ContentslistsavailableatScienceDirect
Digestive
and
Liver
Disease
j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / d l d
Position
Paper
AISF
position
paper
on
nonalcoholic
fatty
liver
disease
(NAFLD):
Updates
and
future
directions
夽
The
Italian
Association
for
the
Study
of
the
Liver
(AISF)
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received29December2016
Receivedinrevisedform8January2017 Accepted10January2017
Availableonline23January2017 Keywords: Diagnosis Epidemiology Genetics Management Naturalhistory Physiopathology
a
b
s
t
r
a
c
t
Thisreviewsummarizesourcurrentunderstandingofnonalcoholicfattyliverdisease(NAFLD),a multi-factorialsystemicdiseaseresultingfromacomplexinteractionbetweenaspecificgeneticbackground andmultipleenvironmental/metabolic“hits”.
Theroleofgutmicrobiota,lipotoxicity,inflammationandtheirmolecularpathwaysisreviewed in-depth.WealsodiscusstheepidemiologyandnaturalhistoryofNAFLDbypinpointingtheremarkably highprevalenceofNAFLDworldwideanditsinherentsystemiccomplications:hepatic(steatohepatitis, advancedfibrosisandcirrhosis),cardio-metabolic(cardiovasculardisease,cardiomyopathy,arrhythmias andtype2diabetes)andneoplastic(primarylivercancersandextra-hepaticcancers).
Moreover,wecriticallyreportonthediagnosticroleofnon-invasivebiomarkers,imagingtechniques andliverbiopsy,whichremainsthereferencestandardfordiagnosingthedisease,butcannotbeproposed toallpatientswithsuspectedNAFLD.
Finally,themanagementofNAFLDisalsoreviewed,byhighlightingthelifestylechangesandthe pharmacologicaloptions,withafocusontheinnovativedrugs.
Weconcludethattheresultsofongoingstudiesareeagerlyexpectedtoleadtointroduceintothe clinicalarenanewdiagnosticandprognosticbiomarkers,preventionandsurveillancestrategiesaswell astonewdrugsforatailoredapproachtothemanagementofNAFLDintheindividualpatient.
©2017EditriceGastroenterologicaItalianaS.r.l.PublishedbyElsevierLtd.Allrightsreserved.
1. Introduction
Nonalcoholicfattyliverdisease(NAFLD)hasprompteda grow-ingclinicalandresearchinterestoverthelast25years.Paramount information hasprogressivelyaccumulatedonthegenetics and behavioralriskfactorsfordiseasedevelopmentandprogression [1,2],onhepaticandextra-hepaticcomplications[3,4]andon puta-tivetreatmentstrategies[5,6].Nevertheless,theburdenofdisease isstillincreasing,mainlyduetotherisingtideofobesityandtype 2diabetesmellitus(T2DM)epidemics(“diabesity”)andthelackof effectivetreatmentoptions.NAFLDwhich,inaclosedloopfuelsthe
TheItalianAssociationfortheStudyoftheLiver(AISF)AmedeoLonardoa,1,Fabio
Nascimbenib,1, Giovanni Targherc,Mauro Bernardid, FerruccioBoninoe,
Elisa-bettaBugianesif,AlessandroCasinig,AmaliaGastaldellih,GiulioMarchesinii,Fabio
Marraj,LucaMielek,FilomenaMoriscol,SalvatorePettam,FabioPiscaglian,
Gian-lucaSvegliati-Baronio,LucaValentip,StefanoBellentaniq,∗ aDivisionofInternal Medicine,NOCSAE,AziendaOspedaliero-Universitaria,Modena,Italy
b-qSeeAppendixA.
夽 Reportof2015AISFMonothematicConferenceonNAFLD.
∗ Correspondingauthorat:CapoServiziodiGastroenterologiaedEpatologia, Clin-icaSantaChiara,ViaFranscini4,6610Locarno,Switzerland.
E-mailaddress:[email protected].
1 Theseauthorscontributedequallytothisarticle.
“diabesity”epidemics[7],maystartveryearly–eveninutero[8,9] –andthelongertheexposure,thehighertherisktodevelopan advanceddiseaseanditscomplications[10].
So,whatcanbedonetohaltthedevelopmentorreducethis bur-denofdisease?Europeanclinicalguidelinesonthemanagementof NAFLDhavebeenrecentlypublishedbythethreesistersocietiesof LiverDisease,DiabetesandObesity[11].Atthetimeofpublication ofsuchguidelines,theparticipatingExpertsraisedconsiderable concernabout thedifficultiesexpected in conducting universal screeningandappropriatesurveillancestrategiesandfollow-upin suchapotentiallyhugepopulationofindividuals.Indeed,the num-berofindividualsatriskseemstoolargetobeaffordablebythe Nationalhealthcaresystems,butselectioncriteriadonotguarantee satisfactorysensitivityandspecificitytoidentifydisease progres-sion[12].Surrogate,non-invasivemarkersofNAFLDcanbeused fortheirnegativepredictivevaluetosparepatientsfrom under-goingliverbiopsy;however,theirresultsmayassistphysiciansin dictatingtheprognosis,notinguidingtreatmentstrategies,given thatvalidatedpharmacologicalinterventionsarelacking[13].
Disease control may,therefore, only be achieved by appro-priate societal interventions aimed at keeping at bay the behavioralriskfactorsalsoinvolvedinthepathogenesisof “dia-besity”. Nonalcoholic steatohepatitis-cirrhosis (NASH-cirrhosis) http://dx.doi.org/10.1016/j.dld.2017.01.147
andNASH-hepatocellularcarcinoma(NASH-HCC)areonlythe“tip oftheiceberg”oftheunhealthyconsequencesofnon-communicable diseases[14].
Againstthisbackground,this updatedpositionpaperaimsto summarizingthechieftopicsdiscussed duringtheAssociazione ItalianaperloStudiodelFegato(AISF)SingleTopicConferenceon NAFLDheldinModena(October8–10,2015)inmemoryoflate Pro-fessorPaolaLoria,whowastheCoordinatorofthefirstAISFclinical practiceguidelinesformanagementofNAFLD[15].
2. PathophysiologyofNAFLD 2.1. Pathogenesis
NAFLDis a multi-factorial disease resultingfrom a complex interaction of environmental “hits” and a genetic background (Fig.1).Ahigh-caloriediet,oftencoupledwithasedentary behav-ior,contributetothedevelopmentofNAFLD,bothdirectlyandvia weightgain.Dietaryexcessofsaturatedfatsandrefined carbohy-drateshasbeenassociatedwithNAFLDandahighfructoseintake mayincreasetheriskofNASH[16,17].Developmentand progres-sionofNAFLDarestronglyassociatedwithinsulinresistance(IR) andmetabolicsyndrome(MetS)components,particularly abdom-inalobesityandT2DM[18].ThemostcommoncauseofNAFLD is analtered whole-bodyenergetic homeostasis,due tocaloric intakeexceedingcaloricexpenditure,withconsequentspillover ofextra-energyin theformof non-esterifiedfattyacids(NEFA) fromvisceraladiposetissue intoectopicfatdepots,suchasthe liver,skeletalmusclesand pancreas[19].NAFLDwill invariably developwhentherateofhepatictriglycerideflowingtotheliver viathebloodstreamorsynthesizedwithintheliverexceedsthe rateofhepatictriglycerideoxidationandVLDLsecretionintothe bloodstream[19].Approximately60%ofhepaticlipidsderivesfrom increasedperipherallipolysisoftriglycerides(duetoadipose tis-sueIRandfailuretoadequatelysuppressperipheraltriglyceride lipolysis),whiledietaryfatsandsugarscontributeapproximately 35–40%[20].Theliveritselfmayalsocontributetosteatogenesisby synthesizingtriglyceridesfromdietarycarbohydratesthroughde novolipogenesis.Thecontributionofdenovolipogenesistoliver fatcontentislessthan5%inhealthysubjectsandmayincreaseto approximately25%inNAFLDpatients[20].Intra-hepatocytic accu-mulationofdiacylglycerolintermediatesimpairshepaticinsulin signalingandfuelsgluconeogenesis,sopromotinghyperglycemia and predisposing to the development of T2DM [21]. Increased amounts of circulating and intracellular NEFAs are also associ-atedwithanincreaseinnuclearfactorkappa-B(NF-B),eventually leadingtotheexpandedanddysfunctionaladiposetissue overpro-ducingmultiplepro-inflammatorycytokinesandunder-producing anti-inflammatoryadipokines,suchasadiponectinwhich, collec-tively,mayfurtherdictateNAFLDprogression[22,23].
2.2. Lipotoxicityandinflammation
AsshowninFig.1,NASHprogressionresultsfromnumerous eventsoriginatingwithintheliverandindistalorgans,including thevisceraladiposetissueandthegastrointestinaltract[24]. Fat-induceddamagetothehepatocytes(lipotoxicity),ismorelinked totheabundanceofspecifictoxiccompounds,suchasNEFAsand ceramides,thantothetotalamountofstoredfat[25].Evidence fromgeneticstudies,ontheotherhand,suggeststhattheamount offataccumulationisimportant[26].Toxiclipidscandetermine cellinjurythroughavarietyofmechanisms,includingincreased oxidative stress and mitochondrial dysfunction. Saturated fatty acidsareincreasedinNASH[24,25]andinduceinflammationand hepatocyteapoptosisby activatingJunN-terminal kinase (JNK)
andmitochondrialpathways[27].Freecholesterolisaprominent mechanismforNASHdevelopmentandprogression.Interestingly, necroptosishasbeenrecentlydescribedasacelldeathmechanism potentiallyinvolvedinlipotoxicity,whichismorphologically com-parabletonecrosis,thoughcharacterizedbydefinitebiochemical pathways[28].
Endoplasmic reticulum (ER) stress also takes part in NASH pathogenesis,astheresultoftheinductionoftheunfoldedprotein response, which is an adaptive mechanism potentially trigger-ing apoptosis. JNK,an activator of inflammation and apoptosis implicated in NAFLD progression, is one of the major media-tors of ERstress [29]. Hypoxiaperturbs lipid homeostasis and insulinsignalingpathways.Moreover,reducedoxygen availabil-ityinduces secretionofpro-inflammatory cytokines[30].These adverseeffectsaremediatedbytwohypoxia-inducible transcrip-tionfactors(HIF-1␣andHIF-2␣),whichregulatecellularresponse tooxygendeficiency andcanbeactivatedbyadditionalstimuli involvedinNASH,includingoxidativestressorinflammatory sig-nals[30].
