ContentslistsavailableatSciVerseScienceDirect
Journal
of
Hazardous
Materials
j o ur na l h o me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t
Carbon
isotope
fractionation
of
1,1,1-trichloroethane
during
base-catalyzed
persulfate
treatment
Massimo
Marchesi
a,b,∗,
Neil
R.
Thomson
a,
Ramon
Aravena
b,
Kanwartej
S.
Sra
a,c,
Neus
Otero
d,
Albert
Soler
daDepartmentofCivilandEnvironmentalEngineering,UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1
bDepartmentofEarthandEnvironmentalSciences,UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1
cGolderAssociatesInc,Toronto,Ontario,CanadaL5N5Z7
dDepartamentdeCristal.lographia,MineralogiaiDipositsMinerals,FacultatdeGeologia,UniversitatdeBarcelona,Barcelona,Spain08028
h
i
g
h
l
i
g
h
t
s
•TreatabilityandCfractionationof1,1,1-TCAbybase-catalyzedS2O82−wasstudied. •Therateofdegradationof1,1,1-TCAincreasedwithahigherOH−:S2O82−ratio. •Base-catalyzedS2O82−canpotentiallytreatrecalcitrantcompoundlike1,1,1-TCA. •Anenrichmentfactorof−7.0‰independentoftheOH−:S2O82−ratiowasobtained. •CarbonisotopecanpotentiallybeusedtoestimatetheISCOtreatmentefficacy.
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received6December2012
Receivedinrevisedform1May2013
Accepted7May2013
Available online 14 May 2013 Keywords:
Insituchemicaloxidation(ISCO)
1,1,1-Trichloroethane(1,1,1-TCA)
Base-catalyzedpersulfate
Isotopefractionation
a
b
s
t
r
a
c
t
Theextentofcarbonisotopefractionationduringdegradationof1,1,1-trichloroethane(1,1,1-TCA)bya base-catalyzedpersulfate(S2O82−)treatmentsystemwasinvestigated.Significantdestructionof
1,1,1-TCAwasobservedatapHof∼12.AnincreaseintheNaOH:S2O82−molarratiofrom0.2:1to8:1enhanced
thereactionrateof1,1,1-TCAbyafactorof∼5toyieldcomplete(>99.9%)destruction.Anaverage car-bonisotopeenrichmentfractionationfactorwhichwasindependentoftheNaOH:S2O82−molarratioof
−7.0±0.2‰wasobtained.Thissignificantcarbonisotopefractionationandthelackofdependenceon changesintheNaOH:S2O82−molarratiodemonstratesthatcarbonisotopeanalysiscanpotentiallybe
usedinsituasaperformanceassessmenttooltoestimatethedegradationeffectivenessof1,1,1-TCAby abase-catalyzedpersulfatesystem.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction
1,1,1-Trichloroethane(1,1,1-TCA,C2H3Cl3)isacommon
chlo-rinated organiccompound foundin soil and groundwater, and has been identified at more than 50% of the hazardous waste sitesidentifiedontheEPANationalPrioritiesList(NPL)[1].It fre-quentlyco-existsatcontaminatedsiteswithchlorinatedethenes (e.g.,trichloroethene(TCE))sinceitsindustrialuseissimilar[2]. However,1,1,1-TCAismorerecalcitrantthancommonchlorinated ethenesduetothepresenceasingleC Cbond[3].
∗ Correspondingauthorat:DepartmentofCivilandEnvironmentalEngineering,
UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1.
Tel.:+15198884567x38244;fax:+15197467484.
E-mailaddress:[email protected](M.Marchesi).
Onepotentialremediationtechnologyisinsituchemical oxi-dation(ISCO)whichinvolvestheinjectionorreleaseofachemical reagentintothesubsurfacewiththecapabilitytodegradethetarget organiccompound(s).Amongthenumerousoxidantsand activa-tionsystemsavailable,theemergenceofpersulfate(S2O82−)andits
novelactivationstrategieshascreatedthepotentialfortreatment ofchlorinatedmethanesandethanes(like1,1,1-TCA)[4]. Gates-Andersonetal.[5]observedverylittledegradationof1,1,1-TCA witheitherperoxideorpermanganatewhileHuangetal.[4]and Liangetal.[6]foundthatthermallyactivatedpersulfate(>40◦C) completelydegradedchlorinatedsolventcompounds like 1,1,1-TCA.Numerousmethodsareavailabletoactivatepersulfatesuch theusetransitionmetals,peroxide,andheat,orestablishing alka-lineconditions.Themostfrequentlyappliedactivationmethodis base-catalyzedpersulfate(pH>11)whichhasbeenusedat∼60%of thesiteswherepersulfatehasbeenemployed[7].Base-catalyzed persulfatetreatmentconsistsofestablishinghighpHconditions
0304-3894/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.
byaddingastrongbase(e.g.,sodiumhydroxide)tothesubsurface alongwithpersulfate.Blocketal.[8]andBrownetal.[9]suggested thatsome chlorinatedmethanes and ethanescan bedestroyed usingbase-catalyzedpersulfate.
