• Non ci sono risultati.

Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment

N/A
N/A
Protected

Academic year: 2021

Condividi "Carbon isotope fractionation of 1,1,1-trichloroethane during base-catalyzed persulfate treatment"

Copied!
6
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Hazardous

Materials

j o ur na l h o me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

Carbon

isotope

fractionation

of

1,1,1-trichloroethane

during

base-catalyzed

persulfate

treatment

Massimo

Marchesi

a,b,∗

,

Neil

R.

Thomson

a

,

Ramon

Aravena

b

,

Kanwartej

S.

Sra

a,c

,

Neus

Otero

d

,

Albert

Soler

d

aDepartmentofCivilandEnvironmentalEngineering,UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1

bDepartmentofEarthandEnvironmentalSciences,UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1

cGolderAssociatesInc,Toronto,Ontario,CanadaL5N5Z7

dDepartamentdeCristal.lographia,MineralogiaiDipositsMinerals,FacultatdeGeologia,UniversitatdeBarcelona,Barcelona,Spain08028

h

i

g

h

l

i

g

h

t

s

•TreatabilityandCfractionationof1,1,1-TCAbybase-catalyzedS2O82−wasstudied. •Therateofdegradationof1,1,1-TCAincreasedwithahigherOH−:S2O82−ratio. •Base-catalyzedS2O82−canpotentiallytreatrecalcitrantcompoundlike1,1,1-TCA. •Anenrichmentfactorof−7.0‰independentoftheOH−:S2O82−ratiowasobtained. •CarbonisotopecanpotentiallybeusedtoestimatetheISCOtreatmentefficacy.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6December2012

Receivedinrevisedform1May2013

Accepted7May2013

Available online 14 May 2013 Keywords:

Insituchemicaloxidation(ISCO)

1,1,1-Trichloroethane(1,1,1-TCA)

Base-catalyzedpersulfate

Isotopefractionation

a

b

s

t

r

a

c

t

Theextentofcarbonisotopefractionationduringdegradationof1,1,1-trichloroethane(1,1,1-TCA)bya base-catalyzedpersulfate(S2O82−)treatmentsystemwasinvestigated.Significantdestructionof

1,1,1-TCAwasobservedatapHof∼12.AnincreaseintheNaOH:S2O82−molarratiofrom0.2:1to8:1enhanced

thereactionrateof1,1,1-TCAbyafactorof∼5toyieldcomplete(>99.9%)destruction.Anaverage car-bonisotopeenrichmentfractionationfactorwhichwasindependentoftheNaOH:S2O82−molarratioof

−7.0±0.2‰wasobtained.Thissignificantcarbonisotopefractionationandthelackofdependenceon changesintheNaOH:S2O82−molarratiodemonstratesthatcarbonisotopeanalysiscanpotentiallybe

usedinsituasaperformanceassessmenttooltoestimatethedegradationeffectivenessof1,1,1-TCAby abase-catalyzedpersulfatesystem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1,1,1-Trichloroethane(1,1,1-TCA,C2H3Cl3)isacommon

chlo-rinated organiccompound foundin soil and groundwater, and has been identified at more than 50% of the hazardous waste sitesidentifiedontheEPANationalPrioritiesList(NPL)[1].It fre-quentlyco-existsatcontaminatedsiteswithchlorinatedethenes (e.g.,trichloroethene(TCE))sinceitsindustrialuseissimilar[2]. However,1,1,1-TCAismorerecalcitrantthancommonchlorinated ethenesduetothepresenceasingleC Cbond[3].

∗ Correspondingauthorat:DepartmentofCivilandEnvironmentalEngineering,

UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1.

Tel.:+15198884567x38244;fax:+15197467484.

E-mailaddress:[email protected](M.Marchesi).

Onepotentialremediationtechnologyisinsituchemical oxi-dation(ISCO)whichinvolvestheinjectionorreleaseofachemical reagentintothesubsurfacewiththecapabilitytodegradethetarget organiccompound(s).Amongthenumerousoxidantsand activa-tionsystemsavailable,theemergenceofpersulfate(S2O82−)andits

novelactivationstrategieshascreatedthepotentialfortreatment ofchlorinatedmethanesandethanes(like1,1,1-TCA)[4]. Gates-Andersonetal.[5]observedverylittledegradationof1,1,1-TCA witheitherperoxideorpermanganatewhileHuangetal.[4]and Liangetal.[6]foundthatthermallyactivatedpersulfate(>40◦C) completelydegradedchlorinatedsolventcompounds like 1,1,1-TCA.Numerousmethodsareavailabletoactivatepersulfatesuch theusetransitionmetals,peroxide,andheat,orestablishing alka-lineconditions.Themostfrequentlyappliedactivationmethodis base-catalyzedpersulfate(pH>11)whichhasbeenusedat∼60%of thesiteswherepersulfatehasbeenemployed[7].Base-catalyzed persulfatetreatmentconsistsofestablishinghighpHconditions

0304-3894/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

byaddingastrongbase(e.g.,sodiumhydroxide)tothesubsurface alongwithpersulfate.Blocketal.[8]andBrownetal.[9]suggested thatsome chlorinatedmethanes and ethanescan bedestroyed usingbase-catalyzedpersulfate.

