• Non ci sono risultati.

Nras in melanoma: Targeting the undruggable target

N/A
N/A
Protected

Academic year: 2021

Condividi "Nras in melanoma: Targeting the undruggable target"

Copied!
16
0
0

Testo completo

(1)

Nras

in

melanoma:

Targeting

the

undruggable

target

Mario

Mandalà

a,

,

Barbara

Merelli

a

,

Daniela

Massi

b

aUnitofMedicalOncology,DepartmentofOncologyandHematology,PapaGiovanniXXIIIHospital,Bergamo,Italy bDivisionofPathologicalAnatomy,DepartmentofSurgeryandTranslationalMedicine,UniversityofFlorence,Italy

Accepted9May2014

Contents

1. HistoricalperspectiveonNRASincancerandafocusonmelanoma... 108

2. BiologicalfunctionsofNRAS... 109

2.1. Cellproliferation... 109

2.2. Suppressionofapoptosis ... 111

2.3. Metabolism... 111

2.4. Remodelingthemicroenvironment ... 111

2.5. Evasionoftheimmuneresponse... 111

2.6. Metastasis... 111

3. NRASinmelanocyticcellneoplasms ... 112

4. NRAS:prognosticorpredictivebiomarkerinmelanoma?acriticalanalysisofcurrentliterature... 113

4.1. IsNRASaprognosticbiomarkerinmelanoma?... 113

4.2. IsNRASapredictivebiomarkerinmelanoma?... 115

5. NRASasamechanismofresistancetoBRAFinhibitorsinmelanoma... 116

6. Futuredirections... 118

Reviewers... 119

References... 119

Biographies ... 122

Abstract

RASbelongstotheguanosine5-triphosphate(GTP)-bindingproteins’family,andoncogenicmutationsincodons12,13,or61ofRAS familyoccurinapproximatelyonethirdofallhumancancerswithN-RASmutationsfoundinabout15–20%ofmelanomas.Theimportance ofRASsignalingasapotentialtargetincancerisemphasizednotonlybytheprevalenceofRASmutations,butalsobythehighnumber ofRASactivatorsandeffectorsidentifiedinmammaliancellsthatplacestheRASproteinsatthecrossroadsofseveral,importantsignaling networks.Rasproteinsarecrucialcrossroadsofsignalingpathwaysthatlinktheactivationofcellsurfacereceptorswithawidevarietyof cellularprocessesleadingtothecontrolofproliferation,apoptosisanddifferentiation.Furthermore,oncogenicrasproteinsinterferewith metabolismoftumorcells,microenvironment’sremodeling,evasionoftheimmuneresponse,andfinallycontributestothemetastaticprocess. After40yearsofbasic,translationalandclinicalresearch,muchisnowknownaboutthemolecularmechanismsbywhichthesemonomeric guanosinetriphosphatase-bindingproteinspromotecellularmalignancy,anditisclearthattheyregulatesignalingpathwaysinvolvedinthe controlofcellproliferation,survival,andinvasiveness.InthisreviewwesummarizethebiologicalroleofRASincancerbyfocusingour attentiononthebiologicalrationalandstrategiestotargetRASinmelanoma.

©2014ElsevierIrelandLtd.Allrightsreserved.

Keywords:NRAS;Melanoma;Prognostic;Predictive;Resistance

Correspondingauthorat:UnitofMedicalOncology,DepartmentofOncologyandHaematology,PapaGiovanniXXIIIHospital,PiazzaOMS1,Bergamo

24100,Italy.Tel.:+390352673687;fax:+390352674985.

E-mailaddress:mariomandala@tin.it(M.Mandalà).

http://dx.doi.org/10.1016/j.critrevonc.2014.05.005

(2)

Ras proteins are crucial crossroads of signaling

path-ways that link the activation of cell surface receptors

with a wide variety of cellular processes leading to the

control of proliferation, apoptosis anddifferentiation.

Fur-thermore,oncogenicrasproteinsinterferewithmetabolism

oftumorcells,microenvironment’sremodeling,evasionof

theimmuneresponse,andfinallycontributestothemetastatic process.

TheimportanceofRASsignalingasapotentialtargetin

cancer is emphasized not onlyby the prevalence of RAS

mutations,butalso bythe highnumberof RASactivators

andeffectorsidentifiedinmammaliancellsthat placesthe

RASproteinsatthecrossroadsofseveral,importantsignaling networks.

After40yearsofbasic,translationalandclinicalresearch,

much is now known about the molecularmechanisms by

which these monomeric guanosine triphosphatase-binding

proteinspromotecellularmalignancy,anditisclearthatthey

regulatesignalingpathways involvedinthe controlof cell

proliferation, survival,andinvasiveness. In thisreviewwe

summarizethebiologicalroleofRASincancerbyfocusing

ourattentiononthebiologicalrationalandstrategiestotarget

RASinmelanoma.

1. HistoricalperspectiveonNRASincanceranda focusonmelanoma

Thirty yearsago a pioneering study demonstrated that

small fragmentsofDNA fromhumancancer-derivedcells

couldinducemalignantcharacteristicsinmousefibroblasts

[1].ThecellularhomologofanoncogenefoundintheHarvey

ratsarcomaretrovirus(H-RAS)wasidentifiedas theDNA

sequenceresponsibleforsuch malignanttransformation.A

newstepintumorbiologyhadbeenputinplace:thiswasthe

first demonstrationthat humantumors containedactivated

oncogenes,relatedtothosepickedupbyretrovirusesfrom

theirhostgenomes[2,3].Genesequencingrevealedthatthe

differencebetweenthewild-type(wt)humanH-RASgene

andtheoncogenicformfoundintumorswasasinglepoint

mutation.Subsequently, threeRAS genesand

correspond-ingproteinsweredescribed:N-RAS(neuroblastoma-RAS),

H-RASandK-RAS(Kirsten-RAS)[4–6].

RAS belongs to the guanosine 5-triphosphate

(GTP)-binding proteins’ family. When acted upon by specific

factors,suchasextracellularligandsthatbindspecific

mem-brane receptors,theseproteins cycle between anactivated

and inactivated form, RAS-GTP and RAS-GDP,

respec-tively[7].Activationrequiresdissociationofproteinbound

GDP, aprocess that is accelerated byguanine

nucleotide-exchangefactors(GEFs).Thisswitch-onprocessinvolvesthe

reversibleexchangeofGDPforGTP.Theswitch-offprocess

isentirelydifferentandinvolveshydrolysisofGTPtoGDP,

the guanosine triphosphatase (GTPase) reaction, which is

basicallyirreversible.ThisprocessisacceleratedbyGTPase activatingproteins(GAPs)(Fig.1a).

Inphysiologicalconditions,RASproteinsaretetheredto

the innercellmembrane,coupling growthfactorreceptors

to downstream signalingpathways andregulate important

cellularfunctionssuchascellgrowth,proliferation,and

sur-vival.Muchisnowknownaboutthemolecularmechanisms

bywhichthesemonomericguanosinetriphosphatase-binding

proteinspromotecellularmalignancy,anditisclearthatthey

regulate signalingpathwaysinvolved inthecontrol ofcell

proliferation,survival,andinvasiveness.

Mutationsat positions12, 13,or 61of the H-RAS,

N-RAS,andK-RASimpairtheGTPaseactivityofthecarrier

RAS proteinsandlockthemintoaconstitutivelyactivated

stateinwhichtheyelicitdownstreameffectors,eveninthe absenceofligandsthatbindspecificmembranereceptors[8]. Thispeculiaroncogenicactivation–disablingtheenzymatic

activity –differentiatesRASfromotheroncogenickinases

such as EGFR or B-RAF, whichare typically mutated to

produceahyperactiveenzyme.

TheimportanceofRASsignalingasapotentialtargetin

cancer is emphasizednot only by the prevalence of RAS

mutations, butalsoby thehighnumberof RAS activators

andeffectorsidentified inmammaliancells thatplaces the

RASproteinsatthecrossroadsofseveral,importantsignaling networks(Fig.1b).

The first RAS effector identified is the RAF

ser-ine/threonine kinase [9–12].Activation of RAFinitiates a

phosphorylationcascadethat progressesthrough MEKand

ERK(p42/p44MAPK),andultimatelyleadstofine

adjust-mentsindownstreamtargetsthatregulatecellproliferation,

survival, and differentiation [13]. A second RAS effector

isthe p110catalyticsubunitof thephosphatidylinositol 3-kinase(PI3K)[14].Phosphorylationofphosphatidylinositol byPI3KbringstheAKTserine/threoninekinasetotheplasma

membrane,whereitbecomesactivatedandtransmits

down-streamsignalstoregulatecellsurvival,proteinsynthesis,and

metabolism[15].RAFandPI3Karealsocommonlymutated

in melanoma, suggesting that theseproteins might be the

primaryoncogeniceffectorsofRASsignaling[16].

Interestingly,whilemutationsinRAFandRASare

gen-erally mutually exclusive, this is not the case for PI3K

mutation.Thesebiologicaldifferencessuggestthat

endoge-nouslevelsofactivatedRASdonotefficientlyactivatePI3K

signaling,whileRASandRAFmutationsappearfunctionally

equivalent.AnotherexplanationisthattheRAS/RAFdouble

mutationislethalforthecellwhereasRAS/PI3Karenot.

Since oncogenic mutations incodons 12, 13, or 61 of

RASfamilyoccurinapproximatelyonethirdofallhuman

cancerswithN-RASmutationsfoundinabout 15–20%of

melanomas,RASandthesignalingpathwaysunderits

con-trol have been kept firmly in focus as therapeutic targets

(Fig.2).However,after40yearsofresearch,manyproblems

remain open.First,whathaspreventedthedevelopmentof

drugsagainstRAS?