Furmanetal.[10,11]investigatedthebaseactivation mecha-nismandtheeffectofalkalinityonpersulfatereactivityandshowed completedegradationoftheprobecompoundhexachloroethane. Furmanetal.[10]reportedthatthebaseactivationmechanism forpersulfatestartswiththebase-catalyzedhydrolysisofa per-sulfatemoleculetogeneratethehydroperoxideanion,areducing species(HO2−,Eh=−0.9V).Thehydroperoxideanionthenreduces
anotherpersulfatemoleculegeneratingthesulfateradical(SO•4−) andthehydroperoxideanionisoxidizedtothesuperoxide radi-cal(O•2−,Eh=−2.4V),anotherstrongreducingspecies.Theoverall
reactionisgivenby[10]: 2S2O2−8 +2H2O OH− −→SO•4−+O •− 2 +3SO2−4 +4H+ (1)
The production of these reducing species is what enables thebase-catalyzedpersulfatesystemtodegradehighlyoxidized organiccompounds[10,11].Furmanetal.[11]alsodemonstrated thatthegenerationofthesereducingspecieswashighlydependent onthebasetopersulfatemolarratioemployed,indicatingthatfor basetopersulfatemolarratiosabove3:1theproductionofreducing speciesincreasedconsiderably.
Theevaluation of ISCOperformance for organiccompounds followingconventionalconcentrationormass-basedestimatesis generallydifficultandpronetonumerousuncertainties[12].For chlorinatedorganiccompounds,estimationofdestruction effec-tivenessisusuallybasedonthedecreaseinconcentration(ormass load)ofthetargetcontaminantand/oranincreaseinchloride(Cl−) concentrationatamonitoringnetworkdowngradientofthesource zone.However,changesintheorganiccompoundconcentrations betweenthetargetsourcezoneandmonitoringlocationscanalso occurthrough non-chemicaloxidation/reduction processes(e.g., displacementofcontaminated groundwaterbytheinjected oxi-dantsolution).Furthermore,eventhoughoxidation/reductionof thetargetcontaminantmayhaveextensivelyoccurred,the concen-trationmaystillremainelevatedduetothecontinuousdissolution fromresidualnon-aqueousphaseliquids(i.e.,rebound[13]). Inter-pretationofCl−datamayalsobeambiguousinthepresenceofhigh backgroundconcentrationlevels,and,inthecaseofpersulfate,Cl− canreactwiththesulfateradical[14].Hence,theuseof concentra-tiondataalonemaybeinsufficienttoevaluatetheeffectivenessof anISCOsystem[15].
Stablecarbonisotopeanalysishasbeenincreasinglyappliedas acomplementarytooltomonitortheinsituefficacyofabioticand biotictreatmentsystems(e.g.,Refs.[15]and[16]).Thistechnique isbasedonchangesintheisotopiccompositionofthetarget con-taminantand itsdegradationproducts.Duetomass-dependent differencesinactivationenergiesofthedifferentisotopes13Cand 12C, thelighterisotope(12C)reactsfaster than theheavier
iso-tope(13C),leadingtofractionationand anenrichmentofheavy
isotopesintheresidualcontaminantasthereactionproceeds[17]. Consequentlytheuseofstablecarbonisotopeanalysisto comple-menttheconcentrationdatacanbeveryhelpfulindistinguishing between chemical oxidation and non-oxidation processes, and thereforeinappropriatelyquantifyingtheeffectivenessof chem-icaloxidation [15].Inordertotestthecarbonisotopeapproach asapotentialtooltoassessISCOperformanceatthefieldscale,a seriesofbench-scaleexperimentsweredesignedinthisstudy.The experimentalobjectiveswere(a)toevaluatethecarbonisotope fractionationfactor,and(b)toassesswhethertheuseofdifferent initialhydroxidetopersulfatemolarratiosresultsindifferencesin thecarbonisotopicfractionationandalsoin1,1,1-TCAdegradation rates.
2. Experimentalmethodology
2.1. Materialsandexperimentalconditions
Todeterminethetreatabilityandisotopicfractionationof 1,1,1-TCA, a series of aqueous batch experiments were conducted. Persulfateand1,1,1-TCAconcentrations,alongwithpHwere mon-itoredtoevaluatetheextentofdegradationandtoobtainkinetic information.Theisotopiccompositionof1,1,1-TCAwasalso quan-tified,andusedtocalculatethecarbonisotopefractionationfactor andtoinvestigateitsdependenceupontreatmentconditions.