Furmanetal.[10,11]investigatedthebaseactivation mecha-nismandtheeffectofalkalinityonpersulfatereactivityandshowed completedegradationoftheprobecompoundhexachloroethane. Furmanetal.[10]reportedthatthebaseactivationmechanism forpersulfatestartswiththebase-catalyzedhydrolysisofa per-sulfatemoleculetogeneratethehydroperoxideanion,areducing species(HO2−,Eh=−0.9V).Thehydroperoxideanionthenreduces

anotherpersulfatemoleculegeneratingthesulfateradical(SO•4−) andthehydroperoxideanionisoxidizedtothesuperoxide radi-cal(O•2−,Eh=−2.4V),anotherstrongreducingspecies.Theoverall

reactionisgivenby[10]: 2S2O2−8 +2H2O OH− −→SO•4−+O • 2 +3SO2−4 +4H+ (1)

The production of these reducing species is what enables thebase-catalyzedpersulfatesystemtodegradehighlyoxidized organiccompounds[10,11].Furmanetal.[11]alsodemonstrated thatthegenerationofthesereducingspecieswashighlydependent onthebasetopersulfatemolarratioemployed,indicatingthatfor basetopersulfatemolarratiosabove3:1theproductionofreducing speciesincreasedconsiderably.

Theevaluation of ISCOperformance for organiccompounds followingconventionalconcentrationormass-basedestimatesis generallydifficultandpronetonumerousuncertainties[12].For chlorinatedorganiccompounds,estimationofdestruction effec-tivenessisusuallybasedonthedecreaseinconcentration(ormass load)ofthetargetcontaminantand/oranincreaseinchloride(Cl−) concentrationatamonitoringnetworkdowngradientofthesource zone.However,changesintheorganiccompoundconcentrations betweenthetargetsourcezoneandmonitoringlocationscanalso occurthrough non-chemicaloxidation/reduction processes(e.g., displacementofcontaminated groundwaterbytheinjected oxi-dantsolution).Furthermore,eventhoughoxidation/reductionof thetargetcontaminantmayhaveextensivelyoccurred,the concen-trationmaystillremainelevatedduetothecontinuousdissolution fromresidualnon-aqueousphaseliquids(i.e.,rebound[13]). Inter-pretationofCl−datamayalsobeambiguousinthepresenceofhigh backgroundconcentrationlevels,and,inthecaseofpersulfate,Cl− canreactwiththesulfateradical[14].Hence,theuseof concentra-tiondataalonemaybeinsufficienttoevaluatetheeffectivenessof anISCOsystem[15].

Stablecarbonisotopeanalysishasbeenincreasinglyappliedas acomplementarytooltomonitortheinsituefficacyofabioticand biotictreatmentsystems(e.g.,Refs.[15]and[16]).Thistechnique isbasedonchangesintheisotopiccompositionofthetarget con-taminantand itsdegradationproducts.Duetomass-dependent differencesinactivationenergiesofthedifferentisotopes13Cand 12C, thelighterisotope(12C)reactsfaster than theheavier

iso-tope(13C),leadingtofractionationand anenrichmentofheavy

isotopesintheresidualcontaminantasthereactionproceeds[17]. Consequentlytheuseofstablecarbonisotopeanalysisto comple-menttheconcentrationdatacanbeveryhelpfulindistinguishing between chemical oxidation and non-oxidation processes, and thereforeinappropriatelyquantifyingtheeffectivenessof chem-icaloxidation [15].Inordertotestthecarbonisotopeapproach asapotentialtooltoassessISCOperformanceatthefieldscale,a seriesofbench-scaleexperimentsweredesignedinthisstudy.The experimentalobjectiveswere(a)toevaluatethecarbonisotope fractionationfactor,and(b)toassesswhethertheuseofdifferent initialhydroxidetopersulfatemolarratiosresultsindifferencesin thecarbonisotopicfractionationandalsoin1,1,1-TCAdegradation rates.

2. Experimentalmethodology

2.1. Materialsandexperimentalconditions

Todeterminethetreatabilityandisotopicfractionationof 1,1,1-TCA, a series of aqueous batch experiments were conducted. Persulfateand1,1,1-TCAconcentrations,alongwithpHwere mon-itoredtoevaluatetheextentofdegradationandtoobtainkinetic information.Theisotopiccompositionof1,1,1-TCAwasalso quan-tified,andusedtocalculatethecarbonisotopefractionationfactor andtoinvestigateitsdependenceupontreatmentconditions.