Several factors have hampered the development of

therapies that are able to inhibit RAS in a specific and

(3)

Fig.1.(a)MechanismofRASactivation.Receptortyrosinekinase(RTK)-mediatedactivationrequiresdissociationofproteinboundGDP,aprocessthatis

acceleratedbyguaninenucleotide-exchangefactors(GEFs).Thisswitch-onprocessinvolvesthereversibleexchangeofGDPforGTP.Theswitch-offprocess

isentirelydifferentandinvolveshydrolysisofGTPtoGDP,theguanosinetriphosphatase(GTPase)reaction,whichisbasicallyirreversible.Thisprocess

isacceleratedbyGTPaseactivatingproteins(GAPs).(b)EffectorsidentifiedinmammaliancellsthatplacetheRASproteinsatthecrossroadsofseveral,

importantsignalingnetworks.(TIAM1:T-celllymphomainvasionandmetastasis1;PI3K:phosphoinositide3-kinase;PDK1:phosphoinositide-dependent

kinase-1;ERK:extracellularregulatedkinase;RALGDS:RALguaninenucleotidedissociationstimulator;PLD:phospholipaseD;PLC␧:phospholipaseC␧;

PKC:proteinkinaseC).

highintracellularconcentrationsofGTP;(3)theattemptto

inhibit farnesylation, a key posttranslational modification

step of RAS that is essential for RAS function, through

thefarnesyltransferaseinhibitors(FTIs),was ineffectivein

clinical trials;(4) targetingmutant N-RASwith siRNAis

still limited to preclinical models because of the

signifi-cant challenge in delivering antisense oligonucleotides in

vivo.

In this review we summarize the biological role of

RASincancerbyfocusing ourattention onthe biological

rationalandstrategiestotargetRASinmelanoma.Forthis

purpose,weperformedanextensive“Medline”andCancerlit

literature review (1995–2012). Various combinations of

searchterms were used depending onthe requirements of

thedatabasebeingsearched.Thesetermsincluded“RAS”,

“MAPK”, “target therapy”, “MEK” in combination with

“cancer patients”, “melanoma”, “incidence”,

“pathogen-esis”, “management”, “cancer”, “tumors”, “resistance”,

“trials”,“prospective”,“phase”,“retrospective”.Inaddition,

we manually researched all relevant review articles and

the references of the retrieved papers. Finally, trials were excludedifrelevantdatacouldnotbeextracted.

2. BiologicalfunctionsofNRAS

Ras proteins are crucial crossroads of signaling

path-waysthat linkthe activationof cellsurfacereceptorswith awidevarietyofcellularprocessesleadingtothecontrolof proliferation,apoptosisanddifferentiation(Fig.3).

Further-more, oncogenic ras proteinsinterferewithmetabolismof

tumorcells,microenvironment’sremodeling,evasionofthe

immune response,andfinallycontributes tothemetastatic

process.

2.1. Cellproliferation

Three decades ago Feramisco et al. demonstrated that

(4)

Fig.2.Potentialtherapeuticstargetsinmelanoma.

Fig.3.Rasproteinsarecrucialcrossroadsofsignalingpathwaysthatlinktheactivationofcellsurfacereceptorswithawidevarietyofcellularprocesses

(5)

bymicroinjectionintoavarietyof somaticcells determine

dramaticmorphologicalchangesfollowedbytransient cell

proliferation [17]. Proliferation is a check and balances

process,being the result of different stimuli, that elicit or inhibitcellcycle[18].OncogenicRASfuelscell

prolifera-tionthroughfourdistinctbiologicalmechanismsthat carry

thebalanceofdifferentstimulitohangonthesideofthecell

cycle:upregulationofgrowthfactors,expressionofgrowth

factorreceptors,upregulationofintegrinsthatpromote pro-liferation anddownregulation of anti-proliferative signals. Thesecomplexandstillunclarifiedmechanismsleadto

acti-vationofseveraltranscriptionfactorssuch serumresponse

factor(SRF),JUN,activatingtranscriptionfactor2(ATF2)

andnuclearfactor-␬B(NF-␬B)[19,20].Inturn,thesefactors triggertheexpressionofcyclinD1[21].Theexpressionofthe

G1cyclinseemsacrucialdeterminantofRAS-induced

trans-formation.IthasbeenreportedthatcyclinD1-deficientmice areresistanttodevelopingepithelialtumorsthatareinduced

bytheHRASoncogene.Pharmacologicalinterferencewith

cyclinD1orcyclin-dependentkinaseinhibitors(CKIs),such

asp27andp21,whichwouldotherwiseassociatewithand

inhibitcyclin-dependentkinases(CDKs),couldbean

excit-ingavenueofcancerresearchinthecomingyears.

2.2. Suppressionofapoptosis

OncogenicRASmayhavebothpro-apoptoticand

anti-apoptoticfunctions.Theanti-apoptoticfunctionofoncogenic

RAS is mediated by several effector pathways, including

theRAS–PI3KandtheRAS–RAFpathway.Bothpathways

have been implicated in phosphorylating and inactivating

thepro-apoptoticprotein BCL-2-associatedagonist of cell

death(BAD).There isevidencethat RASisimplicated in

both the development and maintenance of melanoma. In

experimental models, melanoma genesis and maintenance

arestrictlydependentuponexpressionofHRasV12Gandon

theoppositeHRasV12Gdown-regulationresultsinclinical

andhistologicalregressionofprimaryandexplantedtumors

[22].Theinitialstagesofregressioninvolvedmarked apopto-sisinthetumorcellsandhost-derivedendothelialcells.These

dataclearlysupport thehypothesis of anoncogenic

RAS-drivenerosionoftheapoptoticpathwaysanditscontribution

tomelanomadevelopment.

2.3. Metabolism

RAS-drivenactivationofMAPKandPI3Keffector

path-waysstimulatemTORactivitywhich,inturn,up-regulates

thehypoxia-induciblefactor1␣(HIF1␣),whichiswell

rec-ognizedforitsabilitytostimulateaglycolyticshift[23].RAS

dependentupregulationofHIF1␣enhancesthetranscription

oftheglucosetransporterGLUT1,thusconferringcellswith anincreasedcapacitytotakeupglucose.Inaddition, onco-genicRASleadstoanincreaseinthelevelsofkeyglycolytic

enzymes[24].Thus,oncogenicRASdirectlycontributesto

metabolicreactionsthatstimulatetheuseof glucoseasan

anabolicsubstrateinproducingbuildingmaterialforcellular

growth.OncogenicRASinterfaceswithcellularmetabolism

andthisinteractionincreasesultimatelythe glycolyticrate andcellularviability,supportingtumorgrowthinvivo[25].

2.4. Remodelingthemicroenvironment

RASactivationsustainspro-angiogenicprocessesthrough

modulation of endothelial growth factors levels,

enhance-ment of local inflammation and stromal remodeling [26].

RAS upregulates VEGFA via multiple effectors,

includ-ing,HIF1␣,cyclooxygenase2(COX2)andprostaglandins’

production[27].Furthermore,RAS-mediatedproductionof

pro-inflammatory cytokines, such as IL-6 and IL-8, has

emergedasanothercontributortotheinductionof angiogen-esis[28].Finally,upregulationofmatrixmetalloproteinase2

(MMP2),MMP9andurokinase-typeplasminogenactivator

(uPA)hasbeendescribed[29].

2.5. Evasionoftheimmuneresponse

Oncogenic RAS can disrupt antitumor immunity by

essentially two mechanisms: first,by reducing the surface

expression of antigen-presenting major histocompatibility

complexes (MHC) on tumor cells, resulting in decreased

immunogenicityoftheRAS-transformedcells[30].Second,

byovercominghost-protecting adaptiveimmuneresponses

[31].Upon oncogenic RAS expression, the recruitmentof

immunosuppressiveregulatoryTcellsandmyeloid-derived

suppressor cells attumorsitemay leadtoa compromised

antitumorimmuneresponse[32].

2.6. Metastasis

Metastasisisamulti-stageprocessinvolvingamultitude of cellular activities such as cancer cell motility, intrava-sation, transit intheblood orlymph vessels,extravasation

andgrowthatanewsite.RASpromotestheseprocessesby

engaging adiverseandbroad platform of effector

mecha-nisms.OncogenicRASinducesalterationsincell–celland

cell–matrix interactionsandtheacquisitionof amigratory

phenotypeultimatelycontributingtothemetastaticprocess.

OncogenicRASreducesE-cadherinlevelsandinducesthe

destabilization of E-cadherin – ␤-catenin complexes and

the ␤ catenin relocalization [33]. In addition, oncogenic

RAScontributestotheenhancedmotilityoftumorcellsby

affecting changes in the polymerization, organization and

contraction of actin;the polymerization and/or stabilityof microtubules;andthetranscriptionalregulationofmitogenic geneproducts[34].OncogenicRASprotectstumorcellsfrom matrixdeprivation-inducedapoptosis,oranoikisthereby con-tributingtotheircapacityofmigrationthroughthecirculatory system[33–35].

(6)

3. NRASinmelanocyticcellneoplasms

Oneof the unresolvedissues concerningthe oncogenic

activationofRASpertainstowhetherspecificoncogenic

out-putsare drivenbymutations inaparticular RASisoform.

This hypothesisis supported by the well-recognized

non-random distribution pattern of activated isoforms of RAS

amongdifferentcancertypes.

NRAS mutations have been found in approximately

15–20% of human melanomas while HRAS and KRAS

mutationsarerare(1%)[36].Arationalexplanationforthe greateroccurrenceofNRASmutationsreliesondistinct

dif-ferences between the signaling capabilities of NRAS and

KRASinmelanocytes [37].Whenthe transformation

effi-ciencies of mutant NRAS and KRAS were compared in

immortal,non-transformedInk4a/Arf-deficientmelanocytes,

it was shown that in contrast to KRAS mutation, NRAS

mutationleadstoincreasedcellularproliferationandismore

potently tumorigenic [37]. Furthermore, NRAS mediates

activation of bothMAPK andPI3K/AKT/MYCsignaling.