Allchemicalsusedwerereagentgrade:1,1,1-TCA(99.9%purity, FisherScientific);sodiumpersulfate(Na2S2O8,98%,AlfaAesar)and
sodiumhydroxide (NaOH, 99.5%, Alfa Aesar). A1,1,1-TCA stock solutionwaspreparedtoaconcentrationof25mg/L(0.19mM). This1,1,1-TCAstocksolutionwasmixedsuccessivelywitha pre-determined amount of persulfate to obtain a final persulfate concentration of 100mM (∼16g/L), and in turn with different amountsofNaOHtoobtain0.2:1,0.5:1,2:1,and8:1NaOH:S2O82−
molarratiosolutions.Nominal40mLreactorscappedwithTeflon septawereusedand werestored in thedarkatambientroom temperature (i.e., 20◦C). Reactors were completely filled (no headspace)tominimizevolatilization.Theinitialconcentrationin thereactorswas20,50,200and800mMforNaOH,and0.15mM (20mg/L)for1,1,1-TCA.Triplicatereactorswerepreparedforall experimentaltrials.TheinfluenceoftheS2O82−:1,1,1-TCAmolar
ratioontreatmenteffectivenesswasnotinvestigatedheresince thepersulfateconcentrationusedwasconsideredtobeinexcess (theapproximateS2O82−:1,1,1-TCAinitialmolarratiowas>600:1).
Preliminaryexperimentsindicatedthatathree-weeklong reac-tionperiodwasnecessarytoobtain∼90%destructionof1,1,1-TCA. SamplingwasperformedatDay1,3,8,15,and22.Thereactors weresacrificedandquenchedinanicebath,andthenaliquotswere takenfor:persulfateanalysis(1mL),␦13Cdetermination(22mL),
quantificationof1,1,1-TCAconcentrationandpotential degrada-tionproducts(2mL),andtomeasurepH.Preliminaryexperiments showedthattheuseoftheicebathwasadequatetoessentiallystop thereactionovera1–2dayperiod,sincenosignificantvariationin 1,1,1-TCAconcentrationwasobservedoverthistimeframe(data notshown).Allanalyseswereconductedwithin24hofsampling.
Basedonpreviousstudies[8],minimaldegradationof 1,1,1-TCAwasexpectedfortheNaOH:S2O82−molarratioof0.2:1trial
andhenceisotopicanalyseswerenotperformed.Thepurposeof thistrialwastoinvestigatetheeffectivenessofthebase-catalyzed persulfatesystematalowerNaOH:S2O82− molarratiothanthe
recommendedratioof0.4:1[8].
Asidefromchemicaldegradationbythereducingspecies gen-erated in the base-catalyzed persulfate system, destruction of 1,1,1-TCAmayoccurbyhydrolysis[18].For example,1,1,1-TCA mayreactwithOH−topartiallydegradeintochloroethenewhich canthenbecompletelymineralizedinthepresenceofactivated persulfate[8,14].Myamoto andUrano [19]observed significant degradationof1,1,1-TCAatneutralpHat80◦C;however,the half-lifeat15and20◦CestimatedbyusingtheArrheniusequationis between2and 5years[19].Toinvestigatetheroleof hydroly-sisoverthe22-dayreactionperiod,anotherseriesofexperiments (controls)wererunataninitialpHof7,9,11,and13withoutany persulfateadded.
2.2. Analyticalmethods
The concentration of 1,1,1-TCA and potential chlorinated degradationproducts(e.g.,1,1-dichloroethaneandchloroethane) was determined by pentane extraction (2mL sample to 2mL pentane) and subsequent analysis on a Hewlett-Packard 6890 Plusgaschromatograph(GC)equippedwithanHP-624column
(30m×0.32mm,1.8mfilmthickness)andamicro-ECD detec-tor. Carbon isotope analysis of 1,1,1-TCA was performed on a GC(Hewlett-Packard6890;Agilent)coupledthrougha combus-tioninterfacetoanisotoperatiomassspectrometer(Micromass Isochrom)asdescribedbyHunkelerandAravena[16].Residual per-sulfateanalysiswasconductedfollowingtheproceduredescribed byHuangetal.[20],andthesolutionpHwasdeterminedusinga pHmeter(WTWpH3300i).
2.3. Quantificationofisotopefractionation
Carbonisotopeenrichmentfactorshavebeendeterminedfor many chlorinated organic carbon compounds under different abiotic processes, such as: oxidation by permanganate [15,21], hydrogenperoxide[22],and iron-activatedpersulfate[23]; and transformation by reductive dechlorination by zerovalent iron [24,25]andreductionbypalladiumcatalystswithhydrogen[26]. To applythis technique in situ, theenrichmentfactor mustbe sufficiently high and the fractionation signature must not be affectedbyreactantconcentrationvariationsinthesubsurface(e.g., NaOH:S2O82−:1,1,1-TCAratio). Thesevariationscanarisedueto
mixingoftheinjectionvolumeofpersulfate(andactivatorwhen used)withgroundwater,andduetotheusualheterogeneous con-taminantdistributioninthesubsurface.