Allchemicalsusedwerereagentgrade:1,1,1-TCA(99.9%purity, FisherScientific);sodiumpersulfate(Na2S2O8,98%,AlfaAesar)and

sodiumhydroxide (NaOH, 99.5%, Alfa Aesar). A1,1,1-TCA stock solutionwaspreparedtoaconcentrationof25mg/L(0.19mM). This1,1,1-TCAstocksolutionwasmixedsuccessivelywitha pre-determined amount of persulfate to obtain a final persulfate concentration of 100mM (∼16g/L), and in turn with different amountsofNaOHtoobtain0.2:1,0.5:1,2:1,and8:1NaOH:S2O82−

molarratiosolutions.Nominal40mLreactorscappedwithTeflon septawereusedand werestored in thedarkatambientroom temperature (i.e., 20◦C). Reactors were completely filled (no headspace)tominimizevolatilization.Theinitialconcentrationin thereactorswas20,50,200and800mMforNaOH,and0.15mM (20mg/L)for1,1,1-TCA.Triplicatereactorswerepreparedforall experimentaltrials.TheinfluenceoftheS2O82−:1,1,1-TCAmolar

ratioontreatmenteffectivenesswasnotinvestigatedheresince thepersulfateconcentrationusedwasconsideredtobeinexcess (theapproximateS2O82−:1,1,1-TCAinitialmolarratiowas>600:1).

Preliminaryexperimentsindicatedthatathree-weeklong reac-tionperiodwasnecessarytoobtain∼90%destructionof1,1,1-TCA. SamplingwasperformedatDay1,3,8,15,and22.Thereactors weresacrificedandquenchedinanicebath,andthenaliquotswere takenfor:persulfateanalysis(1mL),␦13Cdetermination(22mL),

quantificationof1,1,1-TCAconcentrationandpotential degrada-tionproducts(2mL),andtomeasurepH.Preliminaryexperiments showedthattheuseoftheicebathwasadequatetoessentiallystop thereactionovera1–2dayperiod,sincenosignificantvariationin 1,1,1-TCAconcentrationwasobservedoverthistimeframe(data notshown).Allanalyseswereconductedwithin24hofsampling.

Basedonpreviousstudies[8],minimaldegradationof 1,1,1-TCAwasexpectedfortheNaOH:S2O82−molarratioof0.2:1trial

andhenceisotopicanalyseswerenotperformed.Thepurposeof thistrialwastoinvestigatetheeffectivenessofthebase-catalyzed persulfatesystematalowerNaOH:S2O82− molarratiothanthe

recommendedratioof0.4:1[8].

Asidefromchemicaldegradationbythereducingspecies gen-erated in the base-catalyzed persulfate system, destruction of 1,1,1-TCAmayoccurbyhydrolysis[18].For example,1,1,1-TCA mayreactwithOH−topartiallydegradeintochloroethenewhich canthenbecompletelymineralizedinthepresenceofactivated persulfate[8,14].Myamoto andUrano [19]observed significant degradationof1,1,1-TCAatneutralpHat80◦C;however,the half-lifeat15and20◦CestimatedbyusingtheArrheniusequationis between2and 5years[19].Toinvestigatetheroleof hydroly-sisoverthe22-dayreactionperiod,anotherseriesofexperiments (controls)wererunataninitialpHof7,9,11,and13withoutany persulfateadded.

2.2. Analyticalmethods

The concentration of 1,1,1-TCA and potential chlorinated degradationproducts(e.g.,1,1-dichloroethaneandchloroethane) was determined by pentane extraction (2mL sample to 2mL pentane) and subsequent analysis on a Hewlett-Packard 6890 Plusgaschromatograph(GC)equippedwithanHP-624column

(3)

(30m×0.32mm,1.8␮mfilmthickness)andamicro-ECD detec-tor. Carbon isotope analysis of 1,1,1-TCA was performed on a GC(Hewlett-Packard6890;Agilent)coupledthrougha combus-tioninterfacetoanisotoperatiomassspectrometer(Micromass Isochrom)asdescribedbyHunkelerandAravena[16].Residual per-sulfateanalysiswasconductedfollowingtheproceduredescribed byHuangetal.[20],andthesolutionpHwasdeterminedusinga pHmeter(WTWpH3300i).

2.3. Quantificationofisotopefractionation

Carbonisotopeenrichmentfactorshavebeendeterminedfor many chlorinated organic carbon compounds under different abiotic processes, such as: oxidation by permanganate [15,21], hydrogenperoxide[22],and iron-activatedpersulfate[23]; and transformation by reductive dechlorination by zerovalent iron [24,25]andreductionbypalladiumcatalystswithhydrogen[26]. To applythis technique in situ, theenrichmentfactor mustbe sufficiently high and the fractionation signature must not be affectedbyreactantconcentrationvariationsinthesubsurface(e.g., NaOH:S2O82−:1,1,1-TCAratio). Thesevariationscanarisedueto

mixingoftheinjectionvolumeofpersulfate(andactivatorwhen used)withgroundwater,andduetotheusualheterogeneous con-taminantdistributioninthesubsurface.

