• Non ci sono risultati.

Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow-Release Fertilizers

N/A
N/A
Protected

Academic year: 2021

Condividi "Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow-Release Fertilizers"

Copied!
8
0
0

Testo completo

(1)

This is the author's final version of the contribution published as:

[

Xiongfang An, Zhansheng Wu, Junzhi Yu, Giancarlo Cravotto, Xiaochen Liu, Qing Li, and Bing Yu. Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow-Release Fertilizers. ACS Sustainable Chem. Eng. 2020, 8, 3181−3190, https://dx.doi.org/10.1021/acssuschemeng.9b06483

]

The publisher's version is available at:

[

https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.9b06483/suppl_file/sc9b06483_si _001.pdf

]

When citing, please refer to the published version.

Link to this full text:

[http://hdl.handle.net/2318/1735245]

(2)

Supporting information for

“Co-pyrolysis of biomass, bentonite

and nutrients as a new strategy for the synthesis of improved

biochar-based slow release fertilizers”

Xiongfang An1, Zhansheng Wu1, 2*, Junzhi Yu1, Giancarlo Cravotto3, 4, Xiaochen Liu2, Qing Li2

and Bing Yu5*

1. School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China

2. School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P.R. China.

3. Department of Drug Science and Technology, University of Turin, Turin 10125, Italy.

4. Institute of Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov), 8 Trubetskayaul, Moscow 109807, Russia

5. Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China.

Corresponding author: Zhansheng Wu, Tel: +86 02962779279, Fax: +86 029-62779281. Email address: wuzhans@126.com

(3)

Table of Contents

Page

Four figures

Figure S1.The SEM images for a) BF, b) P10BF, c) B10BF and d) P10B10BF. S3

Figure S2. The EDX images of the a) P10BF and b) P10B10BF. S3

Figure S3. XRD spectra of CS, BF, B10BF, P10BF, P10B10BF and P10B30BF. S4

Figure S4. The economic evaluation for the production of BSRFs. S5

Six tables

Table S1. The composition and physicochemical properties of bentonite. S6

Table S2. Basic physical and chemical characteristics of the soil. S6

Table S3. pH, electro conductivity (EC), surface area (BET), pore size (PS) and pore volume

(PV) of a CS sample and BSRFs. S7

Table S4. Elemental analysis of the feedstocks and BSRFs. S7

Table S5. Kinetic study for the slow release of P and K from BSRFs. S8

(4)

Figure S1. SEM images for a) BF, b) P10BF, c) B10BF and d) P10B10BF.

(5)

Figure S3. XRD spectra of CS, BF, B10BF, P10BF, P10B10BF and P10B30BF

(6)

Table S1. The composition and physicochemical properties of bentonite. bentonite SiO2 64.19 K2O 2.75 Compositio n Al2O3 13.61 Na2O 2.58 (%) MgO 2.38 P2O5 0.18 Fe2O3 4.39 CaO 1.92

Montmorillonite (%) 76 CEC (meq/g) 19.89 Physical Swelling index 89.5 ml/g BET (m2/g) 37.67

properties Gumprice (ml/15g) 547.56 PV (cm3/g) 0.096

pH 6.08 PS(Å) 101.76

Table S2. Basic physical and chemical characteristics of the soil

pH 8.16 EC (us/cm) 688 Total N (g/kg) 0.91 Available N (g/kg) 0.13 Total P(g/kg) 1.06 Available P (g/kg) 0.69 Total K(g/kg) 22.58 Available K (g/kg) 3.63 Total Ca (g/kg) 42.34 Total Mg (g/kg) 15.34 Total Fe (g/kg) 65.78 Total Zn (g/kg) 8.34

(7)

Table S3. pH, electro conductivity (EC), surface area (BET), pore size (PS) and pore volume (PV) of CS samples and BSRFs

Samples pH EC (ms/cm) CEC (meq/g) (cmPV3/g) PS (nm) (mBET2/g) Bent 8.08 3.29 19.89 0.1540 9.54 61.93 CS 7.86 1.42 21.70 0.0024 12.49 0.77 B10CS 6.35 12.34 22.31 0.0026 51.05 0.20 P10CS 2.11 13.17 24.34 0.0027 21.03 0.50 P10B10CS 2.15 15.32 19.34 0.0016 105.35 0.32 BF 7.98 13.43 16.56 0.0470 4.43 153.18 B10BF 7.79 14.42 17.34 0.0430 4.49 39.02 P10BF 3.11 12.54 18.12 0.0240 4.03 23.64 P10B10BF 3.97 7.12 12.21 0.0710 4.99 60.74 P10B30BF 5.85 10.31 8.95 0.0720 5.34 59.39