Thecarbonisotopicratioisusuallyexpressedusingthe␦13C
notationinunitsofpermil(‰)deviationfromtheinternational standardViennaPeeDeeBelemnite(VPDB)asexpressedby ␦13C= 13C/12Cc−13C/12Cs
13C/12Cs ×1000 (2)
where 13C/12C
c and 13C/12Cs are theratiosfor the sample and
thestandard,respectively.Byusingthe␦13Cnotationforthe
iso-topiccomposition,Fforthefractionofthecompoundremaining (definedastheratiooftheconcentrationattime ttotheinitial concentration),and␦13Cforthedifferencebetweentheisotope
compositionattimetandinitialconcentration,thefractionation factor(˛)canbeexpressedbytheRayleighequation
ln
ı13C co+␦13C+1000 ␦13 Cco+1000 =(˛−1)lnF (3) where␦13Ccoisthecarbonisotopicratioattheinitialconcentration.
TheRayleighequationcanbeusedbyassumingthattheabundance oftheheavierisotopeissmallcomparedtothelighterisotope,and that␣remainsconstantduringtreatment[27].Amorepractical waytodescribeisotopefractionationwhen˛isverysmallistouse theenrichmentfactorεdefinedasε(‰)=(˛−1)×1000.
3. Resultsanddiscussion
3.1. Destructionof1,1,1-TCA
Fig.1(a)showsthe1,1,1-TCAtemporalconcentrationprofiles asaresultoftreatmentbybase-catalyzedpersulfate(eachdata pointrepresentstheaveragefromtriplicatereactors).The experi-mentalcontrols(withoutpersulfate)underallinitialpHconditions yieldedarelativelystable1,1,1-TCAconcentrationoverthe22-day reactionperiod.Thesedataindicatethatat20◦Cthedegradation of1,1,1-TCAbyalkalinehydrolysisisinsignificant,confirmingthe observationsofJeffersetal.[18]andMiyamotoandUrano[19]who estimatedahalf-lifebetween1.1and2yearsforthehydrolysisof 1,1,1-TCA.
For all theNaOH:S2O82− molar ratiosexploreda significant
decreaseintheconcentrationof1,1,1-TCAwasobservedandis con-sistentwithotherstudies[8,10,11].Anincreaseinthehydroxide concentrationproducedahigherrateof1,1,1-TCAdegradationand
Fig.1. (a)Variationof1,1,1-TCAconcentrations,and(b)␦13Cvaluesfordifferent
NaOH:S2O82−molarratiosandthecontrolexperiments.
almostcompletedestruction(>99.9%)wasachievedatthehigher molarratiosof2:1and8:1.Partialdegradationof1,1,1-TCAwas observedforthemolarratios0.2:1(∼70% byDay15)and 0.5:1 (>95%byDay22).Furman etal.[11] observedsimilarbehavior fortheirprobecompound(hexachloroethane).Ahigher concen-trationofOH−promotestheformationofahigherconcentration ofreductivespecies(O•2−),resultinginanincreasedrateof degra-dation.Nochlorinateddegradationproductsweredetectedinthe treatmentandcontrolreactors.Overthereactionperiodpersulfate concentrationdecreasedby∼44% inthe8:1molarratiosystem andby∼5%inthe0.2:1molarratiosystem.Theoveralltreatment performanceefficiency(ratiooffractionalchangein1,1,1-TCA con-centrationtothefractionalchangeinpersulfateconcentration)was highest(∼15)forthelowermolarratioof0.2:1anddecreasedasthe molarratioincreased(Table1).Thelowerperformanceefficiency athigherNaOH:S2O82−molarratiosindicatesthatagreatermass
ofpersulfateisneededtodegradeagivenmassof1,1,1-TCAwhen higherNaOH:S2O82−molarratiosareused.
Asmall(<0.19unit)decreaseinpHwasobservedoverthe reac-tionperiodandthisreductionwaslargestforthelowestmolarratio employed.Overall,thepHinalltrialsexploredwassuitablefor alkalineactivation(pH>10.5)throughouttheexperimentalperiod (Table1).ItwasexpectedthatthesolutionpHwoulddecreaseover timeasthedegradationofpersulfateproducesprotonsunder alka-lineconditions(seeEq.(1)).However,thepresenceofahighinitial concentrationofOH−(from20to800mM)preventedasignificant decreaseinpH.