Thecarbonisotopicratioisusuallyexpressedusingthe␦13C

notationinunitsofpermil(‰)deviationfromtheinternational standardViennaPeeDeeBelemnite(VPDB)asexpressedby ␦13C= 13C/12Cc−13C/12Cs

13C/12Cs ×1000 (2)

where 13C/12C

c and 13C/12Cs are theratiosfor the sample and

thestandard,respectively.Byusingthe␦13Cnotationforthe

iso-topiccomposition,Fforthefractionofthecompoundremaining (definedastheratiooftheconcentrationattime ttotheinitial concentration),and␦13Cforthedifferencebetweentheisotope

compositionattimetandinitialconcentration,thefractionation factor(˛)canbeexpressedbytheRayleighequation

ln



ı13C co+␦13C+1000 ␦13 Cco+1000



=(˛−1)lnF (3) where␦13C

coisthecarbonisotopicratioattheinitialconcentration.

TheRayleighequationcanbeusedbyassumingthattheabundance oftheheavierisotopeissmallcomparedtothelighterisotope,and that␣remainsconstantduringtreatment[27].Amorepractical waytodescribeisotopefractionationwhen˛isverysmallistouse theenrichmentfactorεdefinedasε(‰)=(˛−1)×1000.

3. Resultsanddiscussion

3.1. Destructionof1,1,1-TCA

Fig.1(a)showsthe1,1,1-TCAtemporalconcentrationprofiles asaresultoftreatmentbybase-catalyzedpersulfate(eachdata pointrepresentstheaveragefromtriplicatereactors).The experi-mentalcontrols(withoutpersulfate)underallinitialpHconditions yieldedarelativelystable1,1,1-TCAconcentrationoverthe22-day reactionperiod.Thesedataindicatethatat20◦Cthedegradation of1,1,1-TCAbyalkalinehydrolysisisinsignificant,confirmingthe observationsofJeffersetal.[18]andMiyamotoandUrano[19]who estimatedahalf-lifebetween1.1and2yearsforthehydrolysisof 1,1,1-TCA.

For all theNaOH:S2O82− molar ratiosexploreda significant

decreaseintheconcentrationof1,1,1-TCAwasobservedandis con-sistentwithotherstudies[8,10,11].Anincreaseinthehydroxide concentrationproducedahigherrateof1,1,1-TCAdegradationand

Fig.1. (a)Variationof1,1,1-TCAconcentrations,and(b)␦13Cvaluesfordifferent

NaOH:S2O82−molarratiosandthecontrolexperiments.

almostcompletedestruction(>99.9%)wasachievedatthehigher molarratiosof2:1and8:1.Partialdegradationof1,1,1-TCAwas observedforthemolarratios0.2:1(∼70% byDay15)and 0.5:1 (>95%byDay22).Furman etal.[11] observedsimilarbehavior fortheirprobecompound(hexachloroethane).Ahigher concen-trationofOH−promotestheformationofahigherconcentration ofreductivespecies(O•2−),resultinginanincreasedrateof degra-dation.Nochlorinateddegradationproductsweredetectedinthe treatmentandcontrolreactors.Overthereactionperiodpersulfate concentrationdecreasedby∼44% inthe8:1molarratiosystem andby∼5%inthe0.2:1molarratiosystem.Theoveralltreatment performanceefficiency(ratiooffractionalchangein1,1,1-TCA con-centrationtothefractionalchangeinpersulfateconcentration)was highest(∼15)forthelowermolarratioof0.2:1anddecreasedasthe molarratioincreased(Table1).Thelowerperformanceefficiency athigherNaOH:S2O82−molarratiosindicatesthatagreatermass

ofpersulfateisneededtodegradeagivenmassof1,1,1-TCAwhen higherNaOH:S2O82−molarratiosareused.

Asmall(<0.19unit)decreaseinpHwasobservedoverthe reac-tionperiodandthisreductionwaslargestforthelowestmolarratio employed.Overall,thepHinalltrialsexploredwassuitablefor alkalineactivation(pH>10.5)throughouttheexperimentalperiod (Table1).ItwasexpectedthatthesolutionpHwoulddecreaseover timeasthedegradationofpersulfateproducesprotonsunder alka-lineconditions(seeEq.(1)).However,thepresenceofahighinitial concentrationofOH−(from20to800mM)preventedasignificant decreaseinpH.

(4)

Table1

InitialandfinalpH,S2O82−consumed,treatmentefficiency,andreactionratecoefficient(k)forthedifferentNaOH:S2O82−molarratiosandthecontrolexperiments.