Chronic inflammationis a key factor in NASH pathogenesis. Kupffercellactivationoccursatanearlystage,andprecedesthe recruitmentofothercells.Attentionhasbeenpaidtothedifferent phenotypesofKupffercells,i.e.,M1andM2,considered primar-ilyimmuno-regulatory[31].Hepatocytedeathisastrongtrigger of inflammation and fibrosis, through signaling pathways that include tumor necrosis factor (TNF)-related apoptosis-inducing ligandreceptor,FasandTNFreceptor,andpromotetheexpression ofseveralcytokinesandchemokines.Differentiationtowarda pro-inflammatory ‘M1phenotype’ isdriven by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns(DAMPs) interactingwithtoll-like receptors(TLR),and inducesexpressionofpro-inflammatoryfactors,suchasinterleukin (IL)-1,IL-12,TNF-␣,andchemokinesCCL2andCCL5[32]. Remark-ably, chemokines such as CCL2 and CCL5 may induce hepatic stellatecellactivation,triggeringfibrogenesis.Besidesresidentand infiltratingmacrophages,theroleofotherinflammatorycells,such asneutrophils,lymphocytes,NKcellsanddendriticcellsisactively beingevaluated[24].
TLRsrecognizeendogenousdangersignals,suchasDAMPsor PAMPs[32].TLR-inducedpathwaysplayacentralroleinthe acti-vationofhepaticcells,primarilyKupffercells,butalsohepatocytes andstellatecells.TLR2interactswithmultiplePAMPs,whichare increasedinNAFLD,anditsinhibitionpreventshepatic/systemic IRinhigh-fatdiet–fedmice[32].TLR9isactivatedby unmethy-latedDNA,typicallyexpressedinvirusesandbacteriabutrarein mammaliancells.TLR9downstreamsignalinginvolvesIL-1,and isassociatedwithNASHseverityandfibrosis.Thepivotalroleof TLR4inthepathogenesisofNASHhasbeenshowninTLR4-deficient micethatdisplaylowerlevelsofinflammationandfibrosis.TLR4 isprimarilyactivatedbybacteriallipopolysaccharide,triggering expressionofcytokinesandchemokines(e.g.,TNF-␣,IL-1,IL-6 andIL-12)[33].Reactiveoxygenspeciesarealsoinducedin TLR4-activatedKupffercells.TLR4isexpressedbyotherhepaticcells, includingstellatecellsandhepatocytes,whereTLR-4exertsactions relevantforthepathogenesisand progressionofNAFLDtoward fibrosis[33].TLR4-mediatedinflammatoryresponsescanalsobe elicitedbyDAMPsreleasedbynecroticcells,suchashighmobility groupbox-1[34].
TheNOD-likereceptors(NLR),whichparticipateinthe assem-bly of inflammasomes (multi-protein complexes required for initiation of inflammatory signals) play a major role in NASH pathogenesis. Activation of the inflammasome is induced by TLRs together with signals linked tocellular damage, e.g., uric acid, reactive oxygen species or adenosine triphosphate, and results in the secretion of mature IL-1 and IL-18. A role for NLRP3 inflammasome in NAFLD development and progression
Fig.1. PathogenesisofNASH.Unhealthylifestyleandhighfatdietnotonlyresultsinexcessfataccumulation(includingexpandedvisceralfat)butalsoindysbiosis,where FFAscausesteatosisandexertlipotoxiceffects.Moreover,theinflamedadiposetissuereleasesadipokines,includingleptinandresistinassociatedwithincreasedhepatic fibrosis,whilethereleaseofadiponectinisreduced.PAMPs=pathogen-associatedmolecularpatterns;TLRs=toll-likereceptors;DNL=denovolipogenesis.
toNASH hasbeenshown bothin humans and inanimal mod-els[35].However, it hasalsobeen demonstrated that thelack ofNLP3promotesgutdysbiosisand chronicinflammation[36]. ActivationofNLRP3inflammasomehasbeenassociatedwith hep-atocytepyroptosis,arecentlydescribed,inflammasome-mediated, celldeathmechanism.
Differentnuclearreceptorshavebeenimplicatedinthe patho-genesisofNASHanddevelopmentoffibrosis.Importantly,these proteinsmaybetargetedbydrugsalreadypresentintheclinical arena.Thereceptorsonwhichmoreinformationhasaccumulated include thenuclearfarnesoid Xreceptor (FXR), theperoxisome proliferator-activatedreceptor(PPAR)-gammaandthePPAR-alpha [37].Agonistsofthesenuclearreceptorsimprovehepatic steato-sis,inflammationandfibrosis,andarebeingtestedinclinicaltrials (suchasdiscussedatSection5inthisreview).
Adiposetissueisrecognizedasanendocrineorganthatsecretes avarietyofadipokines,whichcontrolsystemicmetabolismand energy homeostasis. Among these, leptin and adiponectin are involvedinthepathogenesisofNAFLDanditsprogressiontoNASH, leptin being identified as a pro-fibrogenic adipokine, whereas adiponectindecreasesinflammationandfibrogenesis[38]. 2.3. Microbiota
Ahugegroupofmicroorganisms,collectivelydefinedasthegut microbiota,colonizesthehumanintestine.Ithasbeenestimated thathumangutharborsatleast100trillionmicrobialcells,which are differently represented along the intestine, reaching the greatest concentration in thelarge bowel [39]. Despite a large inter-individualvariation,adultgutmicrobiotaisfairlystableand isdominatedbythephylaFirmicutesandBacteroidetes,followed byActinobacteriaandVerrucomicrobia[40].
Gut microbiota confers the host several physiologic bene-fits, including immune system development, protection from pathogens,andmaintenanceofintestinalandmetabolic homeo-stasis[41].Quantitativeandqualitativechangesofgutmicrobiota composition, also called dysbiosis, have been associated with thedevelopmentofbothintestinalandextra-intestinaldiseases, includingtheMetS.Aroleofdysbiosisinthedevelopmentof obe-sityandNAFLDhasbeendemonstratedinbothanimalandhuman studies.For example,a seminalstudy showedthatthetransfer ofgutmicrobiotafromobesetoleanindividuals inducedinthe recipients,thesamemetabolicalterationsofthedonors[42].Gut microbiota changes were mainlycharacterizedby an increased Firmicutes/Bacteroidetesratio.However,otherinvestigatorsfailed toconfirmthesefindingsandsuggestedthatmetagenomic-based functionalaspectsofgutmicrobiotaarelikelytobemoreimportant thanphylumspecificity[43].
Severalmechanismsareinvolvedinthedevelopmentof obe-sityanditsassociatedmetaboliccomplications.Inparticular,gut microbiotacantrigger(directlyorviathesynthesisofend-products ofbacterialmetabolism,suchasshort-chain fattyacids), differ-ent signaling pathways, which eventually lead to an increased depositionofperipheralfat[42,44].Furthermore,several intesti-nalmicroorganismscanincreasetheefficiencyofcaloricextraction from the food, thus contributing to the development of obe-sity[45].Lastly,diet-induceddysbiosishasbeenassociatedwith increasedgutpermeability in bothmice[46] and humans[47]. Thiscould leadtoincreased translocation ofbacterial products fromtheintestinallumenintotheportalcirculationthereby trigg-ering chronic inflammation. Moreover, within the liver, these circulatingpathogenscanalsoactivatethefamilyofpattern recog-nition receptors(TLRs)andinducepro-inflammatory pathways, which contributetoliver diseasedevelopmentand progression [48–50].
2.4. Genetics
Geneticfactorsaccountfor aboutof halfof thevariability in intra-hepaticfatcontent,andfibrosistendstobeco-inheritedwith steatosis[26].
Recentgenome-wideassociationstudieshavebeguntounveil thespecificcommongeneticdeterminants ofNAFLD.By farthe mostimportantone,duetohighfrequencyandlargesizeeffect, isthep.I148Mloss-of-functionvariantofthePatatin-like phos-pholipasedomaincontaining-3(PNPLA3)gene.Thisgeneencodes foralipaseinvolvedintheremodelingoflipiddropletsin hepato-cytesandthereleaseofretinolfromhepaticstellatecells[51,52]. Inthepresenceofendogenous/exogenousnoxiousstimuli (obe-sity,IR,alcoholandchronicviralhepatitis),carriersofthePNPLA3 I148Mvariantareatincreasedriskofdevelopingsteatohepatitis, cirrhosisandHCC[52].
The loss-of-function variant p.E167K variant of the trans-membrane 6 superfamily member 2 (TM6SF2)is more rare, is carried by about 10% of individuals, and also predisposes to NAFLDand advanced fibrosis/cirrhosis by reducing lipid secre-tionfromhepatocytes, whileprotecting at thesametime from dyslipidemia and cardiovascular disease [53,54]. Other genetic determinantsofNAFLDincludevariants oftheglucokinase reg-ulatoryprotein,regulatinglipogenesisandthemembrane-bound O-acyltransferasedomaincontaining-7,influencingphospholipid metabolism[55,56].
Multiplemutationsingenesregulatinglipidsecretion,suchas apolipoproteinB,arealsoassociatedwithincreasedriskofsevere NAFLD,cirrhosisandHCC,andareresponsibleforfamilialcasesof thedisease[57].
Allthesenewdiscoveriesareexpectedtocarryoutan improve-ment in ourability togauge therisk in the individualpatient, identifyingnewdiseasemechanismsandtailoredtherapeutic tar-gets.
3. EpidemiologyandnaturalhistoryofNAFLD 3.1. Epidemiology
Arecentsystematicreviewandmeta-analysisestimatedthat 25%oftheworldadultpopulationhasNAFLDasdiagnosedby imag-ing.AlthoughNAFLDwashighlyprevalentinallcontinents,the highestprevalencerateswerereportedfromSouthAmericaand theMiddleEast,whereasthelowestprevalencewasreportedfrom Africa[58].InItaly,theprevalenceofNAFLDrangesapproximately from20%[59]to25%[60–62].
Demographic(age,sexandethnicity)andmetabolicmodifiers (MetScomponents)modulatetheriskofdevelopingNAFLD.The prototypicNAFLDpatientisa60-to-85year-oldHispanicman;in contrast,individualsofEuropeanand,inparticular,Africandescent are more spared from NAFLD [63]. Patients with either severe obesity(∼98%)orT2DM(∼70%)aremaximallypronetoNAFLD development; NAFLD is equally prevalent in either sex among patientswithT2DMwhich,therefore,abrogatesthehigher preva-lenceofthemalesextypically observedinnon-diabeticNAFLD individuals[63].TheriskofNAFLDisalsomaximal(∼85%)among patientswithcombineddyslipidemiaandelevatedserum amino-transferases[64].