Specifically, although both NRAS and KRAS efficiently

activate the classical MAPK pathway, only NRAS

effec-tivelypreventsglycogensynthasekinase3(GSK3)-mediated

phosphorylation of Myc via PI3K/AKT, which results in

enhancedactivityofendogenousMycprotein[37].In

con-trasttoKRAS,NRASandHRASalsoshowamorepotent

activation of PI3K/AKT likely due to the fact that both

NRASandHRAScolocalizetolipidrafts,whereasKRAS

isexcludedfromlipidraftsandlocalizes tothedisordered plasmamembrane[38],resultinginalessefficientactivation oralimitedaccesstoadefinedsubsetofdownstreameffector proteins.

ThereisagreatdebatewhetherspecificRASisoforms dic-tatespecificclinico-pathologicalmelanocyticcellneoplasms.

AnextraordinarilyhighNRASmutationfrequencyseemsto

becharacteristicofmedium-sized(≥1.5cm)andlarge-giant

congenital nevi whereas common acquired nevi and Spitz

nevihaverareNRASmutations(4.6%and4%,respectively)

[39].

ThefrequencyofNRASmutationsinmedium-sized

con-genital nevi is 64–70% [39–41] and raises to 94.7% in

large-giant congenitalnevi whereithasbeen recently

rec-ognizedas thesolerecurrentsomatic mutation[42].It has

beensuggestedthatNRASmutationsexertstrongergrowth

signals,resultingintheformationoflargernevi thanthose linkedtoBRAFmutations[43].Incontrast,smallcongenital nevi(<1.5cm)aregeneticallysimilartocommonacquired

neviandtendtoshowalowerincidenceofNRASmutations

andhigherincidenceofBRAFmutations[40].Inaddition,

ithasbeen reportedthatnevi thatdisplayhistological

fea-tures frequently found in nevi present at birth (so-called

“congenital pattern nevi”) but lack a definitive history of

presenceatbirthshowedonly25%ofNRASmutationsand

71%of BRAFmutations[44].NRASmutationswerealso

foundin48%to70%ofproliferativenodulesthatdeveloped

withincongenitalneviearlyinlife,butthepresenceofsuch

mutationsdoesnotseemtoconferanincreasedriskof malig-nanttransformation[44,45].

Recently, differentstudieshavedemonstratedthat early

embryonic/post zygotic somatic mutations in the NRAS

gene areimplicated inthe developmentofneurocutaneous

melanocytosis,ararecongenitaldisorder,inwhichaffected patientshaveanincreasednumberofmelanocytesinthe lep-tomeningesandtheskin,withalargecongenitalmelanocytic

nevus usually associated with so-called “satellites” in the

vicinity, and childhood melanoma of the central nervous

system[46–48].Inlinewiththeseobservations,recentlyit

hasbeenshownthatprimarymelanomaoftheCNSin

chil-drencarriesoncogenicmutationsinNRAS,unlikeprimary

melanomaofthecentralnervoussysteminadults,inwhich

NRASisnotacommondriveroncogene[46].

So-called “dysplasticnevi”donotseemtocarryNRAS

mutations[49–51].However,inanotherstudy5/7

“dysplas-tic nevi”from individualswithahereditarypredisposition

to melanoma (whocarried germline CDKN2Amutations)

were reported to be NRAS mutated and it was suggested

thatNRASmutationsareimplicatedduringearlymelanoma

development[52].Overall,giventhelimitednumberofcases

analyzed and the lack of interobserver agreement for the

morphology-based diagnosis of “dysplastic nevi” it is too

early to draw significant conclusions. A recent study has

shownthatnevus-associatedmelanomasshowasimilar

fre-quencyofBRAFV600-andNRASQ61-mutationscompared

topublishedreportsofmelanomasoftheskiningeneral[53].

SuchresultsdonotsupporttheconceptthatoncogenicBRAF

orNRASmutationsplayamajorroleinthedevelopmentof

melanomafromnevianddonotsustainthemultisteptheory

ofmelanomaprogressionfromabenignmelanocyticnevus

through“dysplasticnevus”andeventuallytomelanoma[53].

RAShasbeenextensivelyinvestigatedinmelanomaand

severalstudieshaveassessedwhetherspecificRASisoforms

correlatewithrace,patternofsunexposure,clinical

presen-tation,andconventionalmorphologicalfeatures,whichare

commonlyreportedinhistopathologicalreports.

NRASismutatedinapproximately15–20%of primary

cutaneousmelanomasinCaucasianpatients[54–58].Inblack

Africans andAsianpopulationsthereisalowerfrequency

(12%and7.2%,respectively)[59,60].Patientswith

NRAS-mutatedmelanomaswerereportedtobeolderincomparison

withindividualswithBRAF-mutatedtumors[61]althoughin

arecentmeta-analysison31studiesinvolving1972patients,

noassociationbetweenageandNRASmutationswasfound

[55].Similarly,nocorrelationwasfoundbetweengenderand

NRASmutations[58].

In moststudies,NRASmutationwassignificantlymore

frequentinmelanomasarisinginchronicsun-damagedskin

[55,62].TheincidenceoftheNRASmutationaccordingto tumorsitewashighestintheextremities(25%),followedby

thefaceorscalp(18%)andtrunk(18%)[55,61,63].NRAS

mutationshavealsobeenfoundinconjunctivalmelanomas

(18% frequency) [63], sinonasal melanomas (22%) [65],

(7)

1, which is a rare mutation site for cutaneous melanoma

[66]. Interestingly, melanoma of unknown primary sites

showedNRAS mutationsin32% of casesassociated with

highsomaticmutationrates,highratiosofC>T/G>A

transi-tions,anda45%ofBRAFmutations,collectivelyindicating

a mutation profile consistent with cutaneous sun-exposed

melanomas[67].

NRASmutationsareoverallmorefrequentlyevidentin

patients with nodular melanoma [55]. From 25% to 31%

of NRAS mutations occurred in this melanoma subtype

[55,59,68].AhigherincidenceofNRASmutationswasfound

in non-acral fast growing melanomas in comparison with

non-fastgrowingmelanomas(26.5versus12.1%)[69].

WhileinsomestudiesNRASmutatedmelanomaswere

reportedtobesignificantlythickerandhigherClark’slevel

thanwttumors [61,62,64,68]otherreports could not

con-firm any association between NRAS mutation and tumor

thickness[70,71]. Ulceration was reported to be lower in

NRAS-mutated tumors in comparison to BRAF mutated

tumors(9.7versus22.4%,respectively)[63]butnoobvious

effectofmutationalstatusonthepresenceofulcerationwas

reportedbyothers[68].MelanomasharboringNRAS

muta-tionshave showngreater mitotic rates thanBRAF mutant

melanomas[63,68].

Inconclusion,theretrospectivenatureofthestudiesand

theheterogeneity of patients’ populationsmayexplainthe

differentresultsobtainedso far,anditshouldbe

acknowl-edgedthatphenotypic-genotypic correlationsinmelanoma

isstillaworkinprogress.

4. NRAS:prognosticorpredictivebiomarkerin melanoma?acriticalanalysisofcurrentliterature

Theprognostic andpredictive significanceof NRAS in

melanomaisstillamatterofintensedebate.

Abiomarker is,by definition, an objectively measured

andevaluated parameter that provides information on the

naturalhistoryofaspecificdisease,itspathogenicprocess

oronpharmacologicalresponsestoaspecifiedtherapeutic

intervention.Aprognosticbiomarkerprovides information

onoverallcanceroutcome,regardlessoftherapy.Inthe med-icalliteraturetwotypesofprognosticbiomarkershavebeen

reported:biomarkersthatgiveinformationonrecurrencein

patientswhoreceivecurativetreatment andthosethat

cor-relatewiththemedianoverallsurvival(OS)inpatientswith

metastaticdisease.AccordingtoaNIHConsensus

Confer-ence,aclinicalusefulprognosticmarkermustbeaproven

independent,significantfactor,thatiseasytodetermineand interpretandhastherapeuticconsequences[72].

Prognosticbiomarkersthatprovideinformationontherisk ofrelapseareimportantnotonlytobetterstratifypatientsin clinicaltrialsbutalsotosparemanypatientsthe

treatment-relatedtoxicitywithoutcompromisingsurvival.Abiomarker

withpredictive value gives information on the effectof a

therapeuticinterventioninapatient.Twotypesofpredictive

biomarkershavebeenreported:(1)upfrontand(2)early pre-dictive markers.The firstcanbe usedfor patientselection

andthe second provides informationearly duringtherapy.

Thelatterbiomarkerislessusefulthantheformerbecause

doesnotprovidereliableandusefulinformationtoselectthe beststrategytobeadoptedbeforestartingtherapy.

4.1. IsNRASaprognosticbiomarkerinmelanoma?

Severalstudieshavebeencarriedouttoexaminewhether

mutationsinNRASconferdifferentpathologicalfeaturesand clinicalbehavior. Theeffectof thesemutationsonclinical

outcome remainsuncertain[59,61,73,74].Table1

summa-rizesmostimportantstudiesontheprognosticroleofNRAS

inmelanoma[63,68,74–79,61,80–83].Themajorityofthese

studieshavebeenretrospectiveinnature,andmostofthem

includedpatientswithrecurrentormetastaticdisease.

WhenOSwasmeasuredfromthetimeofprimarytumor,

NRAS mutations were found to have no impact on OS

[59,63,61]. Akslen et al. evaluated 51 primary nodular

melanomas.InthisretrospectivestudyNRASmutationwas

foundin27%ofpatients[82].RASmutationwasnot associ-atedwithtumorcellproliferationbyKi-67expression,tumor thickness,microvesseldensity,orvascularinvasion,andthere werenodifferencesinpatientsurvival[82].