NaOH:S2O82− InitialpH FinalpH S2O82−consumed(%) Efficiencya k(day−1M−1)b

0.2:1 12.06 11.87 4.6 15.0 1.11 0.5:1 12.28 11.81 20.5 7.5 1.93 2:1 12.68 12.52 35.9 4.2 4.87 8:1 12.94 12.90 44.1 3.1 5.31 pH7 7.12 7.13 – – – pH9 9.22 9.19 – – – pH11 10.98 10.96 – – – pH13 13.07 13.06 – – –

aDefinedasratioofthefractionalchangeinthe1,1,1-TCAconcentrationtothefractionalchangeinpersulfateconcentration.

b SeeEq.(4).

AssumingthatthepHwasconstantforeachexperimentaltrial, thefollowingkineticmodelwasdeemedmostappropriateto rep-resentthedata

r1,1,1−TCA=−k[1,1,1−TCA]n



S2O2−8



m

(4) wherek(day−1M−1)isthereactionratecoefficient,andnandm arethereactionorderswithrespectto1,1,1-TCAandpersulfate, respectively.Eq.(4)waslinearizedandaleast-squaresmethodwas usedtodeterminetheratelawparameters.Thebest-fitreaction ordersforboth1,1,1-TCAandpersulfatewereunity,andkvaried from1.11to5.31day−1M−1asthemolarratioincreased(Table1). This5foldincreaseinkisdirectlyrelatedtotheincreaseinOH−; however,it appearsthatkmaybestabilizingasthemolarratio approacheshigher values. Thissuggeststhat anincrease inthe concentrationofOH−causesthegeneratedreactivespeciestobe involvedincompetingreactionswhichresultsinarelatively con-stant1,1,1-TCAdegradationrate.Additionalresearchisrequiredto elucidatethecompetingreactionsandhowtheyimpactthe treat-mentefficiency.

3.2. Extentofcarbonfractionation

Theexperimentalcontrols(withoutpersulfate) fortherange ofinitialpHtrialsinvestigatedshowednolossin1,1,1-TCAmass (<5%), and no variation in the ␦13C 1,1,1-TCA value (<0.5‰)

throughouttheexperimentalperiod(Fig.1(b)).Theisotopicdata fromthecontrols(n=12)whereusedtoestablishabaseline␦13C

valuefor1,1,1-TCAof−28.0±0.4‰(95%confidenceinterval). The isotope composition of the residual 1,1,1-TCA became moreenrichedintheheavierisotope(13C)overtimefor allthe

NaOH:S2O82−molarratiosexplored(Fig.1(b)).Forexample,the

␦13C1,1,1-TCAvalueincreasedfrom−28.0‰atthebeginningof

theexperimentto+3.7‰after15days(99%degradationof 1,1,1-TCA)forthe2:1NaOH:S2O82−molarratio.Forthe8:1and0.5:1

NaOH:S2O82−molarratios,the␦13Cvalueincreasedto−0.9and

−12.1‰after98and88%degradationof1,1,1-TCA,respectively. The isotopic enrichmentpattern confirmed the normal isotope effectassociatedwithdegradation[17,28].Thisincreaseinthe␦13C

valueintheremaining1,1,1-TCAallowsforthepotentialto esti-matethedegradationprogressduringbase-catalyzedpersulfate treatment.

While the 1,1,1-TCA concentration decreased expo-nentially with time, the ␦13C profiles were essentially

linear (Fig. 1(b)). To estimate the isotopic enrichment fac-tor, Eq. (3) was fit to the data by linear regression using 1000ln[(␦13C

co+␦13C+1000)/(␦13Cco+1000)] versus lnF, and

forcing the intercept through the origin (Fig. 2). The resulting enrichmentfactorsforthedifferentNaOH:S2O82−ratiosare

pre-sentedinTable2.Thepatternof␦13Cfor1,1,1-TCA(Fig.2)together

withtheexcellentfits(r2 variedfrom0.98to1.00),isconsistent

withtheRayleighisotopicevolutionmodel.Thisclearlyindicates thattheobserved enrichmentfractionationfactor wasconstant

throughoutthereactionprocessoratleastuntil99%degradation ofthe1,1,1-TCAmassoccurred.Theisotopicenrichmentfactors for1,1,1-TCArangedfrom−6.9±0.4‰to−7.1±0.2‰andwere consistentacrossalltrialswithanaverageenrichmentfactorof −7.0±0.2‰.

ThetrendshownonFig.2usinganaverageenrichmentfactor of−7.0±0.2‰canhypotheticallybeusedtoestimatethedegree ofdegradationforthebase-catalyzedpersulfatetreatmentof1,1,1 TCA.Forexample,a␦13Cenrichmentof1.4‰isassociatedwith

20%degradationwhereasa19.7‰enrichmentisassociatedwith 95%degradation. Bothofthese ␦13C variations aresignificantly

largerthantheuncertaintyinthe13Cdetermination(±0.5‰isthe

typicalerrorincarbonisotoperatiomeasurementby compound-specificisotopeanalysis(CSIA)forchlorinatedsolvents[27]).This indicatesthatthemagnitudeoftheenrichmentfractionationfactor issignificantlylargeenoughtominimizeerrorsinthe interpreta-tionofisotopicfielddata.