Table1
InitialandfinalpH,S2O82−consumed,treatmentefficiency,andreactionratecoefficient(k)forthedifferentNaOH:S2O82−molarratiosandthecontrolexperiments.
NaOH:S2O82− InitialpH FinalpH S2O82−consumed(%) Efficiencya k(day−1M−1)b
0.2:1 12.06 11.87 4.6 15.0 1.11 0.5:1 12.28 11.81 20.5 7.5 1.93 2:1 12.68 12.52 35.9 4.2 4.87 8:1 12.94 12.90 44.1 3.1 5.31 pH7 7.12 7.13 – – – pH9 9.22 9.19 – – – pH11 10.98 10.96 – – – pH13 13.07 13.06 – – –
aDefinedasratioofthefractionalchangeinthe1,1,1-TCAconcentrationtothefractionalchangeinpersulfateconcentration.
b SeeEq.(4).
AssumingthatthepHwasconstantforeachexperimentaltrial, thefollowingkineticmodelwasdeemedmostappropriateto rep-resentthedata
r1,1,1−TCA=−k[1,1,1−TCA]n
S2O2−8 m(4) wherek(day−1M−1)isthereactionratecoefficient,andnandm arethereactionorderswithrespectto1,1,1-TCAandpersulfate, respectively.Eq.(4)waslinearizedandaleast-squaresmethodwas usedtodeterminetheratelawparameters.Thebest-fitreaction ordersforboth1,1,1-TCAandpersulfatewereunity,andkvaried from1.11to5.31day−1M−1asthemolarratioincreased(Table1). This5foldincreaseinkisdirectlyrelatedtotheincreaseinOH−; however,it appearsthatkmaybestabilizingasthemolarratio approacheshigher values. Thissuggeststhat anincrease inthe concentrationofOH−causesthegeneratedreactivespeciestobe involvedincompetingreactionswhichresultsinarelatively con-stant1,1,1-TCAdegradationrate.Additionalresearchisrequiredto elucidatethecompetingreactionsandhowtheyimpactthe treat-mentefficiency.
3.2. Extentofcarbonfractionation
Theexperimentalcontrols(withoutpersulfate) fortherange ofinitialpHtrialsinvestigatedshowednolossin1,1,1-TCAmass (<5%), and no variation in the ␦13C 1,1,1-TCA value (<0.5‰)
throughouttheexperimentalperiod(Fig.1(b)).Theisotopicdata fromthecontrols(n=12)whereusedtoestablishabaseline␦13C
valuefor1,1,1-TCAof−28.0±0.4‰(95%confidenceinterval). The isotope composition of the residual 1,1,1-TCA became moreenrichedintheheavierisotope(13C)overtimefor allthe
NaOH:S2O82−molarratiosexplored(Fig.1(b)).Forexample,the
␦13C1,1,1-TCAvalueincreasedfrom−28.0‰atthebeginningof
theexperimentto+3.7‰after15days(99%degradationof 1,1,1-TCA)forthe2:1NaOH:S2O82−molarratio.Forthe8:1and0.5:1
NaOH:S2O82−molarratios,the␦13Cvalueincreasedto−0.9and
−12.1‰after98and88%degradationof1,1,1-TCA,respectively. The isotopic enrichmentpattern confirmed the normal isotope effectassociatedwithdegradation[17,28].Thisincreaseinthe␦13C
valueintheremaining1,1,1-TCAallowsforthepotentialto esti-matethedegradationprogressduringbase-catalyzedpersulfate treatment.
While the 1,1,1-TCA concentration decreased expo-nentially with time, the ␦13C profiles were essentially
linear (Fig. 1(b)). To estimate the isotopic enrichment fac-tor, Eq. (3) was fit to the data by linear regression using 1000ln[(␦13C
co+␦13C+1000)/(␦13Cco+1000)] versus lnF, and
forcing the intercept through the origin (Fig. 2). The resulting enrichmentfactorsforthedifferentNaOH:S2O82−ratiosare
pre-sentedinTable2.Thepatternof␦13Cfor1,1,1-TCA(Fig.2)together
withtheexcellentfits(r2 variedfrom0.98to1.00),isconsistent
withtheRayleighisotopicevolutionmodel.Thisclearlyindicates thattheobserved enrichmentfractionationfactor wasconstant
throughoutthereactionprocessoratleastuntil99%degradation ofthe1,1,1-TCAmassoccurred.Theisotopicenrichmentfactors for1,1,1-TCArangedfrom−6.9±0.4‰to−7.1±0.2‰andwere consistentacrossalltrialswithanaverageenrichmentfactorof −7.0±0.2‰.