In anattempttocorrelateBRAFandNRASmutational

status with features known to influence tumor behavior,

including age, gender,Breslow depth, Clark level, mitotic

rate, the presence of ulceration, and AJCCstaging,

Eller-horstetal.performedastudyon223microdissectedprimary

melanomas[63].Patientswhosetumorscarriedeither

muta-tion presented with more advanced stages compared to

patientswithwttumors,andspecifically,weremorelikelyto

haveStageIIIdiseaseatdiagnosis.BRAFandNRAS

muta-tionsdid notinfluencesurvival.Furthermore, inthisstudy survivaldidnotdifferbetweenStageIIIpatientswhose

pri-marytumorsdoordonotcarrymutations,eventhoughthe

mutatedtumorstendedtoproducelargervolumenodal

dis-ease[63].

Recently, Devitt et al. reported data obtained from a

prospectivecohortof249patients[67].Whencomparedtowt

NRASpatients,multivariateanalysisofmelanoma-specific

survival identified NRASmutationsas anadverse

progno-sticfactor.Howeverinthemultivariate analysis,therewas

noevidencethatNRASmutationwasneitheranindependent

predictorofrelapsefreesurvival(RFS)norofOS[68].

However,intwostudieswhereOSwasmeasuredfromthe

timeofbiopsyofadvanceddisease,NRASmutationswere

associatedwithimprovedOSwhencomparedtotumorswith

BRAFmutationsorbothBRAF/NRASwttumors[73,74].

Mann et al. performed a comprehensive

clinico-pathologicalassessmentoffresh-frozenmacroscopicnodal

metastases and the preceding primary melanoma, somatic

mutation profiling, and gene expression profiling to

iden-tifydeterminantsofoutcomein79melanomapatients[81].

(8)

Table1

SummaryofmostsignificantstudiesaddressingtheprognosticsignificanceofNRASmutationsinmelanoma.

RASmutationandmelanomaprognosis

Author Patientsno. Stage Siteofprimary

melanoma

Genes Exons PFS OS

Demunter(2001)[75] 81 Allstages Skin NRAS 1 p=0.0130 –

Omholt(2002)[78] 72 Allstages Skin NRAS 2

3

– NS

Houben(2004)[76] 174 Allstages Skin BRAF 15

11

NS NS

p=0.02a

NRAS 1

2

Akslen(2005)[81] 57 Allstages Skin BRAF 15

11 – NS NRAS 2 1 Edlundh-Rose(2006) [79] 219 NA Skin BRAF 15 11 – NS NRAS 2 Ugurel(2007)[73] 109 III IV Skin Mucosa Occult NA BRAF 15 11 – p=0.006 NRAS 2 1

Ellerhorst(2010)[62] 223 I–III Skin BRAF 15 – NS

NRAS 2

Devitt(2011)[67] 244 I–III Skin BRAF 15 – p=0.04

(MSS)

NRAS 3

Jakob(2012)[77] 667 Allstages Skin

Mucosa Uvea Occult BRAF 15 – p=0.004 NRAS 1 2

Mann(2012)[80] 79 III Skin BRAF 15 – NS

NRAS 2 Bucheit(2013)[61] 438 IV Skin Mucosa Softparts Occult BRAF 15 – NS NRAS 1 2 Birkeland(2013)[74] 85 III IV Skin Mucosa Uvea Occult NRAS 3 p<0.01 p<0.001

Ekedahl(2013)[82] 203 IV Skin BRAF 15 – p=0.25

NRAS 2

OS:overallsurvival;PFS:progressionfreesurvival;MSS:melanoma-specificsurvival;NS:notsignificant.

aOSfrommetastasectomy.

NRAS mutation was independently associated with better

survival.Furthermore,a46-geneexpressionsignaturewith

strongoverrepresentationofimmuneresponsegeneswas

pre-dictiveofbettersurvival;inthefullcohort,mediansurvival

was>100monthsinthosewiththesignature,but10months inthosewithout.

Recently,inaretrospectivestudy,Jacobetal.testedfor

(9)

Table2

StudiesreportingonRASmutationsaspredictivebiomarkersinmelanoma.

RASaspredictivebiomarkerinmelanoma

Author Patients

no.

Stage Siteof

primary melanoma

Genes Mutations Drug(s) OS PFS TTP CCR/CB

Banerji(2008)

[83]

6 NR NR BRAF V600E 17-AAG NR – NR NR

NRAS G13D 17-AAG Joseph(2012) [84] 208 IIIc IV NR BRAF V600 HDIL2 NS NS NS NS – – p=0.05 NRAS G12 G13 Q61 HDIL2 Birkeland(2013) [74] 85 III IV Skin Mucosa Uvea Occult NRAS G12 G13 DTIC p<0.001 NS – NS Patelet(2013)[85] 18 III IV

Skin BRAF V600E

R603 S.+/−DTIC, TXT,E.orT. NR – NS NS NRAS Q61R Q61K G12S S.+/−DTIC, TXT,E.orT.

17-AAG:HSP90inhibitor17-allylamino-17-demethoxygeldanamycin;DTIC:dacarbazine;CB:clinicalbenefit:objectiveresponseorstablediseaserecorded

3monthsafterDTICtreatment;HDIL2:high-doseinterleukin2;CRR:clinicalresponserate;TTP:timetoprogression;NR:notreported;S.:selumetinib;

TXT.:docetaxel;E.:erlotinib;T.:temsirolimus.

significantassociationsofmutationwithtumorandpatient

characteristicsandwithsurvivalfromthediagnosisofstage

IVdisease[78].Tumormutationstatuswasassociatedwith

theriskofcentralnervoussysteminvolvementatthe

diag-nosis.PatientswithNRASmutationshadamediansurvival

of8.2monthsfrom stageIVdiagnosis, whichwasshorter

thanthe median survival of wtpatients (15.1 months).At

multivariateanalysis,afteradjustingforage,sex,metastatic

site,serumlactatedehydrogenaselevel,NRASmutationwas

independentlyassociatedwithdecreasedOS.

Overall, the results published so far are heterogeneous

in terms of patients’ selection criteria and methodology.

Specifically,difficultiesincomparingresultsarisefromthe followingconsiderations: (i)mostof theavailabledataare retrospective;(ii)patientswithdifferenttumorstageshave

beenevaluated; (iii) primary or metastaticsiteshavebeen

tested;(iv)differenttumorhistotypeshavebeenincluded.

Hence,thereisnodefinitiveevidencethatNRAS

muta-tionisprognosticinpatientswithlimitedradicallyresected disease(stagesI–III) orinmetastaticsetting.Furthermore,

mostoftheobservationshavebeenconductedinCaucasian

populationswithscarcityofdatafromothergeographicareas (e.g.Asian).

4.2. IsNRASapredictivebiomarkerinmelanoma?

TheRASmutationalstatusdoesnotgiveinformationon

theeffectofatherapeuticinterventioninapatient,henceitis notapredictivemarkereitherupfrontorasearlypredictive

marker. Table 2 includes studiesaddressing the predictive

significanceofNRASmutationsinmelanoma[75,84–86].

So far, several different strategies of directly targeting RAShavenotresultedineffectivetherapeutics.Thereis

evi-dence that someNRAS-mutated celllines are sensitiveto

MEK inhibition invitro[87].However, inthismodel, the

sensitivitytotheMEKinhibitorofN-RASmutatedcellswas

significantlylowerthanthoseharboringBRAFmutation.

TheloweractivityofMEKinhibitorsinN-RAS-mutated

in comparison with BRAFV600-mutated melanoma cells

maybeexplainedbythecomplexityofpathwayswithwhich

RASinteractswithinthecell.

Itis wellknown thatRAS familymembershave

multi-ple other targets, such as PI(3)K andRalGDS; thesemay

exert more prominent oncogenic effects in certain tumor

subtypes,therebyreducingtherequirementforMAPK

acti-vation.Hence,single-agenttherapeuticstrategiesmayprove

insufficient in RAS mutant tumors. Instead, direct RAS

inhibitorsorcombinatorialstrategiesmayberequired.

Recently, anoral MEK inhibitor (MEK162)was tested

in patients with metastaticmelanoma harboring BRAF or

NRASmutationswithencouragingresultsinNRASmutated

patients [88]. In preclinical models MEK162 inhibited

growth of NRAS-mutated and Val600Glu BRAF-mutated

melanoma instudiesthat usedinvitroandinvivomodels

[89].

However,theresponseratewasreportedinonly20%of

patients and only in 10% of this population the response

was confirmed. Furthermore, the median progression-free

(10)

responsewas7.6weeks[88].Thesedataclearlyindicatethat

mostofthepatients rapidlydevelopresistancetotheMEK

inhibitor.

Atwo-arm,randomized, prospective,open-label,

multi-center,phaseIIIstudytocomparetheefficacyandsafetyof

MEK162(45mgbisindie)versusdacarbazine(1000mg/m2

IVevery 3 weeks) inpatients withadvanced (Stage IIIC)

unresectableormetastatic(StageIV)NRASQ61

mutation-positive cutaneous melanoma is currently underway. The

primaryendpointofthestudyisprogression-freesurvival,

whilesecondaryendpointisoverallsurvival(“NEMOtrial”

NCT01763164).

Anothersecond generationMEKinhibitor,selumetinib,

demonstratedmarkedinhibitionofpERK,eitherincelllines

harboring BRAF mutations as well as in thoseharboring

NRASmutations[90].

A randomized phase II study comparing the MEK

inhibitor Pimasertib (AS703026) with dacarbazine in

pre-viously untreated subjects with N-Ras mutated locally

advanced or metastatic malignant cutaneous melanoma is

currentlyunderway(NCT01693068).

Atthetimeofthepublicationofthismanuscriptthereare

norandomizedclinicaltrialscomparingMEK162withother

MEKinhibitorsinNRASmutatedmelanomapatients.

Recently thedevelopment of small moleculesthat

irre-versiblybindtoacommononcogenicmutant,K-Ras(G12C)

has been reported [91]. These compounds rely on the

mutantcysteineforbindingandthereforedonotaffectthe

wt protein. These inhibitors to K-Ras(G12C) subvert the

native nucleotide preference tofavor GDP over GTP and

impairingbindingtoRaf.Thesefindingsarerelevantsince

they reveal, for the first time, a new allosteric regulatory

site on Ras that is targetable in a mutant-specific

man-ner.