ItisimportanttonotethatavariationintheNaOH:S2O82−molar

ratiosfrom0.5:1to8:1resultedinaveryslightdifferenceinthe enrichmentfactor(0.2‰),confirmingthattheinvestigatedmolar ratiosdidnothaveanyinfluenceontheisotopicfractionationin ourexperimentaldesign.Thisfindingisessentialtouseisotopic compositiontomonitortheeffectivenessofbasecatalyzed persul-fateinsitu.Isotopiccompositionchangescanalsobeusedtohelp understandthedynamics associatedwithcontaminantrebound duringandaftertreatment[15],andtodifferentiatebetween dilu-tion(noisotopicchanges)anddegradation(enrichmentpattern) atlocationsawayfromtheinjectionzonewhereadecreasein con-centrationcanoccurduetodisplacementordilution.

Fig.2.Linearized13Cenrichmentof1,1,1-TCAaccordingtoEq.(3),fordifferent

(5)

Table2

Enrichmentfactors,␦13C(‰),1,1,1-TCAdegradation,andfinal13Cfor1,1,1-TCAforthedifferentNaOH:S

2O82−molarratiotrials.

NaOH:S2O82− Degradation Final␦13C(‰) ␦13C(‰) εc bulk‰ r2

0.5:1 88% −12.1 15.1 −7.2±0.3 0.998

2:1 99‰ +3.7 31.7 −6.9±0.4 0.999

8:1 98% −0.9 27.2 −7.2±0.3 0.984

Average – – – −7.0±0.3 0.990

Unlikebioticsystemswherethecomplexityofdifferent

degra-dationpathways is derived from differentmicroorganisms and

resultsin alargevariabilityinisotopefractionationfactors[28]

(e.g.,theenrichmentfractionationfactorformicrobialreductionof TCEcanvaryfrom−2.5to−13.8‰[27]),theenrichment fraction-ationfactorsforabioticdegradationpathwaysshouldvaryovera muchsmallerrangeforaspecificcompoundunderafixedchemical reaction(e.g.,reductivedehalogenationof1,1,1-TCAbyCr,Feand Cu/Fe[29]).WenotethatHunkeleretal.[15]obtainedan enrich-mentfractionationfactorslightlydifferentthanthatreportedby PoulsonandNaraoka[21](−21.4‰comparedto−26.8‰)forthe oxidationofTCEbypermanganate;however,thisdiscrepancyis likely attributedtodifferencesin theexperimentalsystem(the presenceofheadspaceand thusvolatilizationprocesses).Inthe experimentsperformedinthisstudy,no1,1,1-TCAvolatilization occurredandthusthegeneratedenrichmentfractionationfactor representsareferencevalueforthetreatmentof1,1,1-TCAbya base-catalyzedpersulfatesystem.

Incontrasttochlorinatedethenes,thebodyofliteraturerelated totheenrichmentfractionationfactorfor1,1,1-TCAdegradation underbioticandabiotictreatmentprocessesislimited.Elsneretal. [29] obtaineda carbon isotope fractionation factor of −13.6to −15.8‰forreductivedehalogenationof1,1,1-TCAbyCr,Feand Cu/Fe,suggestingaconsistencywithapotentialmechanismthat involvestheCCl3carboncenter.Thevalueof−7.0‰obtainedin

thisstudyisalsoconsistentwithareduction mechanismwhich likelyinvolvestheCCl3carboncenterthroughanelectrontransfer

mechanism.However,nodegradationproductsorintermediates wereobservedandfurthersystematicresearchisneeded.

Finally, a carbon isotope fractionation factor of −1.8‰ was reportedforbiodegradationof1,1,1-TCAbySherwoodLollaretal. [30],whichismuchsmallerthantheisotopefractionationfactorof −7.0‰obtainedforabioticdegradationof1,1,1-TCAinthisstudy. Thiscreates the possibility of using compound-specific isotope analysistodistinguishbetweenthesetwodegradationpathways.

4. Conclusions

Thisinvestigationdemonstratedthat1,1,1-TCAcanbedegraded byemployingbase-catalyzedpersulfateandthatasignificant car-bonisotopefractionationoccurs.HigherNaOH:S2O82−molarratios

increasedtherateofdegradationof1,1,1-TCA.Althoughthedata arenotconclusive,itappearsthatthe1,1,1-TCAreactionrate sta-bilizesastheNaOH:S2O82−molarratioincreased.Whileahigher

NaOH:S2O82−molarratiowasabletoincreasethe1,1,1-TCA

degra-dationrate,itreducedthetreatmentperformanceefficiency.An averageenrichmentfractionationfactorof−7.0±0.2‰was deter-mined,andthisenrichmentfractionationfactorwasindependent oftheNaOH:S2O82−molarratiosemployed.