Table S4. Elemental analysis of the feedstocks and BSRFs

Samples Elemental composition (wt. %) Ratio

C H O N S P K C a M g Z n Fe O/ C H/ C Bent 2.7 1 1.4 8 38.3 4 1.0 4 0. 28 0.0 8 1.6 8 0.4 9 2. 06 0.8 3 5.5 5 14.1 4 0.5 5 CS 45. 18 4.2 3 39.3 1 3.3 5 0. 39 0.8 5 0.3 6 0.7 4 0. 84 0.5 9 0.6 1 0.8 7 0.0 9 B10CS 40. 93 3. 95 39 .2 3. 11 0. 37 0.7 73 0.4 92 0. 71 0 . 0. 61 1. 10 0.9 6 0. 10 P10CS 32. 11 4. 55 35. 13 1. 96 0. 43 13. 81 10. 49 0. 51 0. 61 0. 65 0. 98 1.09 0. 14 P10B10C S 34. 77 3. 39 31. 54 1. 64 0. 53 13. 35 9. 37 0. 52 0. 42 0. 57 1. 05 0.9 1 0. 10 BF 54. 32 3.1 6 31.1 7 1.5 6 0. 31 1.6 4 0.5 7 0.7 8 0. 51 0.5 0 1.2 3. 0.5 8 0.0 5 B10BF 56. 83 2.4 6 29.3 5 1.7 1 0. 06 1.9 2 0.4 3 1.8 3 0. 70 0.5 9 0.9 1 0.4 4 0.0 4 P10BF 41. 49 2.9 2 20.6 3 1.9 3 0. 42 15.3 7 13.9 2 0.9 6 0. 53 0.5 3 0.0 5 0.4 9 0.0 7 P10B10B F 44. 38 2.3 3 17.6 4 0.6 1 0. 30 16.1 5 11.4 5 1.8 3 0. 70 1.0 8 2.3 3 0.3 8 0.0 5 P10B30B F 45. 45 2.0 3 18.2 2 0.6 6 0. 36 16.1 8 12.1 0 1.4 9 0. 74 1.3 3 1.7 9 0.4 2 0.0 4

(8)

Table S5. Kinetic study for the slow release of P and K from BSRFs. Kinetics models P10BF P10B10BF P10B30BF P K P K P k First-order R22 0.9569 0.8925 0.9187 0.4171 0.7731 0.8895 release kinetics K2 -0.2089 -0.2258 -0.1015 -0.0926 -0.1092 -0.1455 Higuchi R23 0.7902 0.8121 0.9802 0.9484 0.9648 0.9843 model K3 0.2769 0.3542 0.2091 0.3232 0.2363 0.3247 Hixson-Crowell R24 0.7449 0.7579 0.9657 0.9547 0.9513 0.9898 model K4 0.0166 0.0179 0.0122 0.0173 0.0138 0.0174 Baker-Lonsdale R25 0.8381 0.8496 0.9252 0.983 0.884 0.9577 model K5 -0.0332 -0.0373 -0.0232 -0.0274 -0.0243 -0.0275

Table S6. The economic evaluation for the production of BSRFs.

Project Consumption Cost/$

Bent 1t 50.71 Cotton straw 1t 28.17 K3PO4 1t 830.98 Water 1t 0.5775 Electricity 1t (grind) 40-50 kW/h 4.25-5.01 1t (drying) 90-100 kW/h 7.82-8.57 1t (alone co-pyrolysis) 112-124 kW/h 8.64-9.15 Samples(t) Bent(t) CS(t) K3PO4(t) water(t) EC(kW/h) Cost(t/$)

BF 0 4 0 20 274 153.86 B10BF 0.1 3.6 0 20 274 147.663 P10BF 0 3.6 0.1 20 274 225.69 P10B10BF 0.1 3.2 0.1 20 274 219.493 P10B30BF 0.3 2.4 0.1 20 274 206.997 TBFa 0 3.6 0.1 20 100 206.27 CBFb 1 830.98

a Traditional PK biochar fertilizer (biochar mixed K 3PO4) b Commercial PK fertilizer (K

Riferimenti

Documenti correlati

comunque diffusa tra le cappelle fiscali entro le diocesi di Reggio Emilia e di Modena, alcune delle quali, come quella di Guastalla, di S. Cesario, di Sorbara e della stessa corte di

The techniques we use to establish the new conjugacy results are detailed in Section 4 , and build upon three aspects: the characterisations of Dirichlet and gamma random

Other important contributors on the topic are for example Batham (1973), who measured pressure distributions on smooth and rough cylinders at critical Reynolds

Scrive Matthew Calarco: «Ciò che Derrida cerca di com- prendere attraverso questo concetto [di carno-fallo- gocentrismo] è il modo in cui la metafisica della

A low lethality is also detectable in urban equatorials countries with high pollution rates (e.g., Singapore) [6] while the association is less strong in

As another example, on the 3-sphere S 3 every vector bundle is trivial, hence there is only one class of frame bundles for any metric on any vector bundle E → S 3 and this is true,

A—whole animal in which are visible the olfactory organ and suckers; B—adult Octopus vulgaris CNS diagram showing a dorsal view of the lobes involved in chemoreception (msf:

1 the results on the temperature depen- dence of the surface resistance of a YNBCO film measured at 1.44 and 9.7 (open resonator) and 19.8 GHz (closed cavity) are shown.. In the