AsubgroupofmelanomaswithRASdependenceisthose

withlow-activity.

BRAFmutations,such asthosefoundatpositions466,

464and597.Celllineswithlow-activity BRAFmutations

showanimpairedactivationofMAPKsignalinginisolated

kinaseassaysandoftenharborconcurrentNRASmutations

at positions 12and 13. It cannot be excludedthat NRAS

melanomacellswithlowactivitymutantBRAFmaypartially

explainthesensitivityofasubgroupofNRASmelanomacells

toMEKinhibitors.

Inaccordance withthishypothesis,Dahlmanetal.

per-formedananalysisofBRAFexon15in49tumorswithlack

ofBRAFV600 mutationandshowedthat 2(4%)harbored

L597mutationsandother2 BRAFD594 andK601

muta-tions[92].InvitrosignalinginducedbyL597mutantswas

suppressedbyMEKinhibition.ApatientwithBRAFL597S

mutantmetastaticmelanomarespondedsignificantlyto

treat-mentwiththeMEKinhibitor,TAK-733.Collectively,these

data show clinical significance response to BRAF(L597)

mutationsinmelanoma.

ThefocusofindirectRASinhibitionhasthenshiftedto

interferewiththecomplexnetworkofactivateddownstream

cascades such as the MAPK, phosphoinositol 3-kinase

(PI3K),phospholipidC(PLC),RalGEF.

Posch et al. evaluated the sensitivity of RAS mutated

melanomacellsandxenograftstoMEKandPI3Kinhibitors

[93]. NRAS mutated cells were more sensitive to MEK

inhibition compared withthe PI3K/mTORcascade

inhibi-tion.CombinedtargetingofMEKandPI3Kwassuperiorto

MEKandmTORinhibitioninallNRASmutantmelanoma

celllines,suggestingthatPI3Ksignalingismoreimportant

for cell survival in NRAS mutant melanoma when MEK

is inhibited. However, targeting of PI3K/mTOR in

com-bination with MEK inhibitors is necessary to effectively

abolishgrowthofNRASmutantmelanomacellsinvitroand

regressxenograftedNRASmutantmelanoma.Inthismodel

MEK and PI3K/mTOR inhibition was synergistic. These

results indicate that combined targeting of the MEK/ERK

andPI3K/mTORpathwayshasantitumoractivityandcould

beavalidoptioninthetreatmentofNRASmutantmelanoma,

forwhichtherearecurrentlynoeffectivetherapies.

Finally, Johnson et al. reported that patients with

NRASmutatedmetastaticmelanomaachieveincreased

clin-ical benefit from immunotherapy compared to thosewith

BRAF/NRASwt[94].

These datasuggest that NRAS mutation statusmay be

a biomarker of response to immunotherapy in metastatic

melanomaandthatmolecularlytargetedimmunotherapymay

befeasible.Howeveralarger,prospectiveanalysisis neces-sarytovalidateandexpandontheseresults,includingthose

withBRAFmutandKITmutmetastaticmelanomatodraw

firmconclusions.

Overall, the above data suggest that:(i) a subgroup of

NRASmutatedmelanomamaybesensitivetoMEK

inhibi-tionbutinmostcasesresistancerapidlyoccur;(ii)asubgroup

of NRAS mutated melanoma harbor low activity BRAF

mutation,andthemeaningofthesemutationsshouldbe

fur-therinvestigated;(iii)single-agenttherapeuticstrategiesmay

proveinsufficientinRASmutanttumors.Instead,

combina-torialstrategiesmayberequiredtoovercomeresistance.

5. NRASasamechanismofresistancetoBRAF inhibitorsinmelanoma

AhighpercentageofpatientswithBRAFV600Emutant

melanomasrespondtoselectiveRAFinhibitorsbutresistance

eventuallyemerges.

Unlike what happens in othertumors whereadditional

mutationseventuallyoccurinthetarget(EGFRinnon-small

cell lung cancer, c-KIT in GISTs, BCR-ABL in chronic

myeloidleukemia)theearlyevidencefromdirect

sequenc-ingofBRAFexonssuggeststhatnewpointmutationsarenot

evidentandthatBRAFV600Epersists.

RAShasbeenconsistentlydescribedasamechanismof

resistancetoBRAFinhibitors.Itiswellknownthatthereisa

switchinRAFisoformusagedependingonwhetherBRAF

(11)

Table3

ResistancetoBRAFinhibitors.

ResistancetoBRAFinhibitors

Author Patientswithacquired

resistancetotherapyno.

Drug Mechanismofresistance NRASacquired

mutationspatientsno.(%)

Nazarian(2010)[95] 12 Vemurafenib NRAScodon61

mutations

PDGFRBoverexpression

1(8.3%)

Trunzer(2013)[96] 13 Vemurafenib IncreasedpERKlevels

MEK1mutations

NRAScodon61

mutations

3(23%)

McArthur(2011)[97] 11 Vemurafenib NRAScodon61

mutations

1(9.09%)

Poulikakos(2011)[98] 19 Vemurafenib IncreasedRAS-GTP

levels Increased RAS-independentRAF dimerization 6(31.6%) Wagle(2014)[99] 5 Dabrafenib Trametinib MutationinMEK2

BRAFspliceisoform

BRAFamplification

5(100%)

VanAllen(2014)[100] 30 Vemurafenib

Dabrafenib MAPKpathway Alterations MEK1Mutations MEK2Mutations MIFTAmplification 23/45(51%)

Rizos(2014)[101] 38 MutationinMEK2

MutationinMEK1

MutationinNRAS

MutationinAKT

BRAFspliceisoform

BRAFamplification

3(8%)

whichBRAFismutated,BRAFisprimarilyresponsiblefor

signalingtoMEKandERK.In presenceofRASmutation

anexcessiveERKsignalingthrough BRAFandingeneral

MAPKactivation would inducecellcycle arrest or

senes-cencethroughtranscriptionalup-regulationofproteinssuch

as p21, p27, and p16INK4A [102].To avoidthis, the cells

switch to CRAF,which provides weaker signaling andis

compatiblewithtumorprogression.

Nazarianetal.demonstratedthathighlevelsofactivated

N-RASresultingfrommutationsleadtosignificantMAPK

pathwayreactivationuponBRAFinhibitortreatment[95].In

aseriesofelegantexperiments,knockdownofNRASreduced

growth of the respective BRAF inhibitors resistant cells.

Ontheopposite,overexpressionofN-RASconferredBRAF

inhibitorresistancetoBRAFinhibitorsensitiveparentalcell lines.

Recently,Suetal.usedcelllinestoestablishBRAFV600E

melanoma clones with acquired resistance to a BRAF

inhibitor [103].The authors confirmedthat nosecond-site

mutationscouldbeidentifiedintheBRAFcodingsequence.

Inthismodel,resistancecorrelatedwithincreasedlevelsof

RAS-GTP,andsequencingofRASgenesrevealedarare

acti-vatingmutationinKRAS,resultinginaK117Nchange in

theKRASprotein.Elevatedlevels ofCRAFand

phospho-rylatedAKTwerealsoobserved.Interestingly,combination

treatmentwithBRAFinhibitorandeitheraMEKinhibitor

oranAKTinhibitorsynergisticallyinhibitedproliferationof resistantcells.Thesedatasupportclinicalstudiesinwhich

combination therapy with other targeted agents are being

strategizedtoovercomeresistance.

Trunzer et al. [96] evaluated serial biopsies to study

changes in mitogen-activated protein kinase (MAPK)

signaling,cell-cycleprogression,andfactorscausing

intrin-sicor acquired resistancebyimmunohistochemistry,DNA

sequencing, or somatic mutation profiling to a BRAF

inhibitorwithintheBRIM2study[104].Inthisstudy3/13

patients hadNRASQ61Kco-occurring mutationsintumor

samplestakenatprogression.Combiningthesefindingswith

thosepreviously reportedby Nazarian[95] andMcArthur

[97],among36patientsanalyzed,fivepatients(14%)hadan

NRASmutationinaprogressivelesion.Thisfurthersupports thehypothesisbyNazarianetal.[95]thattheNRASmutation

isonemechanismofescapefromvemurafenibtherapy.

Overall,theabovereporteddatasuggestthat:(1)A

con-comitantbaselinemutationintheupstreamNRASoncogene

israrebutmayresultinearlylackofclinicalbenefittoBRAFi;

(2) RAS mutation is a common mechanism of acquired

resistance; (3) whether a combination therapy with other

targetedagentscouldovercomeresistanceremainstobe elu-cidated.

(12)

Table4

RAStargetinlocallyadvancedormetastaticmelanoma:ongoingclinicaltrials(www.clinicaltrials.govaccessedJanuary26,2014).