Although additional research is required to determine the impact of other environmental parameters (e.g., temperature, bufferingcapacity)onthefractionationfactor,theresultsobtained fromthepresent investigationshow thatthe carbonisotope is potentiallya usefultracerthat canbeusedtoassess the effec-tivenessof1,1,1-TCAdegradationinsituwhen abase-catalyzed persulfatesystemisemployed.

Acknowledgements

Thisworkwasfunded bytheNaturalScienceand Engineer-ing Research Council (NSERC) of Canada, the Ontario Ministry of Science and Innovation, the Spanish Government (MICINN, projectsCICYT-CGL2011-29975-C04-01),andtheCatalan Govern-ment(2009SGR103).WethanktheUniversitatdeBarcelonafora AjutdePersonalInvestigadorenFormació(APIF)Doctoral Fellow-shiptoM.Marchesi.Theauthorsalsothankthevaluedcomments fromfouranonymousreviewerswhichimprovedthequalityofthis manuscript.

References

[1]ATSDR,AgencyforToxicSubstancesandDiseaseRegistry,Toxicologicalprofile

(2006),availableat:http://www.atsdr.cdc.gov/ToxProfiles/tp70.pdf(consulted

14.04.10).

[2]E.E.Doherty,Ahistoryoftheproductionanduseofcarbontetrachloride tetrachloroethylene,trichloroethyleneand1,1,1-trichloroethaneintheUnited States:Part2trichloroethyleneand1,1,1-trichloroethane,J.Environ.Forensics 1(2000)83–93.

[3]B.L.Sun,B.M.Griffin,H.L.Ayala-del-Rio,S.A.Hashsham,J.M.Tiedje,Microbial dehalorespirationwith1,1,1-trichloroethane,Science298(2002)1023–1025.

[4]K.C.Huang,Z.Zhao,G.E.Hoag,A.Dahmani,P.Block,Degradationofvolatile organiccompoundswiththermallyactivatedpersulfateoxidation, Chemo-sphere61(2005)551–560.

[5]D.D.Gates-Anderson,R.L.Siegrist,S.R.Cline,Comparisonofpotassium per-manganate and hydrogen peroxideas chemical oxidants for organically contaminatedsoils,J.Environ.Eng.127(2001)337–347.

[6]C.J.Liang,C.J.Bruell,M.C.Marley,K.L.Sperry,Thermallyactivatedpersulfate oxidationoftrichloroethylene(TCE)and1,1,1-trichloroethane(TCA)in aque-oussystemsandsoilslurries,SoilSed.Contam.12(2003)207–228.

[7]R.A.Brown,personalcommunication,in:O.S.Furman,A.L.Teel,R.J.Watts,

Mechanismofbaseactivationofpersulfate,Environ.Sci.Technol.44(2010)

6423–6428.

[8]P.A.Block,R.A.Brown,D.Robinson,Novelactivationtechnologiesforsodium persulfateinsituchemicaloxidation,in:ProceedingsoftheFourth Inter-nationalConferenceon the Remediation ofChlorinated and Recalcitrant Compounds,Monterey,CA,May24–27,2004.

[9]R.A.Brown,M.Daly,G.Demers,F.D.Legall,B.H.Kueper,E.Dimitrivic,An in-depthexaminationofbasecatalyzedpersulfate,in:ProceedingsoftheSixth InternationalConferenceonRemediationofChlorinatedandRecalcitrant Com-pounds,Monterey,CA,May19–22,2008.

[10]O.S.Furman,A.L.Teel,R.J.Watts,Mechanismofbaseactivationofpersulfate, Environ.Sci.Technol.44(2010)6423–6428.

[11]O.S.Furman,A.L.Teel,M.Ahmad,C.M.Merker,R.J.Watts,Effectofbasicityon persulfatereactivity,J.Environ.Eng.(2011)241–247.

[12]N.R. Thomson, E.D. Hood, G.J. Farquhar, Permanganate treatment of an emplacedDNAPLsource,GroundWaterMonit.Remediation27(2007)74–85.

[13]N.R.Thomson,M.J.Fraser,C.Lamarche,J.F.Barker,S.P.Forsey,Reboundofa coaltarcreosoteplumefollowingpartialsourcezonetreatmentwith perman-ganate,J.Contam.Hydrol.102(2008)154–171.

[14]R.H.Waldemer,P.G.Tratnyek,L.Johnson,J.T.Nurmi,Oxidationofchlorinated ethenesbyheat-activatedpersulfate:kineticsandproducts,Environ.Sci. Tech-nol.41(2007)1010–1015.

[15]D.Hunkeler,R.Aravena,B.Parker,J.A.Cherry,Monitoringoxidationof chlo-rinated ethenesby permanganate in groundwaterusing stable isotopes: Laboratoryandfieldstudies,Environ.Sci.Technol.37(2003)798–804.

[16]D.Hunkeler,R.Aravena,B.Butler,Monitoringmicrobialdechlorinationof tetra-chloroethene(PCE)ingroundwaterusingcompound-specificstablecarbon isotoperatios:microcosmandfieldstudies,Environ.Sci.Technol.33(1999) 2733–2738.