ThetrendshownonFig.2usinganaverageenrichmentfactor of−7.0±0.2‰canhypotheticallybeusedtoestimatethedegree ofdegradationforthebase-catalyzedpersulfatetreatmentof1,1,1 TCA.Forexample,a␦13Cenrichmentof1.4‰isassociatedwith
20%degradationwhereasa19.7‰enrichmentisassociatedwith 95%degradation. Bothofthese ␦13C variations aresignificantly
largerthantheuncertaintyinthe␦13Cdetermination(±0.5‰isthe
typicalerrorincarbonisotoperatiomeasurementby compound-specificisotopeanalysis(CSIA)forchlorinatedsolvents[27]).This indicatesthatthemagnitudeoftheenrichmentfractionationfactor issignificantlylargeenoughtominimizeerrorsinthe interpreta-tionofisotopicfielddata.
ItisimportanttonotethatavariationintheNaOH:S2O82−molar
ratiosfrom0.5:1to8:1resultedinaveryslightdifferenceinthe enrichmentfactor(0.2‰),confirmingthattheinvestigatedmolar ratiosdidnothaveanyinfluenceontheisotopicfractionationin ourexperimentaldesign.Thisfindingisessentialtouseisotopic compositiontomonitortheeffectivenessofbasecatalyzed persul-fateinsitu.Isotopiccompositionchangescanalsobeusedtohelp understandthedynamics associatedwithcontaminantrebound duringandaftertreatment[15],andtodifferentiatebetween dilu-tion(noisotopicchanges)anddegradation(enrichmentpattern) atlocationsawayfromtheinjectionzonewhereadecreasein con-centrationcanoccurduetodisplacementordilution.
Fig.2.Linearized13Cenrichmentof1,1,1-TCAaccordingtoEq.(3),fordifferent
Table2
Enrichmentfactors,␦13C(‰),1,1,1-TCAdegradation,andfinal␦13Cfor1,1,1-TCAforthedifferentNaOH:S
2O82−molarratiotrials.
NaOH:S2O82− Degradation Final␦13C(‰) ␦13C(‰) εc bulk‰ r2
0.5:1 88% −12.1 15.1 −7.2±0.3 0.998
2:1 99‰ +3.7 31.7 −6.9±0.4 0.999
8:1 98% −0.9 27.2 −7.2±0.3 0.984
Average – – – −7.0±0.3 0.990
Unlikebioticsystemswherethecomplexityofdifferent
degra-dationpathways is derived from differentmicroorganisms and
resultsin alargevariabilityinisotopefractionationfactors[28]
(e.g.,theenrichmentfractionationfactorformicrobialreductionof TCEcanvaryfrom−2.5to−13.8‰[27]),theenrichment fraction-ationfactorsforabioticdegradationpathwaysshouldvaryovera muchsmallerrangeforaspecificcompoundunderafixedchemical reaction(e.g.,reductivedehalogenationof1,1,1-TCAbyCr,Feand Cu/Fe[29]).WenotethatHunkeleretal.[15]obtainedan enrich-mentfractionationfactorslightlydifferentthanthatreportedby PoulsonandNaraoka[21](−21.4‰comparedto−26.8‰)forthe oxidationofTCEbypermanganate;however,thisdiscrepancyis likely attributedtodifferencesin theexperimentalsystem(the presenceofheadspaceand thusvolatilizationprocesses).Inthe experimentsperformedinthisstudy,no1,1,1-TCAvolatilization occurredandthusthegeneratedenrichmentfractionationfactor representsareferencevalueforthetreatmentof1,1,1-TCAbya base-catalyzedpersulfatesystem.
Incontrasttochlorinatedethenes,thebodyofliteraturerelated totheenrichmentfractionationfactorfor1,1,1-TCAdegradation underbioticandabiotictreatmentprocessesislimited.Elsneretal. [29] obtaineda carbon isotope fractionation factor of −13.6to −15.8‰forreductivedehalogenationof1,1,1-TCAbyCr,Feand Cu/Fe,suggestingaconsistencywithapotentialmechanismthat involvestheCCl3carboncenter.Thevalueof−7.0‰obtainedin
thisstudyisalsoconsistentwithareduction mechanismwhich likelyinvolvestheCCl3carboncenterthroughanelectrontransfer
mechanism.However,nodegradationproductsorintermediates wereobservedandfurthersystematicresearchisneeded.
Finally, a carbon isotope fractionation factor of −1.8‰ was reportedforbiodegradationof1,1,1-TCAbySherwoodLollaretal. [30],whichismuchsmallerthantheisotopefractionationfactorof −7.0‰obtainedforabioticdegradationof1,1,1-TCAinthisstudy. Thiscreates the possibility of using compound-specific isotope analysistodistinguishbetweenthesetwodegradationpathways.