Drug Phase Trial Disease(s) Primaryoutcomemeasures

Monotherapynon-randomized

MEK162 II NCT01320085 BRAForNRAS

Mutatedmelanoma ORR RAF265 II NCT00304525 Melanoma MTD DLT Associationmutationsin NRAS/clinicalresponse(◦)

Selumetinib(AZD6244) II NCT00866177 BRAForNRAS

Mutatedmelanoma

Anti-tumorresponse

Monotherapyrandomized

Pimasertibversusdacarbazina II NCT01693068 NRASmutatedmelanoma PFS

MEK162versusdacarbazine III NCT01763164 NRASmutatedmelanoma PFS

AZD6244versustemozolamide II NCT00338130 Melanoma PFS

ORR* TTD

Durationofresponse

Assessmentoftheefficacyof

AZD6244versus

temozolomideBRAFor

NRASMMpatients(◦)

Combinationtherapynon-randomized

BKM120+MEK162 I NCT01363232 EGFRmutantNSCLCinPD

onEGFRinhibitors

Triplenegativebreastcancer

Pancreaticcancer

CRC Melanoma

NSCLC,withKRAS,NRAS,

and/orBRAFmutations

DLT

Trametinib

(GSK1120212)+GSK2141795

II NCT01941927 BRAFwtmelanoma ORR*inpatientswitheither

mutatedNRASorwt NRAS/wtBRAFM RAFinhibitor (BMS-908662)+immunotherapy (ipilimumab) I NCT01245556 Melanoma Toxicity PDwillbeassessedby evaluatingmarkersof

RAS/RAFpathwayactivity

(◦)

PI3K/mTORinhibitor

BEZ235+MEK1/2inhibitor

MEK162

Ib NCT01337765 EGFRmutantNSCLCinPD

onEGFRinhibitors

Triplenegativebreastcancer

Pancreaticcancer

Colorectalcancer

Melanoma NSCLC

Otheradvancedsolidtumors

withKRAS,NRAS,and/or

BRAFmutations

IncidenceofDLT

LEE011+MEK162 Ib NCT01781572 NRASmutatedmelanoma IncidenceofDLT

ORR*

MTD:maximumtolerateddose;EAS:ectopicACTHsecreting;wt:wildtype;NR:notreported;ORR:overallresponserate;PFS:progressionfreesurvival;

TTD:timetodeath;DLT:doselimitingtoxicity;ORR*:objectiveresponserate;CRC:colorectalcancer;(◦):secondaryoutcomemeasures.

The importance of RASin melanoma deserves clinical

andbiologicalinvestigationtooptimizetreatmentoflocally

advancedandmetastaticmelanoma.Although,inthelasttwo

decades,progresshasbeenslow,therearenowavarietyof

therapeuticstrategiesthatareprimedfor clinical

investiga-tion.Table4summarizesongoingtrialsinwhichRAS,and

preferentiallyNRAS,hasbeenselectedasatarget.

6. Futuredirections

Thirty yearsof basic, clinicalandtranslationalresearch

have producedalargeamount of knowledgepertainingto

theRASoncogenefamily(Fig.4).TheprevalenceofRAS

mutations, but also the high number of RAS activators

(13)

Fig.4. TimelineofkeyadvancesinNRASclinicalandtranslationalresearch.(a)Harveyetal.(1964)[97];(b)Kirstenetal.(1970)[98];(c)Shihetal.(1980)

[99];(d)Changetal.(1982)[2,3],(e)Deretal.(1982)[4],(f)Paradaetal.(1982)[5],(g)Santosetal.(1982)[100],(h)Milburnetal.(1990)[103];(i)Pai

etal.(1990)[102];(j)Boguskietal.(1993)[101];(k)Moodieetal.(1993)[9];(l)Vojteketal.(1993)[10];(m)Warneetal.(1993)[11],(n)Zhangetal.(1993)

[12];(o)Chinetal.(1999)[22];(p)Solitetal.(2006)[86];(q)Nazarianetal.(2010)[90];(r)Whitwametal.(2007)[37];(s)Asciertoetal.(2013)[87],(t)

Poschetal.(2013)[89].

proteinsatthecrossroadsofseveralsignalingnetworks.

Nev-ertheless, this extensive knowledge has not yet translated

intoclinicallyeffectivetherapiesformelanomasexpressing

mutantformsofRAS.

AsRAS is mutated in15–20% of melanomas, priority

actionsareneeded:

1. Future studies should focus on co-extinction strategies

otherthanreinforcinginhibitionofMAPKsignaling.

2. Inhibitionoftheactivateddownstreamcascadesincluding

MAPK,PI3K,PLC,RALshouldbepursuedinpreclinical

andearlyphaseclinicalstudies.

3. Mostof the downstreamtargets are not tumor specific

therapiesandbeartheriskofseveresideeffects.Hence,

well-designed clinical studies with appropriate

phar-macokineticsandpharmacodynamic endpoint between

combinationtherapiesareneeded.

4. MEKinhibitors as monotherapyshouldbe validated in

prospective,randomizedphaseIIIstudies.

Reviewers

OlivierMichielin,MD,PhD,CHUV–Multidisciplinary

OncologyCenter(CePO),UNIL–UniversityofLausanne,

Lausanne,Switzerland.

Matteo Carlino, PhD, Westmead Institute of Cancer

Research,TheUniversityofSydney,Australia.

References

[1]MalumbresM,BarbacidM.RASoncogenes:thefirst30years.Nat RevCancer2003;3:459–65.

[2]ChangEH,FurthME,ScolnickEM,LowyDR.Tumorigenic trans-formationofmammalian cellsinduced byanormalhumangene homologoustotheoncogeneofHarveymurinesarcomavirus.Nature 1982;297:479–83.

[3]ChangEH,GondaMA,EllisRW,ScolnickEM,LowyDR.Human genomecontainsfourgeneshomologoustotransforminggenesof HarveyandKirstenmurinesarcomaviruses.ProcNatlAcadSciUS A1982;79:4848–52.

(14)

[4]DerCJ,KrontirisTG,CooperGM.Transforminggenesofhuman bladderandlungcarcinomacelllinesarehomologoustotherasgenes ofHarveyandKirstensarcomaviruses.ProcNatlAcadSciUSA 1982;79:3637–40.

[5]ParadaLF,TabinCJ,ShihC,WeinbergRA.HumanEJbladder car-cinomaoncogeneishomologueofHarveysarcomavirusrasgene. Nature1982;297:474–8.

[6]ShimizuK,GoldfarbM,SuardY,etal.Threehumantransforming genesarerelatedtotheviralrasoncogenes.ProcNatlAcadSciUS A1983;80:2112–6.

[7]Henis YI, Hancock JF, Prior IA.Ras acylation, compartmental-izationandsignalingnanoclusters.MolMembrBiol2009;26:80–92 [Review].

[8]MorA,PhilipsMR.CompartmentalizedRas/MAPKsignaling.Annu RevImmunol2006;24:771–800.

[9]MoodieSA,WillumsenBM,WeberMJ,WolfmanA.Complexesof Ras.GTPwithRaf-1andmitogen-activatedproteinkinasekinase. Science1993;260:1658–61.

[10]Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras inter-acts directlywith theserine/threonine kinaseRaf. Cell 1993;74: 205–14.

[11]WarnePH,VicianaPR,DownwardJ.DirectinteractionofRasand theamino-terminalregionofRaf-1invitro.Nature1993;364:352–5.

[12]ZhangXF,SettlemanJ,KyriakisJM,etal.Normalandoncogenic p21rasproteinsbindtotheamino-terminalregulatorydomainof c-Raf-1.Nature1993;364:308–13.

[13]Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995;9:726–35.

[14]Rodriguez-VicianaP,WarnePH,DhandR,etal. Phosphatidylinositol-3-OHkinaseasadirecttargetofRas.Nature1994;370:527–32.

[15]Engelman JA,LuoJ,CantleyLC.Theevolutionof phosphatidyl-inositol3-kinasesasregulatorsofgrowthandmetabolism.NatRev Genet2006;7:606–19.

[16]MandalàM,VoitC.TargetingBRAFinmelanoma:biologicaland clinicalchallenges.CritRevOncolHematol2013;87:239–55.

[17]FeramiscoJR,GrossM,KamataT,RosenbergM,SweetRW. Microin-jectionoftheoncogeneformofthehumanH-ras(T-24)proteinresults inrapidproliferationofquiescentcells.Cell1984;38:109–17.

[18]HanahanD,WeinbergRA.Hallmarksofcancer:thenextgeneration. Cell2011;144:646–74.

[19]FincoTS,WestwickJK,NorrisJL,BegAA,DerCJ,BaldwinJrAS. OncogenicHa-Ras-inducedsignalingactivatesNF-kappaB transcrip-tionalactivity,whichisrequiredforcellulartransformation.JBiol Chem1997;272:24113–6.

[20]WestwickJK,CoxAD,DerCJ,etal.OncogenicRasactivatesc-Jun viaaseparatepathwayfromtheactivationofextracellular signal-regulatedkinases.ProcNatlAcadSciUSA1994;91:6030–4.

[21]WinstonJT,CoatsSR,WangYZ,PledgerWJ.Regulationofthecell cyclemachinerybyoncogenicras.Oncogene1996;12:127–34.

[22]ChinL,TamA,PomerantzJ,etal.EssentialroleforoncogenicRas intumourmaintenance.Nature1999;400:468–72.

[23]Johannessen CM, Reczek EE, James MF, Brems H, Legius E, CichowskiK.TheNF1tumorsuppressorcriticallyregulatesTSC2 andmTOR.ProcNatlAcadSciUSA2005;102:8573–8.

[24]Semenza GL. Hypoxia and cancer. Cancer Metastasis Rev 2007;26:223–4.

[25]Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, AlberghinaL.Ras-dependentcarbonmetabolismandtransformation inmousefibroblasts.Oncogene2006;25:5391–404.

[26]KranenburgO,GebbinkMF,VoestEE.Stimulationofangiogenesis byRasproteins.BiochimBiophysActa2004;1654:23–37.

[27]TsujiiM,KawanoS,TsujiS,SawaokaH,HoriM,DuBoisRN. Cyclooxygenase regulates angiogenesis induced by coloncancer cells.Cell1998;93:705–16.

[28]Ancrile BB, O’HayerKM, Counter CM.Oncogenic ras-induced expressionofcytokines:anewtargetofanti-cancertherapeutics.Mol Interv2008;8:22–7.

[29]BlasiF,CarmelietP.uPAR:aversatilesignallingorchestrator.Nat RevMolCellBiol2002;3:932–43.

[30]SeligerB,HardersC,WollscheidU,StaegeMS,Reske-KunzAB, HuberC.SuppressionofMHCclassIantigensinoncogenic trans-formants: association with decreased recognition bycytotoxic T lymphocytes.ExpHematol1996;24:1275–9.

[31]KubuschokB,NeumannF,BreitR,etal.NaturallyoccurringT-cell responseagainstmutatedp21rasoncoproteininpancreaticcancer. ClinCancerRes2006;12:1365–72.