TheprevalenceofNASHrangesfromasmanyas59.1%among biopsiedNAFLDpatientsto29.9%forNorthAmericaand6.7%for Asia,respectively,amongpatientswhoarenotcandidatesforliver biopsy[58].
ThepooledregionalNAFLDincidence estimatesforAsia and Israelwerereportedtobeapproximately52per1000and28per 1000person-years,respectively[58].InItaly,apioneeringstudy
performedona cohort of hysterectomizedwomen reportedan incidencerateofNAFLDofapproximately2per1000women/year [65].
Arecentmeta-analysisestimatedthatthepooledmean fibro-sisprogressionrateperyearforpatientswithbiopsy-provenNASH was0.09,andapproximately40%ofthesepatientsprogressedto themoreadvancedstagesovertime[58].Theannualincidenceof HCCinNAFLDpatientswas0.44per1000person-years,whereas the corresponding figure for patients with NASH was 5.3 per 1000person-years[58].Comparedtonon-NAFLDcontrolsubjects, patientswithNAFLDareexposedtoanalmosttwo-foldincreased riskofliver-relatedmortality[58]andtoasubstantiallyincreased riskofdevelopingfatalandnon-fatalCVDevents[66].
Recentstudieshavedescribed thespecificfeaturesofNAFLD epidemiologyinleanindividuals[67],elderlypeople[68]and chil-dren[69].
3.2. NaturalhistoryofNAFLD:hepaticrisk
NAFLDcoursehasfourclinical-pathologicalentities:steatosis, NASH,advancedfibrosis/cirrhosis,andHCC.Researchhasfocused onriskfactorsforeachofthesestepsandfactorsregulatingthe migrationofpatientsfromeachentitytotheothers[70].
3.2.1. Steatosis
Normalliverisalmosttotallydevoidofanyfatcontent[71]. Con-versely,mostpatientswithNAFLDwillhavesimplesteatosis,(fatty changesaffecting>5%ofhepatocytes),usuallyassociatedwithmild chronicinflammation[72,73].
Steatosisresultsfromtheinteractionofmultiplefactors includ-ingage,sexandlifestyle[70,73].Bodyweightmirrorsdietaryhabits andphysicalexerciseandisamajordeterminantofNAFLD.Body weightchanges ofas littleas2–3kgareassociated witheither increasedrisk ofdeveloping NAFLDor itsreversal[74].Finally, variousdrugsmaycontributetoreversingNAFLD[5].
3.2.2. NASH
Steatosisplusmildinflammatorychangesand“ballooning” hep-atocytedegenerationdefineNASH,whichaccountsforupto30%of NAFLDcases[73].
ThestrongestpredictorsofNASHare:olderage,malesex,and variousgeneticandmetabolicriskfactors[75–81].
SimplesteatosiscancertainlyprogresstoNASH[82–84].The timetoprogresstocirrhosisfromearly,diseasewouldprobably takeaslongasapproximately57yearsforsteatosiscomparedto24 yearsforNASH[3].Theratesofdiseaseprogressionareslowerthan thoseobservedinHCVinfection[85].
Glitazonesdonotsignificantlyreversehepatocyteballooning; thisfindingsupportstheviewthathepatic/systemicIRplaysakey roleintriggeringtheearlyphasesofNAFLDdevelopmentrather thansustainingitssubsequentprogression[86].
3.2.3. Advancedfibrosis/cirrhosis
NASH strongly predicts thedevelopment of advanced fibro-sistogetherwith age,body massindex (BMI),sex, geneticand hormonal/metabolicfactors[87–94].Fibrosis,initsturn,strongly predictsliver-relatedmortalityinNAFLD[95].Statinsseemalsoto exertsomebeneficialeffectonliverfibrosisprogressioninpatients withandwithoutT2DM[96,97].
NASH-cirrhosis histologically exhibits advanced fibrosis and nodularchanges;however,fattychangesmaytypicallydisappear overtime[98].
Obesity, T2DM and steatosis, together withthe presence of carotidatheroscleroticplaquesandincreasedintima-media thick-ness, are strongly associated with advanced fibrosis/cirrhosis [99–101]. In particular, the coexistence of T2DM and steatosis
stronglypredictsthedevelopmentofclinicallysignificanthepatic fibrosis[100].
3.2.4. HCC
ComparedtootheretiologiesofHCC,NAFLD-HCCisassociated withalowermale/femaleratioandmayoccurinnon-cirrhotic liv-ers[102–104].NAFLD-HCCisoftendiagnosedlateasaresultof itsescapingsurveillanceprotocols,whichtranslatesintocurtailed chancesforradicaltreatmentand accountsforaworse progno-siscomparedwithHCCcausedbyviralhepatitis[104–106].The PNPLA3I148Mpolymorphism,age,BMI,T2DM,dietaryhabitsand drugsmaybi-directionallymodulatetheriskofdeveloping NAFLD-HCC[92,107–113]andT2DMaggravatesHCCoutcome[114]. 3.3. NaturalhistoryofNAFLD:cardiovascular,arrhythmicand diabetesrisks
Cardiovasculardisease(CVD)istheleading causeof mortal-ity in patients with NAFLD [95,115–117]. A recent systematic reviewandmeta-analysisshowedthatpatientswithNAFLDhad ahigherriskoffatalandnon-fatalCVDeventsthanthose with-outNAFLD[66].Patientswithmore‘severe’NAFLDwerealsomore likely todevelopfatal and non-fatalCVDevents[66].Although theresultsofthisupdatedmeta-analysisproviderobustevidence oftheassociationbetweenNAFLD(andNAFLDseverity)andrisk ofmajor CVDevents, itis importantto highlightthatcausality remainstobefurtherproveninhigh-qualityinterventionstudies. GiventhatCVDcomplicationsfrequentlydictatetheoutcomeof NAFLD,ascreeningofthecardiovascularsystemismandatoryin allpatientswithNAFLD,atleastbydetailedriskfactorassessment [11].
NAFLDisalsolinkedwithsubclinicalmyocardialremodeling anddysfunction(i.e.,functionalandstructuralcardiomyopathy), valvularheartdiseases(i.e.,aortic-valvesclerosisormitralannulus calcification),andincreasedprevalenceandincidenceof perma-nentatrialfibrillation[118–124].Moreover,NAFLDisstronglyand independently associated with heart rate-corrected QT interval prolongation[125,126]andanincreasedprevalenceofventricular arrhythmiason24-hECG-Holtermonitoring[127].Finally, prelim-inaryevidencealsosuggeststhatNAFLDisassociatedwithhigher 1-yearre-hospitalizationratesin patientshospitalizedforacute heartfailure[128].
For many years, NAFLD has been considered as the simple “hepaticmanifestationoftheMetS”[63,129].However,alarge num-berof retrospectiveandprospective observationalstudieshave recentlydemonstratedthatNAFLDisanearlypredictorofanda determinantforthedevelopmentofnew-onsetT2DMandMetS [4,130].Arecentsystematicreviewandmeta-analysisconfirmed thatNAFLD(asdiagnosedeitherbyabnormalserumliverenzymes orbyultrasonography)isindeedassociatedwithalmosttwo-fold increasedincidenceratesofbothT2DMandMetSoveramedian 5-year follow-up period [7]. Consistently, recent observational studieshaveshownthatthereisastrongandindependent asso-ciationbetweenimprovementofNAFLDanddecreasedincidence ofT2DM[131,132].Futurecontrolledinterventiontrialsare, there-fore,neededtodeterminewhethertreatingNAFLDleadstoT2DM riskreduction.
3.4. NaturalhistoryofNAFLD:cancerrisk
IndirectevidenceforanassociationofNAFLDwithcancer inci-dence and mortality came from large epidemiological studies, whichhaveclearlydemonstratedthatobesityandT2DMcontribute toincreasedincidenceandmortalityfromseveralcancertypes, includingliverandcolo-rectalcancers[133–135].Consistently, lon-gitudinalstudiesshowedthatNAFLDwasassociatedwithincreased
burdenofhepaticandextra-hepaticcancers[136]andmalignancy wasaleadingcauseofmortalityinpatientswithNAFLD,ranking secondafterCVDmortality[137]andaccountingforuptoonethird ofdeathsinpatientswithNAFLDandT2DM[138].
Primarylivercancerisdeemedtobecausallyassociatedwith NAFLD.HCCincidenceissteadilyincreasingoveryearsin paral-lelwiththeburstof“diabesity”.NAFLDisbecomingamajorcause ofHCC andthesecond mostcommoncause ofHCCin patients listedforlivertransplantation[106,139].Worryingly,thewhole histological spectrum of NAFLD can lead to HCC and as many as 50%of NAFLD-relatedHCC occurin patientswithout cirrho-sisandareoftendetectedlate[104].CumulativeHCCincidence or mortality rates seem tobe lower in NASH-cirrhosisthan in cirrhosis due toother etiologies;however, it is notpossible to clearly gauge theactual HCC risk in thewholeNAFLD popula-tion[140–142].Apartfromadvancedfibrosis/cirrhosis,dataonly point to male sex, older age, alcohol abuse and MetS compo-nentsasestablishedclinicalriskfactorsforHCCdevelopmentin NAFLD[108,143,144].Forthesereasons,exceptforpatientswith NASH-cirrhosis, specificsurveillance/screeningstrategiescannot becurrentlyrecommendedinNAFLDpatients.Mountingevidence alsosuggeststhatMetSandNAFLDareinvolvedinthedevelopment ofothertypesofprimarybenignandmalignantlivertumors,i.e. hepatocellularadenoma[145,146]andintra-hepatic cholangiocar-cinoma[147–150].Ofnote,theinterplaybetweenNAFLDandHCC seemstobemorecomplexthantheclassiclinearequation fibrosis-cirrhosis-dysplasia,andprobablyhepatocellularadenomaplaysa roleinthisprocess[103,151,152].
Emergingevidence alsosuggestsa link betweenNAFLDand someextra-hepaticcancers,typicallythosecloselyassociatedwith “diabesity” [153]. In particular, colorectal adenoma and cancer havebeenassociatedwithNAFLDbyretrospectivestudiesfrom Asia,USAandEurope[154–157].Therearealsoisolatedreports of anincreasedrisk ofothergastrointestinal(esophagus, stom-achandpancreas)andextra-gastrointestinalmalignancies(kidney, prostate,lungandbreast)[136,153,158–160].However,allthese dataarepreliminary,and theirvalidityremainstobeevaluated prospectivelybeforespecificsurveillance/screeningstrategiesmay beissued.