4. Conclusions
Thisinvestigationdemonstratedthat1,1,1-TCAcanbedegraded byemployingbase-catalyzedpersulfateandthatasignificant car-bonisotopefractionationoccurs.HigherNaOH:S2O82−molarratios
increasedtherateofdegradationof1,1,1-TCA.Althoughthedata arenotconclusive,itappearsthatthe1,1,1-TCAreactionrate sta-bilizesastheNaOH:S2O82−molarratioincreased.Whileahigher
NaOH:S2O82−molarratiowasabletoincreasethe1,1,1-TCA
degra-dationrate,itreducedthetreatmentperformanceefficiency.An averageenrichmentfractionationfactorof−7.0±0.2‰was deter-mined,andthisenrichmentfractionationfactorwasindependent oftheNaOH:S2O82−molarratiosemployed.
Although additional research is required to determine the impact of other environmental parameters (e.g., temperature, bufferingcapacity)onthefractionationfactor,theresultsobtained fromthepresent investigationshow thatthe carbonisotope is potentiallya usefultracerthat canbeusedtoassess the effec-tivenessof1,1,1-TCAdegradationinsituwhen abase-catalyzed persulfatesystemisemployed.
Acknowledgements
Thisworkwasfunded bytheNaturalScienceand Engineer-ing Research Council (NSERC) of Canada, the Ontario Ministry of Science and Innovation, the Spanish Government (MICINN, projectsCICYT-CGL2011-29975-C04-01),andtheCatalan Govern-ment(2009SGR103).WethanktheUniversitatdeBarcelonafora AjutdePersonalInvestigadorenFormació(APIF)Doctoral Fellow-shiptoM.Marchesi.Theauthorsalsothankthevaluedcomments fromfouranonymousreviewerswhichimprovedthequalityofthis manuscript.
References
[1]ATSDR,AgencyforToxicSubstancesandDiseaseRegistry,Toxicologicalprofile
(2006),availableat:http://www.atsdr.cdc.gov/ToxProfiles/tp70.pdf(consulted
14.04.10).
[2]E.E.Doherty,Ahistoryoftheproductionanduseofcarbontetrachloride tetrachloroethylene,trichloroethyleneand1,1,1-trichloroethaneintheUnited States:Part2trichloroethyleneand1,1,1-trichloroethane,J.Environ.Forensics 1(2000)83–93.
[3]B.L.Sun,B.M.Griffin,H.L.Ayala-del-Rio,S.A.Hashsham,J.M.Tiedje,Microbial dehalorespirationwith1,1,1-trichloroethane,Science298(2002)1023–1025.
[4]K.C.Huang,Z.Zhao,G.E.Hoag,A.Dahmani,P.Block,Degradationofvolatile organiccompoundswiththermallyactivatedpersulfateoxidation, Chemo-sphere61(2005)551–560.
[5]D.D.Gates-Anderson,R.L.Siegrist,S.R.Cline,Comparisonofpotassium per-manganate and hydrogen peroxideas chemical oxidants for organically contaminatedsoils,J.Environ.Eng.127(2001)337–347.
[6]C.J.Liang,C.J.Bruell,M.C.Marley,K.L.Sperry,Thermallyactivatedpersulfate oxidationoftrichloroethylene(TCE)and1,1,1-trichloroethane(TCA)in aque-oussystemsandsoilslurries,SoilSed.Contam.12(2003)207–228.
[7]R.A.Brown,personalcommunication,in:O.S.Furman,A.L.Teel,R.J.Watts,
Mechanismofbaseactivationofpersulfate,Environ.Sci.Technol.44(2010)
6423–6428.
[8]P.A.Block,R.A.Brown,D.Robinson,Novelactivationtechnologiesforsodium persulfateinsituchemicaloxidation,in:ProceedingsoftheFourth Inter-nationalConferenceon the Remediation ofChlorinated and Recalcitrant Compounds,Monterey,CA,May24–27,2004.
[9]R.A.Brown,M.Daly,G.Demers,F.D.Legall,B.H.Kueper,E.Dimitrivic,An in-depthexaminationofbasecatalyzedpersulfate,in:ProceedingsoftheSixth InternationalConferenceonRemediationofChlorinatedandRecalcitrant Com-pounds,Monterey,CA,May19–22,2008.
[10]O.S.Furman,A.L.Teel,R.J.Watts,Mechanismofbaseactivationofpersulfate, Environ.Sci.Technol.44(2010)6423–6428.
[11]O.S.Furman,A.L.Teel,M.Ahmad,C.M.Merker,R.J.Watts,Effectofbasicityon persulfatereactivity,J.Environ.Eng.(2011)241–247.
[12]N.R. Thomson, E.D. Hood, G.J. Farquhar, Permanganate treatment of an emplacedDNAPLsource,GroundWaterMonit.Remediation27(2007)74–85.
