam

7

,

C. Andrei

48

,

D. Andreou

36

, H.A. Andrews

108

, A. Andronic

141

,

104

,

M. Angeletti

36

, V. Anguelov

102

,

C. Anson

17

,

T. Antiˇci ´c

105

,

F. Antinori

57

,

P. Antonioli

54

, R. Anwar

124

,

N. Apadula

80

, L. Aphecetche

112

,

H. Appelshäuser

70

,

S. Arcelli

29

,

R. Arnaldi

59

,

O.W. Arnold

103

,

115

,

I.C. Arsene

23

,

M. Arslandok

102

,

B. Audurier

112

,

A. Augustinus

36

, R. Averbeck

104

, M.D. Azmi

18

,

A. Badalà

56

, Y.W. Baek

61

,

42

,

S. Bagnasco

59

,

R. Bailhache

70

, R. Bala

99

, A. Baldisseri

134

,

M. Ball

44

,

R.C. Baral

86

, A.M. Barbano

28

,

R. Barbera

30

,

F. Barile

53

, L. Barioglio

28

,

G.G. Barnaföldi

142

,

L.S. Barnby

93

,

V. Barret

131

, P. Bartalini

7

,

K. Barth

36

, E. Bartsch

70

,

N. Bastid

131

,

S. Basu

140

, G. Batigne

112

,

B. Batyunya

76

,

P.C. Batzing

23

,

J.L. Bazo Alba

109

,

I.G. Bearden

89

,

H. Beck

102

, C. Bedda

64

,

N.K. Behera

61

,

I. Belikov

133

,

F. Bellini

36

,

H. Bello Martinez

2

, R. Bellwied

124

, L.G.E. Beltran

118

,

V. Belyaev

92

,

G. Bencedi

142

,

S. Beole

28

,

A. Bercuci

48

,

Y. Berdnikov

96

,

D. Berenyi

142

,

R.A. Bertens

127

,

D. Berzano

36

,

59

, L. Betev

36

,

P.P. Bhaduri

138

,

A. Bhasin

99

,

I.R. Bhat

99

, H. Bhatt

49

,

B. Bhattacharjee

43

,

J. Bhom

116

,

A. Bianchi

28

,

L. Bianchi

124

,

N. Bianchi

52

,

J. Bielˇcík

39

,

J. Bielˇcíková

94

, A. Bilandzic

115

,

103

,

G. Biro

142

,

R. Biswas

4

,

S. Biswas

4

,

J.T. Blair

117

, D. Blau

88

,

C. Blume

70

,

G. Boca

135

, F. Bock

36

, A. Bogdanov

92

,

L. Boldizsár

142

, M. Bombara

40

,

G. Bonomi

136

,

M. Bonora

36

,

H. Borel

134

, A. Borissov

20

,

141

,

M. Borri

126

,

E. Botta

28

,

C. Bourjau

89

,

L. Bratrud

70

,

P. Braun-Munzinger

104

,

M. Bregant

119

,

T.A. Broker

70

, M. Broz

39

, E.J. Brucken

45

,

E. Bruna

59

,

G.E. Bruno

36

,

35

,

D. Budnikov

106

, H. Buesching

70

,

S. Bufalino

33

,

P. Buhler

111

,

P. Buncic

36

,

O. Busch

130

,

i

,

Z. Buthelezi

74

,

J.B. Butt

16

,

J.T. Buxton

19

,

J. Cabala

114

,

D. Caffarri

90

,

H. Caines

143

,

A. Caliva

104

, E. Calvo Villar

109

,

R.S. Camacho

2

,

P. Camerini

27

,

A.A. Capon

111

,

F. Carena

36

,

W. Carena

36

,

F. Carnesecchi

29

,

11

,

J. Castillo Castellanos

134

,

A.J. Castro

127

,

E.A.R. Casula

55

, C. Ceballos Sanchez

9

,

S. Chandra

138

,

B. Chang

125

,

W. Chang

7

,

S. Chapeland

36

,

M. Chartier

126

,

S. Chattopadhyay

138

,

S. Chattopadhyay

107

,

A. Chauvin

103

,

115

,

C. Cheshkov

132

,

B. Cheynis

132

,

V. Chibante Barroso

36

,

D.D. Chinellato

120

,

S. Cho

61

,

P. Chochula

36

,

T. Chowdhury

131

, P. Christakoglou

90

,

C.H. Christensen

89

,

P. Christiansen

81

,

T. Chujo

130

,

S.U. Chung

20

,

C. Cicalo

55

,

L. Cifarelli

11

,

29

,

F. Cindolo

54

,

J. Cleymans

123

,

F. Colamaria

53

, D. Colella

66

,

36

,

53

,

A. Collu

80

,

M. Colocci

29

,

M. Concas

59

,

ii

,

G. Conesa Balbastre

79

,

Z. Conesa del Valle

62

,

J.G. Contreras

39

,

T.M. Cormier