4. DiagnosisandclinicalapproachtoNAFLD 4.1. Diagnosis
Given thatapproximatelyone third oftheadultEuropeand USApopulationshaveNAFLDandthatinvasivediagnostic tech-niquesarenotapplicableinthisimpressivenumberofindividuals, non-invasivebiomarkersofsteatosisandfibrosisarenecessary.As showninFig.2,therecentlypublishedEuropeanclinicalpractice guidelinesforthemanagementofNAFLDhaveproposeda diagnos-ticflow-charttoassessandmonitordiseaseseverityinthepresence ofsuspectedNAFLDandmetabolicriskfactors[11].
ThediagnosisofNAFLDshouldrelyonthefollowingcriteria: (i)hepaticsteatosisoneitherimagingorhistology,(ii)no exces-sivealcoholconsumption(athresholdof20g/dayforwomenand 30g/dayformenisconventionallyadopted),and(iii)nocompeting causesofhepaticsteatosis[11].
LiverbiopsyremainsthereferencestandardfordiagnosingNASH andstagingfibrosisinpatientswithNAFLD.However,this proce-dureisinvasive,potentiallyrisky,patientunfriendlyandsubjectto samplingerror;therefore,liverbiopsyisnotsuitablefordiagnosis inlargecohortsofindividualsorforpatientmonitoring[11].
Imaging techniques. The gold standard to diagnose hepatic steatosisisthemagneticresonanceimaging(MRI)orspectroscopy (MRS)thatcandetectamountoffataslowas1%[11].However, the cost of MRI limits itsroutine clinical use. Ultrasonography
Fig.2.Diagnosticflow-charttoassessandmonitordiseaseseverityinthepresence ofsuspectedNAFLDandmetabolicriskfactors.1Steatosisbiomarkers:FattyLiver Index,SteatoTest,NAFLDfatscore.2Livertests:ALT,ASTorGGT.3AnyincreaseinALT, ASTorGGT.4Serumfibrosismarkers:NAFLDFibrosisScore,FIB-4,Commercialtests (e.g.,FibroTest,FibroMeterorELFscores).5Lowrisk:indicativeofno/mildfibrosis; medium/highrisk:indicativeofsignificantfibrosisorcirrhosis.
Reprinted,withpermission,fromRef.[11].
remainstherecommendedfirst-lineimagingmodalityinclinical practice,butitsaccuracyismuchlowerthanthatofMRI/MRSand itscostisalsolowerthanthatofMRI.Recently,withthe devel-opmentofnewimagingsequencesforMRI,timeofscreeningis decreased(approximately 10–15min/session) andthus thecost canbecomemoreaffordable[161,162].Otherimagingtechniques, e.g.ultrasonography-basedtransientelastography(Fibroscan),2D acousticradiationforceimpulseimagingorMR-elastography,can alsobeusedtodiagnoseliverfibrosis[11].Themainlimitationof ultrasonography-basedtransientelastographyinclinicalpractice isitsfailuretoobtainreliableliverstiffnessmeasurements(∼20% ofcases),mainlyinobesepatients,whichdiminishesitsapplication inNAFLD.
Serumbiomarkers. Hepatic steatosisis often associated with mild-to-moderate elevations of serum aminotransferase and gamma-glutamyl transferase (GGT) levels, but, at best, liver enzymesonlyidentifypeoplewhoareatincreasedriskofNAFLD andwho requirefurtherdiagnostictests.However, serumliver enzymelevelsareinaccurateindicatorsforand,therefore,should notbeusedaloneinclinicalpractice[11].Amongthebestscores forsteatosistherearethefattyliverindex(FLI)[163],theNAFLD liverfatscore[164]andtheSteatoTest[165].Thefirsttwoscores canbeeasilycalculatedusingserumtriglycerides,GGT,insulinand aminotransferases,BMI,waistcircumferenceandpresenceofMetS orT2DM[166].TheSteatoTestisacommercialkit.
AcommonclinicalconcerninpatientswithNAFLDiswhether theyhavesimplesteatosisorNASHand,moreimportantly,what thestageofhepatic fibrosisisandwhethertheleveloffibrosis (whichdictatesclinicaloutcome)hasincreasedovertime.There
arevarioushepaticfibrosisnon-invasivebiomarkers:theNAFLD fibrosisscore [167],theFIB-4 [168],theFibroTest, the Fibrom-eter,andtheEnhancedLiverFibrosis(ELF)score[165,169].The firsttwoscorescanbecalculatedusingplateletcount,albumin, andaminotransferases.TheFibroTest,FibrometerandELFscores arecommercialtests.Althoughnon-invasivemethodsrequire fur-thervalidation,thevarioustestscouldbeusefulforselectingthose patientswithNAFLDwhowillrequirealiverbiopsy.However,for thediagnosisof NASHbiochemical testsor imagingtechniques cannotdistinguishNASHfromsimplesteatosisand liverbiopsy remainsthereferencestandard[11].
4.2. Clinicalapproach
CVDcomplicationsarecommoninNAFLDpatientsandtherisk ofCVDandpoorCVDoutcomesisparticularlyincreasedinthose NAFLDpatientswithsevereliverdamage[95,117],suggestingthat NAFLDexertsapro-atherogeniceffectviaapro-inflammatoryand pro-fibrogenicmilieuthatcharacterizesseveredisease[170].
Onthesegrounds,acarefulassessmentofcardiovascularrisk (CVR)inallpatientswithNAFLDiswarranted.Itshouldincludethe assessmentoftraditionalCVRfactorsandalsoindicesofseverityof liverdisease,(serumsodiumandalbumin,theModelforend-stage liverdisease(MELD)score andtheNAFLDfibrosis score[171]). WhetherPNPLA3[172]andTM6SF2[54]genevariants,whichare associatedwithCVDalterationsinNAFLD,mayhelptostratifythe CVRneedsfurtherinvestigation.
Overall,bothhepaticandextra-hepaticriskfactorsshouldbe evaluatedinallpatientswithNAFLD.Namely, besidesthe non-invasiveassessmentofliverdamage(asdescribedabove),acareful searchforcardio-metaboliccomorbiditiesshouldalsoincludethe evaluationoffamilyhistoryforCVD/T2DM,theassessmentofBMI andwaist circumference,themeasurementof plasmalipid val-ues,estimatedglomerularfiltrationrateandalbuminuriaand,in selectedcases,thegeneticassessmentforstoragedisorders,such asthelysosomalacidlipasedeficiency[116,173].Innondiabetic patients,screeningforT2DMbymeasuringfastingorrandomblood glucose or hemoglobinA1c levelsis alsomandatory. Similarly, repeatedassessmentofarterialpressureshouldberecommended tonon-hypertensivepatients.Finally,CVRassessmentshouldrely notonlyontheavailableCVR scoringsystems,suchasthe Fra-minghamor“Progettocuore”riskcharts,butalsoontheassessment oftheseverityofliverdisease[171].In patientsathighCVRor withestablished T2DM,referral tocardiologistsshould alsobe consideredandfurtherdiagnostictestsperformedwhenever indi-cated.In nondiabetic patientsat low CVR, re-assessmentevery 2–3years may besuggested based onclinical judgmentalone. Patientswithadvancedfibrosis/cirrhosisshouldenterappropriate follow-upschedulesaimedatanearlydiagnosisofHCCandportal hypertension.However,ageneralizedHCCscreeningpolicycannot berecommendedinallnon-cirrhoticNAFLDpatientsatpresent, althoughcertainNAFLDindividualsareatanincreasedrisk.
Finally,inpatientswithdyslipidemia,hypertensionorT2DM, thecarefulcontrolofthesecardiometabolicdisorderswillnotonly reducetheNAFLD-associatedmetabolicandCVR,butalsoslowliver diseaseprogression.Toachievethisgoalstatins,insulin-sensitizers, incretin mimetics and ACE-inhibitors/sartans, if necessary, can safelybeused.
5. TreatmentofNAFLD/NASH
5.1. Nutritionalaspectsandlifestylechanges
Alltherecommendations fromthemostimportantscientific societies indicatethat body weightreduction obtainedthrough
lifestylechangesisthemosteffectivetreatmentforNAFLD.Alarge bodyofevidenceindicatesthatunhealthylife-styleisarelevant riskfactorforNAFLD/NASH[17,174].Accordingly,lifestylechanges focusingonweightloss,physicalactivityandhealthydietrepresent thebesttherapeuticapproach[175].
Abodyweightreductionof7–10%obtainedwithenergy restric-tionand/orregularphysicalactivityisassociatedwithhistological improvement/resolutionofsteatosisandinflammationand regres-sionoffibrosis[176,177].
Energyrestrictionshouldbeobtainedwithalow-calorie(about 1200–1600kcal/day)low-fatlow-carbohydratediet[178].Thediet compositioninNAFLDshouldconsistof<30%fat,notablywithno morethan10%ofsaturatedfattyacid,andrelativelylowin carbo-hydrates,∼50%oftotalkcal,notablybyreducinghigh-sugarfood [179].
As for physical activity, both aerobic activities (150–200min/week of moderate intensity aerobic exercise in aboutfoursessions,i.e.brisk walkingand/orstationerycycling) and resistance training effectively reduce hepatic fat content. Trainingshould be tailoredbased on patients’ preferences and maintainedlong-term[177,180,181].
Changesofdietcomposition,especiallyfornon-obesepatients, arearealisticandfeasibleapproachevenifbasedonlessconsistent evidence[182].Thegoldstandardoptionisafiber-richdiet rela-tivelylowin carbohydrates(complexonesshouldbepreferred) andfatcontent,withtheavoidanceoffructose[179],amoderate useof coffeeandadherencetoaMediterraneandietarypattern [183,184].Indeed,amongalltheproposeddiets,theMediterranean dietappearsasthemosteffectivedietaryoptionfor inducinga weightlosstogetherwithbeneficialeffectsonallcardio-metabolic riskfactorsassociatedwithNAFLD.
5.2. NewdrugsforNASH
DrugtherapyshouldbereservedforNASHpatientswhoareat maximalriskfordiseaseprogression.Todate,thereareveryfew high-quality,randomized,blinded,adequatelypowered,controlled studiesofsufficientdurationandwithadequatehistological
out-comes.Asafact,currentlytherearenoapprovedavailabledrugs forthetreatmentofNASH.Moreover,drugtreatmentofNASHhas beenfocusedtowardreducingsteatosis,necro-inflammationand fibrosis.