[13]N.R.Thomson,M.J.Fraser,C.Lamarche,J.F.Barker,S.P.Forsey,Reboundofa coaltarcreosoteplumefollowingpartialsourcezonetreatmentwith perman-ganate,J.Contam.Hydrol.102(2008)154–171.
[14]R.H.Waldemer,P.G.Tratnyek,L.Johnson,J.T.Nurmi,Oxidationofchlorinated ethenesbyheat-activatedpersulfate:kineticsandproducts,Environ.Sci. Tech-nol.41(2007)1010–1015.
[15]D.Hunkeler,R.Aravena,B.Parker,J.A.Cherry,Monitoringoxidationof chlo-rinated ethenesby permanganate in groundwaterusing stable isotopes: Laboratoryandfieldstudies,Environ.Sci.Technol.37(2003)798–804.
[16]D.Hunkeler,R.Aravena,B.Butler,Monitoringmicrobialdechlorinationof tetra-chloroethene(PCE)ingroundwaterusingcompound-specificstablecarbon isotoperatios:microcosmandfieldstudies,Environ.Sci.Technol.33(1999) 2733–2738.
[17]I.Clark,P.Fritz,EnvironmentalIsotopesinHydrogeology,LewisPublishers, NewYork,1997.
[18]P.M.Jeffers,L.M.Ward,L.M.Woytowitch,N.L.Wolfe,Homogeneous hydrol-ysisrateconstantsforselectedchlorinatedmethanesethanes,ethenes,and propanes,Environ.Sci.Technol.23(1989)965–969.
[19]K.Myamoto,K.Urano,Reactionrateandintermediatesofchlorinatedorganic compoundsinsoilandwater,Chemosphere32(1996)2399–2408.
[20]K.C.Huang,R.A.Couttenye,G.E.Hoag,Kineticsofheat-assistedpersulfate oxi-dationofmethyltert-butylether(MTBE),Chemosphere49(2002)413–420.
[21]S.R.Poulson,H.Naraoka,Carbonisotopefractionationduringpermanganate oxidationofchlorinatedethylenes(cis-DCE,TCEPCE),Environ.Sci.Technol.36 (2002)3270–3274.
[22]S.R. Poulson, Y. Chikaraishi, H.Naraoka, Carbonisotope fractionation of monaromatichydrocarbonsandchlorinatedethylenesduringoxidationby Fenton’sreagent,Geochim.Cosmochim.ActaSupp.67(2003)382.
[23]M.Marchesi,R.Aravena,K.S.Sra,N.R.Thomson,N.Otero,A.Soler,S.Mancini, CarbonisotopefractionationofchlorinatedethenesduringoxidationbyFe2+
activatedpersulfate,Sci.TotalEnviron.433(2012)318–322.
[24]C.Schüth,M.Bill,J.A.C.Barth,G.F.Slater,R.M.Kalin,Carbonisotope fraction-ationduringreductivedechlorinationofTCEinbatchexperimentswithiron samplesfromreactivebarriers,J.Contam.Hydrol.66(2003)25–37.
[25]N.VanStone,A.Przepiora,J.Vogan,G.Lacrampe-Couloume,B.Powers,E.Perez, S.Mabury,B.SherwoodLollar,Monitoringtrichloroetheneremediationatan ironpermeablereactivebarrierusingstablecarbonisotopicanalysis,J.Contam. Hydrol.78(2005)313–325.
[26]M.Bill,C.Schüth,J.A.C.Barth,R.M.Kalin,Carbonisotopefractionationduring abioticreductivedehalogenationoftrichloroethene(TCE),Chemosphere44 (2001)1281–1286.
[27]EPA(U.S.EnvironmentalProtectionAgency),AGuideforAssessing Biodegra-dationandSourceIdentificationofOrganicGroundWaterContaminantsusing CompoundSpecificIsotopeAnalysis(CSIA),2008,EPA600/R-08/148,Ada,Okla.
[28]M.Elsner,L.Zwank,D.Hunkeler,R.P.Schwarzenbach,Anewconceptlinking observablestableisotopefractionationtotransformationpathwaysoforganic pollutants,Environ.Sci.Technol.39(2005)6896–6916.
[29]M. Elsner, D.M. Cwiertny, A.L. Roberts, B. Sherwood Lollar, 1,1,2,2-TetrachloroethanereactionswithOH−,Cr(II),granulariron,andacopper-iron
bimetal:insightsfromproductformationandassociatedcarbonisotope frac-tionation,Environ.Sci.Technol.41(2007)4111–4117.
[30]B.SherwoodLollar,S.Hirschorn,S.O.C.Mundle,A.Grostern,E.A.Edwards,G. Lacrampe-Couloume,Insightsintoenzymekineticsofchloroethane biodegra-dationusingcompoundspecificstableisotopes,Environ.Sci.Technol.44(19) (2010)7498–7503.