• Non ci sono risultati.

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sqrt(s_NN) = 2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sqrt(s_NN) = 2.76 TeV"

Copied!
13
0
0

Testo completo

(1)

s

NN

=

2.76 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received5October2015

Receivedinrevisedform3December2015 Accepted20December2015

Availableonline26January2016 Editor: L.Rolandi

Thecentralitydependenceofthecharged-particlepseudorapiditydensitymeasuredwithALICEinPb–Pb collisions at√sNN=2.76 TeV over abroadpseudorapidityrangeispresented.ThisLetterextendsthe

previousresultsreportedbyALICEtomoreperipheralcollisions.Nostrongchangeoftheoverallshapeof charged-particlepseudorapiditydensitydistributionswithcentralityisobserved,andwhennormalisedto thenumberofparticipatingnucleonsinthecollisions,theevolutionoverpseudorapiditywithcentrality islikewisesmall. Thebroadpseudorapidityrange(3.5<

η

<5)allowspreciseestimatesofthetotal numberofproducedchargedparticleswhichwefindtorangefrom162±22(syst.) to17170±770(syst.) in 80–90% and 0–5% central collisions, respectively. The total charged-particle multiplicity is seen to approximatelyscalewiththenumberofparticipatingnucleonsinthecollision.Thissuggeststhathard contributionstothecharged-particlemultiplicityarelimited.Theresultsarecomparedtomodelswhich describedNch/d

η

atmid-rapidityinthemostcentralPb–Pbcollisionsanditisfoundthatthesemodels donotcaptureallfeaturesofthedistributions.

©2016CERNforthebenefitoftheALICECollaboration.PublishedbyElsevierB.V.Thisisanopen accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The measurement of the charged-particle pseudorapidity (

η

) density distribution in heavy-ion collisions provides insight into thedominantparticleproductionmechanisms,suchasparton frag-mentation[1]andtheobservedphenomenonoflimiting fragmen-tation[2]. The unique capability of ALICE to perform such mea-surementsfromlargetosmalloverlapsofthecollidingnucleiover abroad pseudorapidity rangeallows forsignificant additional in-formationtobe extractede.g., thetotalnumberofcharged parti-clesandtheevolutionofthedistributionswithcentrality.

The charged-particle pseudorapidity density (dNch

/

d

η

) per se

doesnotprovideimmediateunderstandingoftheparticle produc-tionmechanism,butasabenchmarktoolforcomparingmodelsit isindispensable.Variousmodels

[3–5]

makedifferentassumptions onhowparticlesareproducedinheavy-ioncollisionsresultingin verydifferentcharged-particlepseudorapiditydensitydistributions —bothintermsofscaleandshape.Modelsmay,forexample, in-corporatedifferentschemesforthehadronisation oftheproduced quarks and gluons which leads to very different pseudorapidity distributionsofthechargedparticles.

 E-mail address:alice-publications@cern.ch.

TheALICECollaborationhaspreviously reportedresultsonthe charged-particlepseudorapiditydensityinthe0–30%mostcentral Pb–Pb collisions at

sNN

=

2

.

76 TeV overa wide pseudorapidity

range [6], andin the 80% mostcentral collisions atmid-rapidity (

η

0) only [7]. The ATLAS Collaboration has reported on the charged-particle pseudorapidity density in the 80% most central eventsin a limitedpseudorapidityrange of

|

η

|

<

2[8].Similarly, theCMSCollaborationhasreportedonthesamemeasurementsin the90%mostcentraleventsat

η

0,andforselectedcentralities upto

|

η

|

<

2[9].

In this Letter we present the primary charged-particle pseu-dorapidity densitydependenceonthe eventcentralityfrom mid-central (30–40%) to peripheral (80–90%) collisions over a broad pseudorapidity range to complement results previously reported byALICEinthe0–30%centralityrange.Unlikeprevious

[6]

,inthe forwardregions wherethesignalisdominatedby secondary par-ticlesproducedinthesurroundingmaterial,we usea data-driven correctiontoextracttheprimarycharged-particledensity.

Primary chargedparticles are defined asprompt charged par-ticles produced in the collision, including their decay products, butexcludingproductsofweakdecaysofmuonsandlightflavour hadrons. Secondary charged particles are all other particles ob-servedintheexperimente.g.,particlesproducedthrough interac-tionswithmaterialandproductsofweakdecays.

http://dx.doi.org/10.1016/j.physletb.2015.12.082

0370-2693/©2016CERNforthebenefitoftheALICECollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

Inthefollowingsection,theexperimentalset-upwillbebriefly described. Section 3outlines analysis procedures anddescribesa data-drivenmethodtoisolatethenumberofprimarycharged par-ticles fromthe secondary particle backgroundat large pseudora-pidity.Systematicuncertainties arediscussedinSect.4.InSect.5, theresultantcharged-particlepseudorapiditydensitydistributions are presentedalong withtheir evolution withcentrality. Further-more we extract from the measured dNch

/

d

η

distributions the

totalnumberofchargedparticles asafunction ofthenumberof participatingnucleons.Wefinallycomparethemeasured charged-particlepseudorapiditydensityto anumberofmodelpredictions beforeconcludinginSect.6.