Given that NASH is closely related to T2DM, hypoglycemic drugshavebeenlargelyevaluated.InpatientswithT2DM,incretin mimetics,whichactbyagonizingglucagon-likepeptide1 (GLP-1)receptor,haveproveneffectiveinreducinghepatic/systemicIR, serumliverenzymesandliverfatcontent.TheLEANtrialperformed on52obesepatientsshowedthatliraglutidewasabletoresolve histologicfeaturesofNASHin39%ofthetreatedpatients[185]. Theserespondersalsoregisteredameanweightlossof2.1kg rais-inguncertaintyastowhetherthebeneficialhepaticeffectwasdue toliraglutideperseorcombinedwithweightloss.Further long-termstudieswithliraglutideareneededtoconfirmitsefficacyin patientswithNASH.
Otherinsulin-sensitizers,suchasPPAR-␥agonistshave been evaluatedinNASH[186].Thebestlevelofevidenceisavailablefor pioglitazoneinbiopsy-provenNASHpatients[187].PPARs modula-tionresultsintranscriptionalregulationofseveralgenesinvolved inmetabolicpathways[188]andthemodulationofadual PPAR-␣/␦agonistthroughelafibranoriseffectiveinimprovingplasma lipidprofile,andhepatic/systemicIR[189].InthephaseIIbGOLDEN trial,elafibranorwastestedwithaprimaryhistologicalend-point (NASHresolutionwithoutfibrosisworsening),whichwasachieved in 23% and 21% of patients treated with either 80mg/day or 120mg/day,respectively[190].Post-hocanalysisshowedaclear benefitinpatientswithmoreseveredisease,promptingaphaseIII trial.
AnothernuclearreceptortobetargetedtoobtainreducedIRand liverinjury,isFXR,anintracellularbileacidsreceptor[191]capable ofinhibitingbileacidssynthesis,reducingdenovolipogenesisand steatosisbyimprovingIR.IntheFLINTtrial,treatmentwith obeti-cholicacid,apotentFXRactivator,achievedaprimaryend-point ofimprovingthenecro-inflammationwithoutworseningof fibro-sisin46%ofthetreatedpatients.Moreover,comparedtoplacebo, theNASHresolutionwasobtainedin22%oftreatedpatients[192]. However,efficacyandlong-termsafety(e.g.,pruritusandincreased
Table1
OngoingclinicaltrialsforNASHinadultsubjects.
Drug Clinicaltrial number
Moleculartarget Routeof administration
Phaseof clinicaltrial
Histological end-points Drugstargetingmetabolichomeostasis
Elafibranor NCT02704403 Peroxisome
proliferator-activatorreceptor ␣/␦agonist
Oral,once-daily Phase3 Yes
Dapagliflozin NCT02696941 Sodium-glucoseco-transporter 2inhibitor
Oral,once-daily Pilot No Empagliflozin NCT02964715
and NCT02637973
Sodium-glucoseco-transporter 2inhibitor
Oral,once-daily Pilot Yes
Tofogliflozin NCT02649465 Sodium-glucoseco-transporter 2inhibitor
Oral,once-daily Pilot Yes Semaglutide NCT02970942 Glucagon-likepeptide1
analogue
Subcutaneous injection, once-daily
Phase2 Yes
Liraglutide NCT02721888 Glucagon-likepeptide1 analogue Subcutaneous injection, once-daily Pilot No MSDC-0602K NCT02784444 Mitochondrialtargetof thiazolidinedionesmodulator
Oral,once-daily Phase2 Yes Aramchol NCT02279524 StearoylCoAdesaturase
inhibitor
Oral,once-daily Phase2b Yes,assecondary outcomes GS-0976 NCT02856555 Acetyl-CoAcarboxylase
inhibitor
Oral,once-daily Phase2 No TVB-2640 NCT02948569 Fattyacidsynthaseinhibitor Oral,once-daily Phase1/2b No
ARI-3037MO NCT02574325 Niacinanalogue Oral,twice-daily Phase2 No
AZD4076 NCT02826525 MicroRNA103/107antagonist Subcutaneous
injection
Table1(Continued)
Drug Clinicaltrial number
Moleculartarget Routeof administration
Phaseof clinicaltrial
Histological end-points MGL-3196 NCT02912260 Liver-targetedselectiveagonist
forthethyroidhormone receptor-
Oral,once-daily Phase2 Yes,assecondary outcomes VK2809 NCT02927184 Liver-targetedselective
eagonistforthethyroid hormonereceptor-
Oral Phase2 No
Obeticholicacid NCT02548351 SyntheticbileacidfarnesoidX receptoragonist
Oral,once-daily Phase3 Yes LJN452 NCT02855164 NonsteroidalfarnesoidX
receptoragonist
Oral Phase2 No
GS-9674 NCT02854605 NonsteroidalfarnesoidX receptoragonist
Oral,once-daily Phase2 No EDP-305 NCT02918929 NonsteroidalfarnesoidX
receptoragonist
Oral,once-daily Phase1 No BMS-986036 NCT02413372 Fibroblastgrowthfactor21
analogue
Subcutaneous injection, once-daily
Phase2 No
NGM282 NCT02443116 Fibroblastgrowthfactor19 analogue Subcutaneous injection, once-daily Phase2 No Volixibat (SHP626)
NCT02787304 Ilealapicalsodium-dependent bileacidtransporterinhibitor
Oral,once-daily Phase2 Yes MT-3995 NCT02923154 Nonsteroidalmineralcorticoid
receptorantagonist Oral Phase2 No Testosterone undecanoate NCT01919294 Hypogonadism Intramuscolar injection Pilot Yes
Somatropin NCT02217345 Growthhormone Injection, once-daily
Pilotb No
Tesamorelin NCT02196831 Syntheticanalogueofgrowth
hormone-releasinghormone Subcutaneous injection, once-daily Phase2(HIV only) Yes,assecondary outcomes Metreleptin NCT01679197 and NCT02654977 Recombinant-methionyl humanleptin Subcutaneous injection Phase2(pts withpartial lipodystrophy) Yes
Drugstargetingoxidativestress,inflammationandapoptosis
VitaminE NCT01792115
and NCT02962297
Antioxidant Oral Phase2-3b Yes
Metadoxine NCT02541045 Antioxidant Oral,twice-daily Phase3b Yes
Emricasan NCT02686762
and NCT02960204
Caspaseinhibitor Oral,twice-daily Phase2a Yes
GS-4997 NCT02781584
and NCT02466516
Apoptosissignal-regulating kinase1inhibitor
Oral,once-daily Phase2 No
Cenicriviroc NCT02330549
and NCT02217475
DualC-Cchemokinereceptor types2and5antagonist
Oral,once-daily Phase2 Yes
JKB-121 NCT02442687 Toll-likereceptor4antagonist Oral,twice-daily Phase2 No
Amlexanox NCT01975935
and NCT01842282
TANK-bindingkinase1andIB kinaseinhibitor
Oral,thrice-daily Phase2 No
CF102 NCT02927314 A3adenosinereceptoragonist Oral,twice-daily Phase2 No
MN-001 (tipelukast)
NCT02681055 Multipletargets(leukotriene
receptorantagonism, inhibitionof
phosphodiesterases3and4, inhibitionof5-lipoxygenase)
Oral Phase2 No
Drugstargetingfibrosis
GR-MD-02 NCT02421094 Galectin-3inhibitor Intravenous
infusion
Phase2a No
Simtuzumab NCT01672866
and NCT01672879
Lysyloxidase-like2antibody Subcutaneous
injec-tion/intravenous infusion
Phase2a Yes
Otherdrugs
Solithromycin NCT02510599 Antibiotic Oral,once-daily Phase2 Yes
IMM-124E NCT02316717 IgG-richbovinecolostrum Oral,thrice-daily Phase2 No
Fecalmicrobiota transplantation
NCT02469272 and NCT02868164
Gutmicrobiota Duodenalinfusion Pilota No
FromClinicalTrials.govaccessedon6thDecember,2016[InterventionalStudieswithDrugs/BiologicalAgents;OpenStudies(recruiting;notyetrecruiting;expandedaccess) orClosedStudies,butActive,NotRecruiting,withoutResults;NonAlcoholicFattyLiverDisease/NonAlcoholicSteatohepatitis].
aTrialsincludingpatientswithcirrhosis. b Trialsnotincludingpatientswithtype2diabetes.
LDL-cholesterollevels)associatedwiththeuseofthisdrugneedto beaddressed.AndaphaseIIIstudyisnowongoingtothisend.
AnothertherapeuticoptionforNAFLDmaybetodecrease oxida-tivestressbyadministrationofanantioxidant,suchasvitaminE. InthePIVENStrial[187],in247nondiabeticNASHadults, vita-minEtreatment(800U/dayfor 96weeks),wasassociated with significantimprovementsinserumliverenzymesandNASH histo-logicalfeatures(steatosis,inflammationandballooning)compared toplacebo.However,beforevitaminEcanberecommendedforthe treatmentofNAFLD,furtherstudiesarerequiredtosupportefficacy andsafetyofthisfat-solublevitamin.
Attoday,onlyelafibranorand obeticholicacidare recruiting forphaseIIItrials;resultsareexpectedin2020.Moreover,several otherphaseIItrialsareinprogresstoevaluatetheeffectofnewer drugsondifferentpathogenicpathwaysinvolvedinNASH.Table1 recapitulatesongoingclinicaltrialsforNASHinadultsubjects.
Promisingresultsareexpectedfornoveldrugs,whichimprove metabolicdisturbancessuchasAramchol(phaseIItrial),a conju-gateofcholicandarachidicacid,whichpartiallyreducestheactivity of stearoyl-CoA desaturase and de novo lipogenesis [193,194]. Emricasan [195], an oral pan-caspase inhibitor acting on TNF-alphadriveninflammation,seemstobeeffectiveinreducingliver damagebymodulatingapoptosis.Cenicriviroc[196],anoral antag-onistof chemokineCCR2/CCR5,hasrecentlyclosedthephaseII trialand resultsareexpected.Thepossibilityofreverting fibro-sisand cirrhosis has alsobeen exploredby using simtuzumab, a monoclonal antibodyagainst lysyloxidase-like-2, which is an extra-cellular amine oxidase involved in the post-translational modificationofcollagensandelastin intheextracellularmatrix [197].
6. Conclusionsandperspectives
AgreatdealofnewknowledgeinthephysiopathologyofNAFLD hasbeenaccumulatingoverthelastdecade,revealingthe complex-ityofthemechanismsinvolvedinthedevelopmentandprogression ofthiscondition.Themostrecentguidelines/expertopinionsfor NAFLDmanagementpromptanew“systemsmedicine”approach totheinterplaysbetweenbrainand nervoussystem,endocrine system,digestivesystem(gut,liverandmicrobiota)andimmune system[11,198].Newconceptsforpatientstratificationareneeded toidentifydifferentclinicalprototypeswithintheindistinct phe-notypeoftheMetS[11,198].