[32]TranThangNN,DerouaziM,PhilippinG,etal.Immuneinfiltration ofspontaneousmouseastrocytomasisdominatedby immunosup-pressivecellsfromearlystagesoftumordevelopment.CancerRes 2010;70:4829–39.

[33]FrischSM,FrancisH.Disruptionofepithelialcell–matrixinteractions inducesapoptosis.JCellBiol1994;124:619–26.

[34]CampbellPM, DerCJ.OncogenicRasanditsroleintumorcell invasionandmetastasis.SeminCancerBiol2004;14:105–14.

[35]GiehlK.OncogenicRasintumourprogressionandmetastasis.Biol Chem2005;386:193–205.

[36]ChinL,GarrawayLA,FisherDE.Malignantmelanoma:geneticsand therapeuticsinthegenomicera.GenesDev2006;20:2149–82.

[37]WhitwamT,VanbrocklinMW,RussoME,etal.Differential onco-genicpotentialofactivatedRASisoformsinmelanocytes.Oncogene 2007;26:4563–70.

[38]PriorIA,HancockJF.CompartmentalizationofRasproteins.JCell Sci2001;114(Pt9):1603–8.

[39]RossAL,SanchezMI,GrichnikJM.Molecularnevogenesis. Derma-tolResPract2011;2011:463184.

[40]Ichii-NakatoN,TakataM,TakayanagiS,etal.Highfrequencyof BRAFV600Emutationinacquiredneviandsmallcongenitalnevi, butlowfrequencyofmutationinmedium-sizedcongenitalnevi.J InvestDermatol2006;126:2111–8.

[41]DessarsB,DeRaeveLE,MorandiniR,etal.Genotypicandgene expressionstudiesincongenitalmelanocyticnevi:insightinto ini-tial steps of melanotumorigenesis. J Invest Dermatol 2009;129: 139–47.

[42]CharbelC,FontaineRH,MaloufGG,etal.NRASmutationisthe solerecurrentsomaticmutationinlargecongenitalmelanocyticnevi. JInvestDermatol2013;(October).

[43]Ichii-NakatoN1,TakataM,TakayanagiS,etal.Highfrequencyof BRAFV600Emutationinacquiredneviandsmallcongenitalnevi, butlowfrequencyofmutationinmedium-sizedcongenitalnevi.J InvestDermatol2006;126:2111–8.

[44]BauerJ,CurtinJA,PinkelD,BastianBC.Congenitalmelanocytic nevifrequentlyharborNRASmutationsbutnoBRAFmutations.J InvestDermatol2007;127:179–82.

[45]PhadkePA,RakhejaD,LeLP,etal.Proliferativenodulesarising within congenital melanocytic nevi: a histologic, immunohisto-chemical,andmolecularanalysesof43cases.AmJSurg Pathol 2011;35:656–69.

[46]Pedersen M, Küsters-Vandevelde HV, Viros A, et al. Primary melanomaoftheCNSinchildrenisdrivenbycongenitalexpression ofoncogenicNRASinmelanocytes.CancerDiscov2013;3:458–69.

[47]GessiM,HammesJ,LauriolaL,etal.GNA11andN-RASmutations: alternativesforMAPKpathwayactivatingGNAQmutationsin pri-marymelanocytictumoursofthecentralnervoussystem.Neuropathol ApplNeurobiol2013;39:417–25.

[48]Kinsler VA, Thomas AC, Ishida M, et al. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61of NRAS.J InvestDermatol 2013;133:2229–36.

[49]CarrJ,MackieRM.PointmutationsintheN-rasoncogenein malig-nantmelanomaandcongenitalnaevi.BrJDermatol1994;131:72–7.

[50]JafariM,PappT,KirchnerS,etal.Analysisofrasmutationsinhuman melanocyticlesions:activationoftherasgeneseemstobeassociated withthenodulartypeofhumanmalignantmelanoma.JCancerRes ClinOncol1995;121:23–30.

(15)

[51]AlbinoAP,NanusDM,MentleIR,etal.Analysisofrasoncogenesin malignantmelanomaandprecursorlesions:correlationofpoint muta-tionswithdifferentiationphenotype.Oncogene1989;4:1363–74.

[52]EskandarpourM,HashemiJ,KanterL,RingborgU,PlatzA, Hans-sonJ.FrequencyofUV-inducibleNRASmutationsinmelanomas ofpatientswithgermlineCDKN2Amutations.JNatlCancerInst 2003;95:790–8.

[53]TschandlP,BerghoffAS,PreusserM,etal.NRASandBRAF muta-tionsinmelanoma-associatednevianduninvolvednevi.PLOSONE 2013;8:e69639.

[54]CurtinJA,FridlyandJ,KageshitaT,etal.Distinctsetsofgenetic alterationsinmelanoma.NEnglJMed2005;353:2135–47.

[55]LeeJH,ChoiJW,KimYS.FrequenciesofBRAFandNRAS muta-tionsaredifferentinhistologicaltypesandsitesoforiginofcutaneous melanoma:ameta-analysis.BrJDermatol2011;164:776–84.

[56]LovlyCM,DahlmanKB,FohnLE,etal.Routinemultiplex muta-tionalprofilingofmelanomasenablesenrollmentingenotype-driven therapeutictrials.PLOSONE2012;7:e35309.

[57]HenaryH,HongDS,FalchookGS,etal.Melanomapatientsina phaseIclinic:molecularaberrations,targetedtherapyandoutcomes. AnnOncol2013;24:2158–65.

[58]Platz A, Egyhazi S, Ringborg U,Hansson J.Human cutaneous melanoma; a review of NRAS and BRAF mutationfrequencies in relation to histogenetic subclass and body site. Mol Oncol 2008;1:395–405.

[59]Akslen LA,PuntervollH, BachmannIM, etal.Mutation analy-sisoftheEGFR-NRAS-BRAFpathwayinmelanomasfromblack Africansandothersubgroupsofcutaneousmelanoma.Melanoma Res2008;18:29–35.

[60]SiL,KongY,XuX,etal.PrevalenceofBRAFV600Emutationin Chinesemelanomapatients:largescaleanalysisofBRAFandNRAS mutationsina432-casecohort.EurJCancer2012;48:94–100.

[61]Edlundh-RoseE,EgyháziS,OmholtK,etal.NRASandBRAF muta-tionsinmelanomatumoursinrelationtoclinicalcharacteristics:a studybasedonmutationscreeningbypyrosequencing.Melanoma Res2006;16:471–8.

[62]BallNJ,YohnJJ,MorelliJG,NorrisDA,GolitzLE,HoefflerJP.Ras mutationsinhumanmelanoma:amarkerofmalignantprogression.J InvestDermatol1994;102:285–90.

[63]EllerhorstJA,GreeneVR,EkmekciogluS,etal.Clinicalcorrelates ofNRASandBRAFmutationsinprimaryhumanmelanoma.Clin CancerRes2011;17:229–35.

[64]Griewank KG, Westekemper H, Murali R, et al. Conjunctival melanomasharborBRAFandNRASmutationsandcopynumber changessimilartocutaneousandmucosalmelanomas.ClinCancer Res2013;19:3143–52.

[65]Turri-ZanoniM,MedicinaD,LombardiD,etal.Sinonasalmucosal melanoma: molecularprofileand therapeuticimplications froma seriesof32cases.HeadNeck2013;35:1066–77.

[66]SekineS,NakanishiY,OgawaR,KoudaS,KanaiY.Esophageal melanomasharborfrequentNRASmutationsunlikemelanomasof othermucosalsites.VirchowsArch2009;454:513–7.

[67]Dutton-Regester K, Kakavand H,Aoude LG, et al. Melanomas of unknown primary have a mutation profile consistent with cutaneous sun-exposed melanoma. Pigment Cell Melanoma Res 2013;26:852–60.

[68]DevittB,LiuW,SalemiR,etal.Clinicaloutcomeand pathologi-calfeaturesassociatedwithNRASmutationincutaneousmelanoma. PigmentCellMelanomaRes2011;24:666–72.

[69]Nagore E,HackerE, Martorell-CalatayudA,etal.Prevalenceof BRAFandNRASmutationsinfast-growingmelanomas.Pigment CellMelanomaRes2013;26:429–31.

[70]vanElsasA,ZerpSF,vanderFlierS,etal.Relevanceof ultraviolet-inducedN-rasoncogenepointmutationsindevelopmentofprimary humancutaneousmelanoma.AmJPathol1996;149:883–93.

[71]Demunter A, Stas M,Degreef H, De Wolf-Peeters C, van den Oord JJ. Analysis of N-and K-rasmutations in the distinctive

tumorprogressionphasesofmelanoma.JInvestDermatol2001;117: 1483–9.

[72]Treatmentofearly-stagebreastcancer.NIHconsensusconference. JAMA1991;265:391–5.

[73]Omholt K, Platz A, Kanter L, Ringborg U, Hansson J. NRAS and BRAF mutations ariseearly during melanoma pathogenesis andarepreservedthroughouttumorprogression.ClinCancerRes 2003;9:6483–8.

[74]UgurelS,ThirumaranRK,BloethnerS,etal.B-RAFandN-RAS mutationsarepreservedduringshorttimeinvitropropagationand differentiallyimpactprognosis.PLoSONE2007;2:e236.

[75]BirkelandE, BuschC, BergeEO, etal.LowBRAFand NRAS expressionlevels are associatedwith clinical benefitfrom DTIC therapyandprognosisinmetastaticmelanoma.ClinExpMetastasis 2013;30:867–76.

[76]DemunterA,AhmadianMR,LibbrechtL,etal.AnovelNrasmutation inmalignantmelanomaisassociatedwithexcellentprognosis.Cancer Res2001;61:4916–22.

[77]HoubenR,BeckerJC,KappelA,etal.Constitutiveactivationofthe Ras-Rafsignalingpathwayinmetastaticmelanomaisassociatedwith poorprognosis.JCarcinog2004;3:6.