2. Experimentalsetup

AdetaileddescriptionofALICEcanbefoundelsewhere[10,11]. Inthefollowingwe briefly describethedetectorsrelevantto this analysis.

The Silicon PixelDetector (SPD) is the inner-most detector of ALICE. The SPD consists of two cylindrical layers of 9

.

8

×

106 silicon-pixels possessing binary read-out. It provides a measure-mentofchargedparticles over

|

η

|

<

2 using so-calledtracklets —

acombinationofhitsoneach ofthetwo layers(1and2) consis-tent with a trackoriginating fromthe interaction point. Possible combinationsofhitsnot consistentwithprimaryparticles canbe removed from the analysis, withonly a small (afew %) residual correction for secondary particles derived from simulations. The SPDalso provides a measurement,by combininghits on its two layers,oftheoffsetwithrespecttotheinteractionpoint,wherethe collisions occurred.IP

= (

0

,

0

,

0

)

isatthecentreoftheALICE co-ordinatesystem,andIPz istheoffsetalongthebeamaxis.Finally,

ahardware logicalor of hitsineach ofthetwolayers providesa triggerforALICE.

TheForwardMultiplicityDetector(FMD)isasiliconstrip detec-torwith51 200individualread-outchannelsrecordingtheenergy depositedby particles traversing thedetector.It consistsofthree sub-detectorsFMD1,2,and3,placedapproximately320 cm,79 cm and

69 cm along the beamline, respectively. FMD1consists of oneinner type ring(1i), whilebothFMD2and3consist ofinner (2i,3i) and outer type rings(2o, 3o). The ringshave almost full coverageinazimuth(

ϕ

),andhighgranularityintheradial(

η

) di-rection(see

Table 1

).

TheV0isthemostforwardofthethreedetectorsusedinthis analysis.Itconsistsoftwosub-detectors:V0-A andV0-C placedat approximately333 cm and

90 cm alongthe beamline, respec-tively.Each of thesub-detectors are madeup of scintillator tiles withahightimingresolution.WhiletheV0providespulse-height measurements,theenergy-lossresolutionisnotfineenoughtodo an independent charged particle measurement.In previous mea-surements, using so-called satellite–main collisions (see Sect. 3), one could match the V0amplitude to the SPDmeasurements to obtainarelativemeasurementofthenumberofchargedparticles. However,forcollisions at

|

IPz

|

<

15 cm nosuch matchingis

pos-sible,andtheV0isthereforenot usedtoprovideameasurement ofthenumberofchargedparticlesinthisanalysis.Thedetectoris used,inan inclusivelogicalor with theSPD,fortriggering ALICE andtoprovideameasureoftheeventcentrality[7].

Details on the coverage, resolution, and segmentation of the threeuseddetectorsaregivenin

Table 1

.

3. Datasampleandanalysismethod

TheresultspresentedinthispaperarebasedonPb–Pbcollision dataat

sNN

=

2

.

76 TeV taken by ALICEin2010. About 100 000

Table 1

Overviewoftheresolution(δ),segmentation(),and coverageofthedetectors usedintheanalysis.The‘A’sidecorrespondsto

z

>0,whilethe‘C’sidecorresponds to

z

<0.TheηrangeisspecifiedforcollisionswithIPz=0.

Detector δrϕ δz ηrange SPD1 12 μm 100 μm −2.0 to 2.0 2 12 μm 100 μm −1.4 to 1.4 Detector r ηrange FMD1i 18◦ 254 μm 3.7 to 5.0 2i 18◦ 254 μm 2.3 to 3.7 2o 9◦ 508 μm 1.7 to 2.3 3o 9◦ 508 μm −2.3 to−1.7 3i 18◦ 254 μm −3.4 to−2.0 V0-A 45◦ 34 to 186 mm 2.8 to 5.1 -C 45◦ 26 to 127 mm −3.7 to−1.7

events with a minimum bias trigger requirement [7]were anal-ysedinthecentralityrangefrom0%to90%.Thedatawascollected over roughly 30 minutes where the experimental conditions did notchange.

The standardALICEeventselection [12]andcentrality estima-tor basedonthe V0-amplitudeare usedinthisanalysis[13].We includeherethe80–90%centralityclasswhichwasnotpresentin thepreviousresults[7].Asdiscussedelsewhere[13],the90–100% centrality class has substantial contributions fromQED processes andisthereforenotincludedinthisLetter.