The emerging and rapidly growing field of the molecular imagingwilllikelybeprovidinganextraordinarynewopportunity for non-invasive studies of in vivo physiopathology of NAFLD overcomingtheinherentlimitationsofliverbiopsy[161,199,200]. Suchlimitationshavesofarhamperedtheprogressofthe knowl-edgein key fieldssuchastheimpactand roleof autophagyin thephysiopathologyofNAFLD[201].Studiescombiningthenew imagingtechniqueswithliverandblood metabolomicsandthe analysisoftheinterplaybetweenspecificgenesandtheepigenetic factorsconditioningtheirexpression,willpaveanattractivenew waytotargetingthedynamicsofpathogenicprocessesinvolvedin NAFLDandNASH.Theresultsoftheseongoingstudieswillidentify novel risk factors, new diagnostic and prognostic biomarkers andtherapy targetsfora betterprevention,outcomeprediction and personalized treatment of NAFLD/NASH. In the meantime, tohalt/reducethe tide ofNAFLD, referenceshould bemadeto standardprinciplesofgoodclinicalpracticeforthemanagement ofthiscondition[11,15,202,203],whichisexpectedtoimpacton thefutureglobalburdenofdiseaseworldwide.
Conflictofinterest
None todeclare:Stefano Bellentani,Amedeo Lonardo,Gianluca SvegliatiBaroni,GiovanniTargher,LucaValentiMauroBernardi:
CSLBehringGmbH(consultancyandspeaker);BaxterHealthcare SA(consultancyandspeaker);PPTAEurope,GileadSciences, Abb-VieItalia(speaker).
FerruccioBonino:AdivsoryBoardsand/orSpeakersBureaufor Abbott/Abbvie,BaldacciLaboratories,BMS,Fujirebio,GSK,Gilead, MSD,NovartisandRocheElisabettaBugianesi:Consultantfor Gen-fit,IBSA,Innova,BoehrigerIngelheim,InterceptAlessandroCasini: ProbiosSrL:researchcontractAmaliaGastaldelli:Consultantfor Roche,Eli-Lilly,Menarini,Sanofiandhasreceivedresearchsupport fromAmylin-BMSAZ.
Giulio Marchesini: Consultant and/or speaker for: Eli Lilly, AstraZeneca,Novartis,IBSA.Clinicalstudies:NovoNordisk,Sanofi, Boehringer Ingelheim, GlaxoSmith Kline, Janssen, Gilead, Gen-fit.
FabioMarra:Abbvie,AstraZeneca,Bayer,Menarini:consultant fees.Gilead,Bayer,ViiVHealthcare:speakerhonoraria.
LucaMiele:AdvisoryBoard:Synageva,MyGenomics,IBSA,MSD, Boehringer-Ingelheim, BMS Speaker fee: Rottapharm Madaus, MEDAFilomenaMorisco:NathuraandIBILorenzini:research con-tract.BMSandAbbvie:speakerfeeSalvoPetta:AdvisoryBoards and/orSpeakerforGilead,AbbVie,Janssen,Bristol-MyersSquibb, MerckSharpandDohmeFabioPiscaglia:Bayer(speakerfeeand advisoryboard).Bracco(speakerfee).Esaote(researchcontract). Meda(speakerfee).Eisai(advisoryboard).
AppendixA
b DivisionofInternalMedicine,NOCSAE,Departmentof
Biomed-ical, Metabolic and Neural Sciences, University of Modena and ReggioEmilia,Modena,Italy
c SectionofEndocrinology,DiabetesandMetabolism,Department
ofMedicine,UniversityofVerona,Italy
d Department of Medical and Surgical Sciences, University of
Bologna,“AlmaMaterStudiorum”,Bologna,Italy
e UniversityofPittsburghMedicalCenterInstituteforHealth,
Chi-anciano Termeand “Fondazione Italiana Fegato”, AREA Science Park,CampusBasovizza,Trieste,Italy
f Gastroenterologyand Hepatology,Departmentof Medical
Sci-ences,Hospital“Città dellaSaluteedellaScienza”,Universityof Turin,Turin,Italy
g Department of Experimentaland Clinical Medicine,Schoolof
Medicine,UniversityofFlorence,Italy
hCardiometabolicRiskLaboratory,InstituteofClinicalPhysiology,
CNR,Pisa,Italy
i UnitofMetabolicDiseasesandClinicalDietetics,Universityof
Bologna,“AlmaMaterStudiorum”,Bologna,Italy
j DepartmentofExperimentalandClinicalMedicine,Universityof
Florence,Italy
kInternalMedicineandGastroenterologyArea,UniversityPoliclinic
Foundation“A.Gemelli”,CatholicUniversityofRome,Italy
l Gastroenterology Unit, Department of Clinical Medicine and
Surgery,UniversityofNaples“FedericoII”,Italy
m SectionofGastroenterology,Di.Bi.M.I.SPoliclinic“Paolo
Giac-cone”Hospital,UniversityofPalermo,Italy
n UnitofInternalMedicine,DepartmentofMedicalandSurgical
Sciences,UniversityofBologna,“AlmaMaterStudiorum”,Bologna, Italy
o DepartmentofGastroenterology,“PolitecnicadelleMarche”
Uni-versity,Ancona,Italy
p Internal Medicine, IRCCS Foundation “Ca’ Granda” Hospital
MaggiorePoliclinico,DepartmentofPathophysiologyand Trans-plantation,UniversityofMilan,Italy
q GastroenteroloyandHepatologyService“ClinicaSantaChiara”,
References
[1]MarchesiniG,PettaS,DalleGraveR.Diet,weightloss,andliverhealthin nonalcoholicfattyliverdisease:pathophysiology,evidence,andpractice. Hepatology2016;63:2032–43.
[2]ValentiL,RomeoS.DestinedtodevelopNAFLD?Thepredictorsoffattyliver frombirthtoadulthood.JournalofHepatology2016;65:668–70.
[3]SinghS,AllenAM,WangZ,etal.Fibrosisprogressioninnonalcoholicfatty livervsnonalcoholicsteatohepatitis:asystematicreviewandmeta-analysis ofpaired-biopsystudies.ClinicalGastroenterologyandHepatology:The Offi-cialClinicalPracticeJournaloftheAmericanGastroenterologicalAssociation 2015;13:643–54[e1–9;quize39–40].
[4]TargherG,MarchesiniG,ByrneCD.Riskoftype2diabetesinpatientswith non-alcoholicfattyliverdisease:causalassociationorepiphenomenon? Dia-betes&Metabolism2016;42:142–56.
[5]SinghS,KheraR,AllenAM,etal.Comparativeeffectivenessof pharmacolog-icalinterventionsfornonalcoholicsteatohepatitis:asystematicreviewand networkmeta-analysis.Hepatology2015;62:1417–32.
[6]RinellaME,SanyalAJ.ManagementofNAFLD:astage-basedapproach.Nature ReviewsGastroenterology&Hepatology2016;13:196–205.
[7]BallestriS,ZonaS,TargherG,etal.Nonalcoholicfattyliverdiseaseis asso-ciatedwithanalmosttwofoldincreasedriskofincidenttype2diabetesand metabolicsyndrome.Evidencefromasystematicreviewandmeta-analysis. JournalofGastroenterologyandHepatology2016;31:936–44.
[8]NobiliV,MarcelliniM,MarchesiniG,etal.Intrauterinegrowthretardation, insulinresistance,andnonalcoholicfattyliverdiseaseinchildren.Diabetes Care2007;30:2638–40.
[9]WangT,HuangT,LiY,etal.Lowbirthweightandriskoftype2diabetes:a Mendelianrandomisationstudy.Diabetologia2016;59:1920–7.
[10]RatziuV,MarchesiniG.Whenthejourneyfromobesitytocirrhosistakesan earlystart.JournalofHepatology2016;65:249–51.
[11]EuropeanAssociationfortheStudyoftheLiver,EuropeanAssociationforthe StudyofDiabetes,EuropeanAssociationfortheStudyofObesity. EASL-EASD-EASOClinicalPracticeGuidelinesforthemanagementofnon-alcoholicfatty liverdisease.JournalofHepatology2016;64:1388–402.
[12]BugianesiE.EASL-EASD-EASOClinicalPracticeGuidelinesforthe manage-mentofnon-alcoholicfattyliverdisease:diseasemongeringorcalltoaction? Diabetologia2016;59:1145–7.
[13]Wong VW,ChalasaniN.Notroutinescreening,butvigilanceforchronic liver disease in patients with type 2 diabetes. Journal of Hepatology 2016;64:1211–3.
[14]WildSH,MorlingJR,McAllisterDA,etal.Type2diabetesandriskof hos-pitaladmissionordeathforchronicliverdiseases.JournalofHepatology 2016;64:1358–64.
[15]LoriaP,AdinolfiLE,BellentaniS,etal.Practiceguidelinesforthediagnosisand managementofnonalcoholicfattyliverdisease.AdecaloguefromtheItalian AssociationfortheStudyoftheLiver(AISF)ExpertCommittee.Digestiveand LiverDisease:OfficialJournaloftheItalianSocietyofGastroenterologyand theItalianAssociationfortheStudyoftheLiver2010;42:272–82.
[16]BarreraF,GeorgeJ.Theroleofdietandnutritionalinterventionforthe man-agementofpatientswithNAFLD.ClinicsinLiverDisease2014;18:91–112.
[17]AbdelmalekMF,SuzukiA,GuyC,etal.Increasedfructoseconsumptionis asso-ciatedwithfibrosisseverityinpatientswithnonalcoholicfattyliverdisease. Hepatology2010;51:1961–71.
[18]BugianesiE,McCulloughAJ,MarchesiniG.Insulinresistance:ametabolic pathwaytochronicliverdisease.Hepatology2005;42:987–1000.
[19]Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and car-diometabolic disease.The New EnglandJournal of Medicine 2014;371: 1131–41.
[20]DonnellyKL,SmithCI,SchwarzenbergSJ,etal.Sourcesoffattyacidsstored inliverandsecretedvialipoproteinsinpatientswithnonalcoholicfattyliver disease.TheJournalofClinicalInvestigation2005;115:1343–51.
[21]Seppala-LindroosA,VehkavaaraS,HakkinenAM,etal.Fataccumulationinthe liverisassociatedwithdefectsininsulinsuppressionofglucoseproduction andserumfreefattyacidsindependentofobesityinnormalmen.TheJournal ofClinicalEndocrinologyandMetabolism2002;87:3023–8.