95

, Y. Corrales Morales

59

, P. Cortese

34

,

M.R. Cosentino

121

, F. Costa

36

,

S. Costanza

135

,

J. Crkovská

62

,

P. Crochet

131

,

E. Cuautle

71

,

L. Cunqueiro

141

,

95

,

T. Dahms

103

,

115

,

A. Dainese

57

,

S. Dani

67

,

M.C. Danisch

102

,

A. Danu

69

,

D. Das

107

,

I. Das

107

,

S. Das

4

, A. Dash

86

,

S. Dash

49

,

S. De

50

,

A. De Caro

32

, G. de Cataldo

53

,

C. de Conti

119

,

J. de Cuveland

41

,

A. De Falco

26

, D. De Gruttola

11

,

32

,

N. De Marco

59

, S. De Pasquale

32

, R.D. De Souza

120

,

H.F. Degenhardt

119

, A. Deisting

104

,

102

, A. Deloff

85

,

S. Delsanto

28

,

C. Deplano

90

, P. Dhankher

49

,

D. Di Bari

35

,

A. Di Mauro

36

, B. Di Ruzza

57

,

R.A. Diaz

9

,

T. Dietel

123

,

P. Dillenseger

70

,

Y. Ding

7

,

R. Divià

36

,

Ø. Djuvsland

24

,

A. Dobrin

36

, D. Domenicis Gimenez

119

,

B. Dönigus

70

,

O. Dordic

23

,

L.V.R. Doremalen

64

,

A.K. Dubey

138

,

A. Dubla

104

,

L. Ducroux

132

,

S. Dudi

98

,

A.K. Duggal

98

,

M. Dukhishyam

86

,

P. Dupieux

131

, R.J. Ehlers

143

, D. Elia

53

,

E. Endress

109

,

H. Engel

75

,

E. Epple

143

,

B. Erazmus

112

,

F. Erhardt

97

,

M.R. Ersdal

24

,

B. Espagnon

62

,

G. Eulisse

36

, J. Eum

20

,

D. Evans

108

,

S. Evdokimov

91

,

L. Fabbietti

103

,

115

,

M. Faggin

31

,

J. Faivre

79

,

A. Fantoni

52

,

M. Fasel

95

,

L. Feldkamp

141

,

A. Feliciello

59

,

G. Feofilov

137

,

A. Fernández Téllez

2

,

A. Ferretti

28

,

A. Festanti

31

,

36

,

V.J.G. Feuillard

102

,

J. Figiel

116

, M.A.S. Figueredo

119

,

S. Filchagin

106

,

D. Finogeev

63

,

F.M. Fionda

24

,

G. Fiorenza

53

,

F. Flor

124

,

Figura

Fig. 1. Top panel: Charged particle v n integrated over the transverse momentum
Fig. 3. Top panel: Comparisons of charged particle v n { 2 } integrated over the trans-
Fig. 5. The p T -differential v 3 for charged particles from Xe–Xe collisions at √ s NN = 5
Fig. 7. Top panel: Comparison of p T -differential v 2 { 2 }/ ε 2 { 2 } from Xe–Xe and Pb–Pb

Riferimenti

Documenti correlati

These results showed that NDI-5 displayed high affinity for cmyc and tel26 G4s, also indicating a better recognition of G-quadruplex over duplex structures, in agreement with

- Digital AS Cultural Heritage: entità digitali derivate dalla digitalizzazione e dalla dematerializzazione che registrano nei contenuti approcci culturali, processi, metodi

2.2 L’EVOLUZIONE DELLA NORMATIVA PER IL DIRITTO ALLO STUDIO.... Cap .3 GLI IMPIANTI

La riabilitazione respiratoria dovrebbe essere considerata imprescindibile per tutti i pazienti BPCO sintomatici e deve avere lo scopo di riportare questi pazienti ad

Anche in questa lettera, come nella precedente il termine ardum è usato da A^^ur-idī in modo differente rispetto a quello utilizzato negli altri archivi, infatti in questo caso

The goals of this study are to (1) explore the disparity of both †Pseudorhina and Squatina, and among the clades within extant Squatina (Fig.  1 A), (2) observe whether

a Oncology Department, Clinical Gastroenterology, AOU Careggi, Florence University Hospital, Florence, Italy b Gastroenterology and Digestive Endoscopy Unit, Bellaria-Maggiore