Resultsinthemid-rapidityregion(

|

η

|

<

2)areobtainedfroma trackletanalysisusingthetwo layersoftheSPDasmentionedin Sect.2. Theanalysismethod anddatausedare identicalto what haspreviouslybeenpresented[6,7].

Themeasurementsintheforwardregion(

|

η

|

>

2)areprovided bytheFMD.TheFMDrecordsthefullenergydepositionofcharged particles that impingeon thedetector.Since allcharged particles thathittheFMDareboostedinthelaboratoryframe,thedetection efficiencyiscloseto100%forallmomenta.Asreportedearlier[6], the mainchallenge inmeasuring thenumberofchargedprimary particlesinthisregion,isthelargebackgroundofsecondary parti-clesproducedinthesurroundingmaterial.Duetothecomplexity andthelimitedknowledgeofthematerialdistributionofsupport structures away fromthe central barrel, it hasnot been possible toadequately describe(onthefew%-level)thegenerationof sec-ondary particlesintheforwarddirections withintheprecision of thecurrentsimulationoftheALICEapparatus.

Asuitablemeanstoextractthenumberofprimarycharged par-ticleswasfoundbyutilisingcollisionsbetweenso-called‘satellite’ bunchesandmainbunchesoffsetinintervalsof37.5 cmalongthe beam-line.Satellitebunchesarecausedbytheso-called debunch-ing effect[14]. Asmall fraction ofthe beam can be captured in unwanted RF buckets, due the way beams are injected into the accelerator, andcreate these satellite bunches spaced by 2.5 ns. Collisionsbetweensatelliteandmainbunchescancause instabili-tiesinthebeam,andtheLHChastakenstepstoreducethe num-ber ofthesekinds ofcollisions. ALICEhasthereforenot recorded collisions betweensatellite andmain bunchesbeforeor afterthe Pb–Pb runof2010. Insatellite–main collisions thebackgroundof secondaryparticleswasmuchsmallerandmuchbetterunderstood since significantlylessdetectormaterial shadowsthe forward de-tectors

[6]

.

Astudyutilisingthesesatellite–maincollisionsledtothe publi-cationofthemeasurementofthecharged-particle pseudorapidity densityinthe30%mostcentraleventsover

|

η

|

<

5[6].Thestudy waslimitedincentralityreachbytheneedtousetheZero-Degree Calorimeter (ZDC) for the centrality estimation for collisions be-tween satellite and mainbunches. TheZDCmeasures theenergy ofspectator(non-interacting)nucleonswithtwocomponents:one

(3)

Fig. 1. (Colouronline.)Comparisonofdata-driventosimulation-basedcorrectionsforsecondaryparticlesimpingingontheFMD.Differentmarkerscorrespondtodifferent collisionsystemsandenergies,andthecoloursindicatethefiveFMDrings.

S

(η)isshownfor0 cm<IPz<2 cm asanexample,while

E

(η)isindependentofIPz(seealso

text). Pythia wasusedforppcollisions,andthePb–PbpointsarefromsimulationwithaparameterisationwhichincludetheavailableALICEdataonparticlecomposition and

p

Tdistributions.Blackcirclescorrespondto

E

(η).

measuresprotonsandtheothermeasures neutrons.TheZDCwas locatedatabout114 m fromtheinteraction pointon eitherside ofthe experiment[10],and was thereforeideally suitedfor that study.Thecentrality determinationcapabilityofthe ZDCis how-everlimitedtothe30%mostcentralcollisions[13].

Forcentralitieslargerthan30%theV0amplitudeisusedasthe centralityestimator,whichisavailableonlyforcollisionsat

|

IPz

|

<

15 cm —theso-callednominalinteractionpointcorrespondingto main bunches of one beam colliding with main bunches of the otherbeam.

To extend the centrality reach of the dNch

/

d

η

measurement,

a data-driven correctionforthenumber ofsecondariesimpinging ontheFMDhasbeenimplemented.ForeachcentralityclassC ,we formtheratio

EC

(

η

)

=

dNch

/

d

η

|C

,inclusive,nominal dNch

/

d

η

|C

,primary,satellite

.

(1)

Thatis,theratioofthemeasured inclusive charged-particledensity frommain–main collisions (

|

IPz

|

<

10 cm) provided by the FMD

tothe primary charged-particle densityfrom satellite–main colli-sions[6].Here,‘inclusive’denotesprimary and secondarycharged particles i.e., nocorrection was applied to account forsecondary particlesimpingingontheFMD.

Note,that thecorrection isformedbin-by-bin in pseudorapid-ity,sothatthepseudorapidityisthesameforboththenumerator anddenominator. However, the numeratorand denominator dif-fer in the offset along the beam line of origin of the measured particles:Forthenumeratortheoriginlieswithinthenominal in-teraction region,while forthedenominator theoriginwas offset bymultiplesof37.5 cm.