[22]MarraF,GastaldelliA,SvegliatiBaroniG,etal.Molecularbasisand mech-anismsofprogressionofnon-alcoholicsteatohepatitis.TrendsinMolecular Medicine2008;14:72–81.
[23]PolyzosSA,ToulisKA,GoulisDG,etal.Serumtotaladiponectinin nonalco-holicfattyliverdisease:asystematicreviewandmeta-analysis.Metabolism: ClinicalandExperimental2011;60:313–26.
[24]CaligiuriA,GentiliniA,MarraF.MolecularpathogenesisofNASH. Interna-tionalJournalofMolecularSciences2016;17.
[25]Neuschwander-TetriBA.Hepaticlipotoxicityandthepathogenesisof non-alcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites.Hepatology2010;52:774–88.
[26]Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism:ClinicalandExperimental2016;65:1026–37.
[27]LeamyAK,EgnatchikRA,YoungJD.Molecularmechanismsandtheroleof saturatedfattyacidsintheprogressionofnon-alcoholicfattyliverdisease. ProgressinLipidResearch2013;52:165–74.
[28]GautheronJ,VucurM,ReisingerF,etal.ApositivefeedbackloopbetweenRIP3 andJNKcontrolsnon-alcoholicsteatohepatitis.EMBOMolecularMedicine 2014;6:1062–74.
[29]MalhiH,KaufmanRJ.Endoplasmicreticulumstressinliverdisease.Journal ofHepatology2011;54:795–809.
[30]CannitoS,PaternostroC,BuslettaC,etal.Hypoxia,hypoxia-inducible fac-torsandfibrogenesisinchronicliverdiseases.HistologyandHistopathology 2014;29:33–44.
[31]DixonLJ,BarnesM,TangH,etal.Kupffercellsintheliver.Comprehensive Physiology2013;3:785–97.
[32]RohYS,SekiE.Toll-likereceptorsinalcoholicliverdisease,non-alcoholic steatohepatitisandcarcinogenesis.JournalofGastroenterologyand Hepatol-ogy2013;28(Suppl.1):38–42.
[33]GuoJ,FriedmanSL.Toll-likereceptor4signalinginliverinjuryandhepatic fibrogenesis.Fibrogenesis&TissueRepair2010;3:21.
[34]GanLT,VanRooyenDM,KoinaME,etal.Hepatocytefreecholesterol lipo-toxicityresultsfromJNK1-mediatedmitochondrialinjuryandisHMGB1and TLR4-dependent.JournalofHepatology2014;61:1376–84.
[35]WreeA,MarraF.Theinflammasomeinliverdisease.JournalofHepatology 2016;65:1055–6.
[36]Henao-MejiaJ,ElinavE,JinC,etal.Inflammasome-mediateddysbiosis regu-latesprogressionofNAFLDandobesity.Nature2012;482:179–85.
[37]FuchsCD,TraussniggSA,TraunerM.Nuclearreceptormodulationforthe treatmentofnonalcoholicfatty liverdisease.Seminarsin LiverDisease 2016;36:69–86.
[38]Marra F, Bertolani C. Adipokines in liver diseases. Hepatology 2009;50:957–69.
[39]NeishAS.Microbesingastrointestinalhealthanddisease.Gastroenterology 2009;136:65–80.
[40]ClementeJC,UrsellLK,ParfreyLW,etal.Theimpactofthegutmicrobiotaon humanhealth:anintegrativeview.Cell2012;148:1258–70.
[41]SommerF,BackhedF.Thegutmicrobiota–mastersofhostdevelopmentand physiology.NatureReviewsMicrobiology2013;11:227–38.
[42]MehalWZ.TheGordianKnotofdysbiosis,obesityandNAFLD.NatureReviews Gastroenterology&Hepatology2013;10:637–44.
[43]TilgH,KaserA.Gutmicrobiome,obesity,andmetabolicdysfunction.The JournalofClinicalInvestigation2011;121:2126–32.
[44]TremaroliV,BackhedF.Functionalinteractionsbetweenthegutmicrobiota andhostmetabolism.Nature2012;489:242–9.
[45]TurnbaughPJ,LeyRE,MahowaldMA,etal.Anobesity-associatedgut micro-biomewithincreasedcapacityforenergyharvest.Nature2006;444:1027–31.
[46]CaniPD,BibiloniR,KnaufC,etal.Changesingutmicrobiotacontrolmetabolic endotoxemia-inducedinflammationinhigh-fatdiet-inducedobesityand dia-betesinmice.Diabetes2008;57:1470–81.
[47]PendyalaS,WalkerJM,HoltPR.Ahigh-fatdietisassociatedwithendotoxemia thatoriginatesfromthegut.Gastroenterology2012;142:1100–1,e2.
[48]DeMinicisS,DayC,Svegliati-BaroniG.FromNAFLDtoNASHandHCC: patho-geneticmechanismsandtherapeuticinsights.CurrentPharmaceuticalDesign 2013;19:5239–49.
[49]MiuraK,OhnishiH.Roleofgutmicrobiotaandtoll-likereceptorsin nonalco-holicfattyliverdisease.WorldJournalofGastroenterology2014;20:7381–91.
[50]De Minicis S,Rychlicki C, Agostinelli L, etal. Dysbiosis contributes to fibrogenesis in the course of chronic liverinjury in mice. Hepatology 2014;59:1738–49.
[51]RomeoS,KozlitinaJ,XingC,etal.GeneticvariationinPNPLA3confers suscep-tibilitytononalcoholicfattyliverdisease.NatureGenetics2008;40:1461–5.
[52]DongiovanniP,DonatiB,FaresR,etal.PNPLA3I148Mpolymorphismand pro-gressiveliverdisease.WorldJournalofGastroenterology2013;19:6969–78.
[53]KozlitinaJ,SmagrisE,StenderS,etal.Exome-wideassociationstudy iden-tifiesaTM6SF2variantthatconferssusceptibilitytononalcoholicfattyliver disease.NatureGenetics2014;46:352–6.
[54]DongiovanniP,PettaS,MaglioC,etal.Transmembrane6superfamilymember 2genevariantdisentanglesnonalcoholicsteatohepatitisfromcardiovascular disease.Hepatology2015;61:506–14.
[55]MancinaRM,Dongiovanni P, PettaS,etal. TheMBOAT7-TMC4 variant rs641738increasesriskofnonalcoholicfattyliverdiseaseinindividualsof europeandescent.Gastroenterology2016;150:1219–30,e6.
[56]SpeliotesEK,Yerges-ArmstrongLM,WuJ,etal.Genome-wideassociation analysisidentifiesvariants associated withnonalcoholic fatty liver dis-easethathavedistincteffectsonmetabolictraits.PLoSGenetics2011;7: e1001324.
[57]DiFilippoM,MoulinP,RoyP,etal.HomozygousMTTPandAPOBmutations mayleadtohepaticsteatosisandfibrosisdespitemetabolicdifferencesin congenitalhypocholesterolemia.JournalofHepatology2014;61:891–902.
[58]YounossiZM,KoenigAB,AbdelatifD,etal.Globalepidemiologyof nonalco-holicfattyliverdisease-meta-analyticassessmentofprevalence,incidence, andoutcomes.Hepatology2016;64:73–84.
[59]LonardoA,BelliniM,TartoniP,etal.Thebrightliversyndrome.Prevalenceand determinantsofabrightliverechopattern.ItalianJournalofGastroenterology andHepatology1997;29:351–6.
[60]BedogniG,MiglioliL,MasuttiF,etal.Prevalenceofandriskfactorsfor nonal-coholicfattyliverdisease:theDionysosnutritionandliverstudy.Hepatology 2005;42:44–52.
[61]BellentaniS,BedogniG,MiglioliL,etal.Theepidemiologyoffattyliver. Euro-peanJournalofGastroenterology&Hepatology2004;16:1087–93.
[62]Bellentani S,SaccoccioG, Masutti F, et al. Prevalence ofand risk fac-torsforhepaticsteatosisinNorthernItaly.AnnalsofInternal Medicine 2000;132:112–7.
[63]LonardoA,BellentaniS,etal.Epidemiologicalmodifiersofnon-alcoholicfatty liverdisease:focusonhigh-riskgroups.DigestiveandLiverDisease:Official JournaloftheItalianSocietyofGastroenterologyandtheItalianAssociation fortheStudyoftheLiver2015;47:997–1006.
[64]BrowningJD,SzczepaniakLS,DobbinsR,etal.Prevalenceofhepaticsteatosis inanurbanpopulationintheUnitedStates:impactofethnicity.Hepatology 2004;40:1387–95.
[65]BrunoS,MaisonneuveP,CastellanaP,etal.Incidenceandriskfactorsfor non-alcoholicsteatohepatitis:prospectivestudyof5408womenenrolledin Italiantamoxifenchemopreventiontrial.BMJ2005;330:932.
[66]TargherG,ByrneCD,LonardoA,etal.Non-alcoholicfattyliverdiseaseand riskofincidentcardiovasculardisease:ameta-analysis.JournalofHepatology 2016;65:589–600.
[67]YounossiZM,StepanovaM,NegroF,etal.Nonalcoholicfattyliverdiseasein leanindividualsintheUnitedStates.Medicine2012;91:319–27.
[68]BertolottiM,LonardoA,MussiC,etal.Nonalcoholicfattyliverdiseaseand aging:epidemiologyto management.WorldJournalofGastroenterology 2014;20:14185–204.
[69]MiddletonJP,WienerRC,BarnesBH,etal.Clinicalfeaturesofpediatric non-alcoholicfattyliverdisease:aneedforincreasedawarenessandaconsensus forscreening.ClinicalPediatrics2014;53:1318–25.
[70]BallestriS,NascimbeniF,RomagnoliD,etal.Theroleofnuclearreceptorsin thepathophysiology,naturalcourse,anddrugtreatmentofNAFLDinhumans. AdvancesinTherapy2016;33:291–319.
[71]PetajaEM,Yki-JarvinenH.Definitionsofnormalliverfatandtheassociation ofinsulinsensitivitywithacquiredandgeneticNAFLD—asystematicreview. InternationalJournalofMolecularSciences2016;17.
[72]KubesP,MehalWZ.Sterile inflammationinthe liver.Gastroenterology 2012;143:1158–72.
[73]RinellaME. Nonalcoholicfattyliverdisease:asystematic review.JAMA 2015;313:2263–73.
[74]Zelber-SagiS,LotanR,ShlomaiA,etal.Predictorsforincidenceandremission ofNAFLDinthegeneralpopulationduringaseven-yearprospective follow-up.JournalofHepatology2012;56:1145–51.