[78]JakobJA,BassettJrRL, NgCS,etal.NRASmutationstatusis anindependentprognostic factorinmetastaticmelanoma.Cancer 2012;118:4014–23.

[79]OmholtK,KarsbergS,PlatzA,KanterL,RingborgU,Hansson J.ScreeningofN-rascodon61mutations inpaired primaryand metastaticcutaneousmelanomas:mutationsoccurearlyandpersist throughouttumorprogression.ClinCancerRes2002;8:3468–74.

[80]BucheitAD,SyklawerE,JakobJA,etal.Clinicalcharacteristicsand outcomeswithspecificBRAFandNRASmutationsinpatientswith metastaticmelanoma.Cancer2013Nov1;119:3821–9.

[81]MannGJ,PupoGM,CampainAE,etal.BRAFmutation,NRAS mutation,andtheabsenceofanimmune-relatedexpressedgene pro-filepredictpooroutcomeinpatientswithstageIIImelanoma.JInvest Dermatol2013;133:509–17.

[82]AkslenLA,AngeliniS,StraumeO,etal.BRAFandNRAS muta-tions are frequent in nodular melanoma but are not associated withtumorcellproliferationorpatientsurvival.JInvestDermatol 2005;125:312–7.

[83]EkedahlH,CirenajwisH,HarbstK,etal.Theclinicalsignificanceof BRAFandNRASmutationsinaclinic-basedmetastaticmelanoma cohort.BrJDermatol2013;169:1049–55.

[84]BanerjiU,AffolterA,JudsonI,MaraisR,WorkmanP.BRAFand NRASmutations in melanoma:potentialrelationships to clinical responsetoHSP90inhibitors.MolCancerTher2008;7:737–9.

[85]JosephRW, Sullivan RJ, HarrellR, et al.Correlation of NRAS mutationswithclinicalresponsetohigh-doseIL-2inpatientswith advancedmelanoma.JImmunother2012;35:66–72.

[86]PatelSP,LazarAJ,PapadopoulosNE,etal.Clinicalresponsesto selumetinib(AZD6244;ARRY-142886)-basedcombinationtherapy stratifiedbygenemutationsinpatientswithmetastaticmelanoma. Cancer2013;119:799–805.

[87]SolitDB,GarrawayLA,PratilasCA,etal.BRAFmutationpredicts sensitivitytoMEKinhibition.Nature2006;439:358–62.

[88]AsciertoPA,SchadendorfD,BerkingC,etal.MEK162forpatients withadvancedmelanomaharbouringNRASorVal600BRAF muta-tions:anon-randomised,open-labelphase 2study.LancetOncol 2013;14:249–56.

[89]WinskiS,AndersonD,BouhanaK,etal.MEK162(ARRY-162), a novel MEK 1/2 inhibitor, inhibits tumorgrowth regardless of KRas/Rafpathwaymutations.In:Proceedingsofthe22nd EORTC-NCI-AACRsymposiumonmoleculartargetsandcancertherapeutics. 2010.

[90]YehTC, Marsh V, BernatBA, et al.Biological characterization ofARRY-142886(AZD6244),a potent,highlyselective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 2007;13:1576–83.

(16)

[91]OstremJM,PetersU,SosML,WellsJA,ShokatKM.K-Ras(G12C) inhibitorsallostericallycontrolGTPaffinityandeffectorinteractions. Nature2013;503:548–51.

[92]DahlmanKB,XiaJ,HutchinsonK,etal.BRAF(L597)mutationsin melanomaareassociatedwithsensitivitytoMEKinhibitors.Cancer Discov2012;2:791–7.

[93]PoschC,MoslehiH,FeeneyL,etal.CombinedtargetingofMEK andPI3K/mTOReffectorpathwaysisnecessarytoeffectivelyinhibit NRASmutantmelanomainvitroandinvivo.ProcNatlAcadSciU SA2013;110:4015–20.

[94]JohnsonDB,LovlyCM,FlavinM,etal.NRASmutation:a poten-tial biomarker ofclinical responseto immune-based therapiesin metastaticmelanoma(MM).JClinOncol2013;31(Supppl.)[abstr 9019].

[95]NazarianR,ShiH,WangQ,etal.Melanomasacquireresistanceto B-RAF(V600E)inhibitionbyRTKorN-RASupregulation.Nature 2010;468:973–7.

[96]Trunzer K, Pavlick AC, Schuchter L, et al. Pharmacodynamic effectsandmechanismsofresistancetovemurafenibinpatientswith metastaticmelanoma.JClinOncol2013;31:1767–74.

[97]McArthurG,RibasA,ChapmanPB,etal.Molecularanalysesfrom aphaseItrialofvemu-rafenibtostudymechanismofaction(MOA) and resistanceinrepeatedbiopsiesfrom BRAFmutationpositive metastatic melanomapatients(pts).JClinOncol2011;29(Suppl.) [abstr8502].

[98]Poulikakos PI, Persaud Y, Janakiraman M, et al.RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).Nature2011;480:387–90.

[99]WagleN,VanAllenEM,TreacyDJ,etal.MAPkinasepathway alter-ationsinBRAF-mutantmelanomapatientswithacquiredresistance tocombinedRAF/MEKinhibition.CancerDiscov2014;4:61–8.

[100]VanAllenEM,WagleN,SuckerA,etal.Thegeneticlandscapeof

clinicalresistancetoRAFinhibitioninmetastaticmelanoma.Cancer Discov2014;4:94–109.

[101]RizosH,MenziesAM,PupoGM,etal.BRAFinhibitorresistance

mechanismsinmetastaticmelanoma:spectrumandclinicalimpact. ClinCancerRes2014;20:1965–77.

[102]DumazN,HaywardR,MartinJ,etal.Inmelanoma,RASmutations

areaccompaniedbyswitchingsignalingfromBRAFtoCRAFand disruptedcyclicAMPsignaling.CancerRes2006;66:9483–91.

[103]SuF,BradleyWD,WangQ,etal.ResistancetoselectiveBRAF

inhibitioncanbemediatedbymodestupstreampathwayactivation. CancerRes2012;72:969–78.

[104]SosmanJA,KimKB,SchuchterL,etal.SurvivalinBRAF

V600-mutantadvancedmelanomatreatedwithvemurafenib.NEnglJMed 2012;366:707–14.

Biographies

MarioMandalàiscurrentlyamedical oncologistinthe

UnitofMedicalOncology,PapaGiovanniXXIIIHospitalin

Bergamo,Italy.HeisinchargeoftheClinicaland

Transla-tionalResearchUnit.HereceivedhisMDfromtheCatholic

University inRome,Italy in1995.He hascompleted

resi-denciesinMedicalOncologyattheCatholicUniversityin

RomeaswellasatMilanUniversityandtheEuropean

Insti-tuteofOncologyinMilan,Italy.Healsoobtaineddiplomas

inMedicalOncologyandHaematologyfromMilan

Univer-sity in2000 and2005,respectively. His researchinterests

include clinical and translational research on cancer and

thrombosis.Hismainoncologicalresearchfocuseson

gas-trointestinal cancerandmelanoma.He isafullmemberof

the European Society of Medical Oncology. He has

lead-or co-authored many scientific papers and is a reviewer

for several journals, including Lancet Oncology, Cancer,

British Journal of Cancer, Annals of Oncology, Cancer

TreatmentReview,JournalofThrombosisandHaemostasis,

Thrombosis and Hemostasis, Arteriosclerosis-Thrombosis

and Vascular Biology, Critical Reviews in Oncology and

Haematology.

DanielaMassi,MD,PhD,isassociateprofessorof pathol-ogyattheUniversityofFlorenceMedicalSchool,Italy.Her

pathologytrainingincludesadermatopathologyfellowship

attheInstituteforDermatopathology,ThomasJefferson Uni-versity,Philadelphia,PA,underthedirectionofA.Bernard Ackerman.Shethenreceivedapost-doctoralresearch

fellow-shipfromtheAmerican-ItalianCancerFoundation(A.I.C.F.)

with aresearchprogram incutaneousmelanoma. She has

beenmemberoftheExecutiveCommitteeoftheInternational

SocietyofDermatopathology(1997–2003),Chairmanofthe

DermatopathologyWorkingGroupoftheEuropeanSociety

of Pathology(2007–2011),andsheiscurrentlymemberof

the EORTC Melanoma Pathology Group. She is an

asso-ciate editor of VirchowsArchiv andscientificreviewer for

severalinternationalscientificjournals.Her research

inter-ests are focused onskintumorpathology,andparticularly

receptorsignalingandmoleculargeneticsofmelanoma.She

has authored more than 200 publications and contributed

to the volume ‘Pathology & Genetics of Skin Tumours’

of theWorldHealthOrganization(WHO)Classification of

Riferimenti

Documenti correlati

L’impiego della ESWT nelle pseudoartrosi ha un proprio razionale nella riattivazione dei processi di formazione del callo osseo mediata dall’espressione di molecole pro-

Sebbene i livelli plasmatici basali di ACTH siano ridotti dopo 30 giorni di isolamento sociale, la somministrazione intracerebroventricolare di CRH (500ng/5µl),

Different values for superheating grade, evaporating pressure, solar field concentration ratio and tilt angle 235.

The Giant Meterwave Radio Telescope (GMRT) at 240 and 610MHz and the Westerbrook Synthesis Radio Telescope (WSRT) observations in the 1.4GHz band revealed the presence of a

Vengono a mancare perciò due condizioni alla base della scelta del luogo di lavoro come setting ideale per lo svolgimento di programmi di promozione della salute: la presenza

Si defnisce ittero la colorazione giallastra della cute e delle mucose dovuta ad accumulo di bilirubina Si chiama sub-ittero un aumento della bilirubina plasmatica a cui corrisponde

a.C., con la raffigurazione di guerrieri disposti in teoria che avanzano verso destra muniti di elmo, scudo rotondo, lancia alla pre- senza di un suonatore di aulos che indossa