[17]I.Clark,P.Fritz,EnvironmentalIsotopesinHydrogeology,LewisPublishers, NewYork,1997.

[18]P.M.Jeffers,L.M.Ward,L.M.Woytowitch,N.L.Wolfe,Homogeneous hydrol-ysisrateconstantsforselectedchlorinatedmethanesethanes,ethenes,and propanes,Environ.Sci.Technol.23(1989)965–969.

[19]K.Myamoto,K.Urano,Reactionrateandintermediatesofchlorinatedorganic compoundsinsoilandwater,Chemosphere32(1996)2399–2408.

(6)

[20]K.C.Huang,R.A.Couttenye,G.E.Hoag,Kineticsofheat-assistedpersulfate oxi-dationofmethyltert-butylether(MTBE),Chemosphere49(2002)413–420.

[21]S.R.Poulson,H.Naraoka,Carbonisotopefractionationduringpermanganate oxidationofchlorinatedethylenes(cis-DCE,TCEPCE),Environ.Sci.Technol.36 (2002)3270–3274.

[22]S.R. Poulson, Y. Chikaraishi, H.Naraoka, Carbonisotope fractionation of monaromatichydrocarbonsandchlorinatedethylenesduringoxidationby Fenton’sreagent,Geochim.Cosmochim.ActaSupp.67(2003)382.

[23]M.Marchesi,R.Aravena,K.S.Sra,N.R.Thomson,N.Otero,A.Soler,S.Mancini, CarbonisotopefractionationofchlorinatedethenesduringoxidationbyFe2+

activatedpersulfate,Sci.TotalEnviron.433(2012)318–322.

[24]C.Schüth,M.Bill,J.A.C.Barth,G.F.Slater,R.M.Kalin,Carbonisotope fraction-ationduringreductivedechlorinationofTCEinbatchexperimentswithiron samplesfromreactivebarriers,J.Contam.Hydrol.66(2003)25–37.

[25]N.VanStone,A.Przepiora,J.Vogan,G.Lacrampe-Couloume,B.Powers,E.Perez, S.Mabury,B.SherwoodLollar,Monitoringtrichloroetheneremediationatan ironpermeablereactivebarrierusingstablecarbonisotopicanalysis,J.Contam. Hydrol.78(2005)313–325.

[26]M.Bill,C.Schüth,J.A.C.Barth,R.M.Kalin,Carbonisotopefractionationduring abioticreductivedehalogenationoftrichloroethene(TCE),Chemosphere44 (2001)1281–1286.

[27]EPA(U.S.EnvironmentalProtectionAgency),AGuideforAssessing Biodegra-dationandSourceIdentificationofOrganicGroundWaterContaminantsusing CompoundSpecificIsotopeAnalysis(CSIA),2008,EPA600/R-08/148,Ada,Okla.

[28]M.Elsner,L.Zwank,D.Hunkeler,R.P.Schwarzenbach,Anewconceptlinking observablestableisotopefractionationtotransformationpathwaysoforganic pollutants,Environ.Sci.Technol.39(2005)6896–6916.

[29]M. Elsner, D.M. Cwiertny, A.L. Roberts, B. Sherwood Lollar, 1,1,2,2-TetrachloroethanereactionswithOH−,Cr(II),granulariron,andacopper-iron

bimetal:insightsfromproductformationandassociatedcarbonisotope frac-tionation,Environ.Sci.Technol.41(2007)4111–4117.

[30]B.SherwoodLollar,S.Hirschorn,S.O.C.Mundle,A.Grostern,E.A.Edwards,G. Lacrampe-Couloume,Insightsintoenzymekineticsofchloroethane biodegra-dationusingcompoundspecificstableisotopes,Environ.Sci.Technol.44(19) (2010)7498–7503.

Riferimenti

Documenti correlati

As discussed in detail in our paper [1], the accuracy of the parameters estimated applying the non-linear regression procedure is not affected by whatever data treatment is

Biogas and syngas contribution to the total electric power production for the integrated plants exploiting the manure from all the considered animal families for

Emotional appeal, other brands ’ involvement and brand reputation evidently fostered companies to increase their customization level and therefore to orient themselves

Section 3 contains the analysis of the asymptotic behavior near the poles of solutions to Schr¨ odinger equations with Hardy type potentials, the proofs of Lemmas 1.2 and 1.3, and

Research involving the Penguin (Spheniscus demersus) living in a ZOO has identified the relationship between diet and the amount of mercury removed from the penguin body in

The process of propagation of AGWs accompanied by interrelated effects due to the wave dissipation in the upper atmosphere: heating of the atmosphere by waves, which leads to

Graphs of heavy metal content variability in soils and plants sampled from both models during the full annual cycle clearly indicate the accumulation of these metals in

The values of pressure on the lateral surface of the cross duct obtained during experimental investigation are necessary for determination of the gas velocity