[75]DixonJB,BhathalPS,O’BrienPE.Nonalcoholicfattyliverdisease: predic-torsofnonalcoholicsteatohepatitisandliverfibrosisintheseverelyobese. Gastroenterology2001;121:91–100.
[76]CarulliL,CanediI,RondinellaS,etal.Geneticpolymorphismsinnon-alcoholic fattyliverdisease:interleukin-6-174G/Cpolymorphismisassociatedwith non-alcoholicsteatohepatitis.DigestiveandLiverDisease:OfficialJournal oftheItalianSocietyofGastroenterologyandtheItalianAssociationforthe StudyoftheLiver2009;41:823–8.
[77]PettaS,CammaC,CabibiD,etal.Hyperuricemiaisassociatedwithhistological liverdamageinpatientswithnon-alcoholicfattyliverdisease.Alimentary Pharmacology&Therapeutics2011;34:757–66.
[78]CarulliL,BallestriS,LonardoA,etal.Isnonalcoholicsteatohepatitis associ-atedwithahigh-though-normalthyroidstimulatinghormonelevelandlower cholesterollevels.InternalandEmergencyMedicine2013;8:297–305.
[79]RehaJL,LeeS,HofmannLJ.Prevalenceandpredictorsofnonalcoholic steato-hepatitisinobesepatientsundergoingbariatricsurgery:aDepartmentof Defenseexperience.TheAmericanSurgeon2014;80:595–9.
[80]DasarathyJ,PeriyalwarP,AllampatiS,etal.HypovitaminosisDisassociated withincreasedwholebodyfatmassandgreaterseverityofnon-alcoholic fattyliverdisease.LiverInternational:OfficialJournaloftheInternational AssociationfortheStudyoftheLiver2014;34:e118–27.
[81]BallestriS,NascimbeniF,RomagnoliD,etal.Theindependentpredictorsof non-alcoholicsteatohepatitisanditsindividualhistologicalfeatures:insulin resistance,serumuricacid,metabolicsyndrome,alanineaminotransferase andserumtotalcholesterolareacluetopathogenesisandcandidatetargets fortreatment.HepatologyResearch:TheOfficialJournalofTheJapanSociety ofHepatology2016;46:1074–87.
[82]WongVW,WongGL,ChoiPC,etal.Diseaseprogressionofnon-alcoholicfatty liverdisease:aprospectivestudywithpairedliverbiopsiesat3years.Gut 2010;59:969–74.
[83]PaisR,CharlotteF,FedchukL,etal.Asystematicreviewoffollow-upbiopsies revealsdiseaseprogressioninpatientswithnon-alcoholicfattyliver.Journal ofHepatology2013;59:550–6.
[84]McPhersonS,HardyT,HendersonE,etal.EvidenceofNAFLDprogressionfrom steatosistofibrosing-steatohepatitisusingpairedbiopsies:implicationsfor prognosisandclinicalmanagement.JournalofHepatology2015;62:1148–55.
[85]ButtAA,YanP,LoRe3rdV,etal.LiverfibrosisprogressioninhepatitisCvirus infectionafterseroconversion.JAMAInternalMedicine2015;175:178–85.
[86]LonardoA,BellentaniS,RatziuV,etal.Insulinresistanceinnonalcoholic steatohepatitis:necessarybutnotsufficient—deathofadogmafrom anal-ysisoftherapeuticstudies?ExpertReviewofGastroenterology&Hepatology 2011;5:279–89.
[87]BugianesiE,ManziniP,D’AnticoS,etal.Relativecontributionofironburden, HFEmutations,andinsulinresistancetofibrosisinnonalcoholicfattyliver. Hepatology2004;39:179–87.
[88]FracanzaniAL,ValentiL,BugianesiE,etal.Riskofsevereliverdiseasein nonalcoholicfattyliverdiseasewithnormalaminotransferaselevels:arole forinsulinresistanceanddiabetes.Hepatology2008;48:792–8.
[89]LeungJC,LoongTC,WeiJL, etal. Histologicalseverityandclinical out-comesofnonalcoholicfattyliverdiseaseinnonobesepatients.Hepatology 2017;65:54–64.
[90]McPhersonS,HendersonE,BurtAD,etal.Serumimmunoglobulinlevels predictfibrosisinpatientswithnon-alcoholicfattyliverdisease.Journalof Hepatology2014;60:1055–62.
[91]MieleL,BealeG,PatmanG,etal. TheKruppel-likefactor6genotypeis associatedwithfibrosisinnonalcoholicfattyliverdisease.Gastroenterology 2008;135:282–91,e1.
[92]SingalAG,ManjunathH,YoppAC,etal.TheeffectofPNPLA3onfibrosis pro-gressionanddevelopmentofhepatocellularcarcinoma:ameta-analysis.The AmericanJournalofGastroenterology2014;109:325–34.
[93]SinghDK,SakhujaP,MalhotraV,etal.Independentpredictorsof steatohep-atitisandfibrosisinAsianIndianpatientswithnon-alcoholicsteatohepatitis. DigestiveDiseasesandSciences2008;53:1967–76.
[94]YangJD,AbdelmalekMF,PangH,etal.Genderandmenopauseimpact sever-ityoffibrosisamongpatientswithnonalcoholicsteatohepatitis.Hepatology 2014;59:1406–14.
[95]AnguloP,KleinerDE,Dam-LarsenS,etal.Liverfibrosis,butnootherhistologic features,isassociatedwithlong-termoutcomesofpatientswithnonalcoholic fattyliverdisease.Gastroenterology2015;149:389–97,e10.
[96]DongiovanniP,PettaS,MannistoV,etal.Statinuseandnon-alcoholic steato-hepatitisinatriskindividuals.JournalofHepatology2015;63:705–12.
[97]NascimbeniF,Aron-WisnewskyJ,PaisR,etal.Statins,antidiabetic medica-tionsandliverhistologyinpatientswithdiabeteswithnon-alcoholicfatty liverdisease.BMJOpenGastroenterology2016;3:e000075.
[98]vanderPoortenD,SamerCF,Ramezani-MoghadamM,etal.Hepaticfatlossin advancednonalcoholicsteatohepatitis:arealterationsinserumadiponectin thecause.Hepatology2013;57:2180–8.
[99]RoulotD,CzernichowS,LeClesiauH,etal.Liverstiffnessvaluesinapparently healthysubjects:influenceofgenderandmetabolicsyndrome.Journalof Hepatology2008;48:606–13.
[100]KoehlerEM,PlompenEP,SchoutenJN,etal.Presenceofdiabetesmellitus andsteatosisisassociatedwithliverstiffnessinageneralpopulation:the Rotterdamstudy.Hepatology2016;63:138–47.
[101]YouSC,KimKJ,KimSU,etal.Factorsassociatedwithsignificantliverfibrosis assessedusingtransientelastographyingeneralpopulation.WorldJournal ofGastroenterology:WJG2015;21:1158–66.
[102]ReddySK,SteelJL,ChenHW,etal.Outcomesofcurativetreatmentfor hepato-cellularcancerinnonalcoholicsteatohepatitisversushepatitisCandalcoholic liverdisease.Hepatology2012;55:1809–19.
[103]ParadisV,ZalinskiS,ChelbiE,etal.Hepatocellularcarcinomasinpatients withmetabolicsyndromeoftendevelopwithoutsignificantliverfibrosis:a pathologicalanalysis.Hepatology2009;49:851–9.
[104]PiscagliaF,Svegliati-BaroniG,BarchettiA,etal.Clinicalpatternsof hepatocel-lularcarcinomainnonalcoholicfattyliverdisease:amulticenterprospective study.Hepatology2016;63:827–38.
[105]GianniniEG,MarabottoE,SavarinoV,etal.Hepatocellularcarcinomain patientswithcryptogeniccirrhosis.ClinicalGastroenterologyand Hepatol-ogy:TheOfficialClinicalPracticeJournaloftheAmericanGastroenterological Association2009;7:580–5.
[106]YounossiZM,OtgonsurenM,HenryL,etal.Associationofnonalcoholicfatty liverdisease(NAFLD)withhepatocellularcarcinoma(HCC)intheUnited Statesfrom2004to2009.Hepatology2015;62:1723–30.
[107]BugianesiE,LeoneN,VanniE,etal.Expandingthenaturalhistoryof nonalco-holicsteatohepatitis:fromcryptogeniccirrhosistohepatocellularcarcinoma. Gastroenterology2002;123:134–40.
[108]AschaMS,HanounehIA,LopezR,etal.Theincidenceandriskfactorsof hepatocellularcarcinomainpatientswithnonalcoholicsteatohepatitis. Hep-atology2010;51:1972–8.
[109]Sawada N,Inoue M,Iwasaki M,etal. Consumptionof n-3fatty acids and fish reduces risk of hepatocellular carcinoma. Gastroenterology 2012;142:1468–75.
[110]LonardoA,LoriaP.Potentialforstatinsinthechemopreventionand man-agement of hepatocellular carcinoma. Journal of Gastroenterology and Hepatology2012;27:1654–64.
[111] WelzelTM,GraubardBI,QuraishiS,etal.Population-attributablefractionsof riskfactorsforhepatocellularcarcinomaintheUnitedStates.TheAmerican JournalofGastroenterology2013;108:1314–21.
[112] BraviF,BosettiC,TavaniA,etal.Coffeereducesriskforhepatocellular carci-noma:anupdatedmeta-analysis.ClinicalGastroenterologyandHepatology: TheOfficialClinicalPracticeJournaloftheAmericanGastroenterological Association2013;11:1413–21,e1.
[113] YangY,ZhangD,FengN,etal.Increasedintakeofvegetables,butnotfruit, reducesriskforhepatocellularcarcinoma:ameta-analysis.Gastroenterology 2014;147:1031–42.
[114] WangYG,WangP,WangB,etal.Diabetesmellitusandpoorerprognosisin hepatocellularcarcinoma:asystematicreviewandmeta-analysis.PLoSOne 2014;9:e95485.
[115] TargherG, DayCP,BonoraE.Riskofcardiovascular diseaseinpatients withnonalcoholicfattyliverdisease.TheNewEnglandJournalofMedicine 2010;363:1341–50.
[116] ByrneCD,TargherG.NAFLD:amultisystemdisease.JournalofHepatology 2015;62:S47–64.
[117] EkstedtM,HagstromH,NasrP,etal.Fibrosisstageisthestrongest predic-torfordisease-specificmortalityinNAFLDafterupto33yearsoffollow-up. Hepatology2015;61:1547–54.