This ratio is obtained separately for all previously published centralityclasses:0–5%,5–10%,10–20%and20–30%.Thevariation of Ec fordifferent centralities is small (

<

1%, much smaller than

theprecisionofthemeasurements).Theweightedaverage

E

(

η

)

=



C





C EC(

η

)

C



C

,

(2)

is used as a global correction to obtain the primary charged-particlepseudorapiditydensity

dNch d

η





X,primary

=

1 E

(

η

)

dNch d

η





X,inclusive,nominal

,

(3)

whereX standsforaneventselectione.g.,acentralityrange.

Thesimulation-basedcorrectionS

(

η

)

forsecondaryparticlesto the charged-particle pseudorapidity densityinthe forward direc-tionsisgivenby

S

(

η

)

=

Ninclusive,FMD

(

η

)

Nprimary,generated

(

η

)

,

(4)

whereNinclusive,FMDisthenumberofprimaryand secondary

parti-clesimpingingontheFMD—asgivenbythetrackpropagationof the simulation, and Nprimary,generated is the number of generated

primary particles at a given pseudorapidity. Complete detector-simulation studies show that three effects can contribute to the generationofsecondaries,andhencethevalueofS

(

η

)

.Thesethree effectsare:materialinwhichsecondariesareproduced,the trans-versemomentum(pT)distributionandparticlecompositionofthe

generatedparticles, andlastly thetotal numberofproduced par-ticles. Of thesethree the material is by far the dominant effect, whilethepTandparticlecompositiononlyeffectsS

(

η

)

onthefew

percentlevel.Thetotalnumberofgeneratedparticleshasa negli-gibleeffectonS

(

η

)

.Thatis,thematerialsurroundingthedetectors amplifies the primary-particle signal through particle production byaconstantfactorthatfirstandforemostdependsontheamount ofmaterialitself,andonlysecondarilyonthepT andparticle

com-positionofthegeneratedprimaryparticles.

Toestimatehow much EC

(

η

)

itself wouldhavechanged if

an-other system or centrality range was used to calculate the cor-rection, S

(

η

)

is analysed from simulations with various collision systems and energies. We find that, even for large variations in particlecomposition and pT distributions, S

(

η

)

only variesbyup

to 5%. Reweighting the particle composition and pT distributions

fromthe various systemsto matchproduces consistent valuesof

S

(

η

)

ensuringthat the5%variations foundwereonlydueto par-ticlecompositionandpT distributionsdifferences.Thisuncertainty

is applied to E

(

η

)

to account for all reasonable variations ofthe particle composition and pT distributions,which cannot be

mea-suredintheforwardregionsofALICE.

Fig. 1showsthecomparisonofthedatadrivencorrectionE

(

η

)

tothesimulation-basedcorrection S

(

η

)

from Pythia[15](pp)and a parameterisation of the available ALICE results [16,17] for Pb– Pbcollisions.Thesimulatedcollisionsarefortwodistinctsystems andspan over almost an order ofmagnitude in collisionenergy. Thetotal numberofproduced particlesinthesesimulations span fiveordersofmagnitude,andnodependenceof S

(

η

)

on charged-particlemultiplicityisobserved.

BycomparingE

(

η

)

to S

(

η

)

fromsimulations,one findsagood correspondence between the two corrections except in regions

(4)

wherethematerialdescriptioninthesimulations isknowntobe inadequate.This,togetherwiththefactthatthenumeratorand de-nominatorofEq.(1)measurethesamephysicalprocess,butdiffer foremost in the material traversed by the primary particles, and hence the number of secondary particles observed, implies that the correction E

(

η

)

is universal. Thatis, Eq.(3) is applicable for

any eventselection X in anycollision system orat anycollision energy,wheretheproducedmultiplicity,pT distributions,and

par-ticle composition is close to the range ofthe simulated systems usedtostudyS

(

η

)

.

Note, for the previously published results [6], which used satellite–main collisions, the simulation-based approach for cor-recting for secondary particles i.e., applying S

(

η

)

directly, was valid. As mentioned above, insatellite–main collisions, the parti-clesthatimpingeontheFMDtraversefarlessandbetterdescribed material in the simulation of the ALICE apparatus. The use of a simulation-based correction for secondary particles was in that analysiscross-checkedbycomparingtoandcombiningwith mea-surementsfromthe V0and SPD[6]. Despiteconcertedeffortsto improvethesimulationsbytheCollaborationithasnotbeen possi-bletoachievethesameaccuracyinS

(

η

)

formain–maincollisions. Finally, the effect of variation of the location of the primary interactionpointonE

(

η

)

wasstudied.Itwasfound,thattheeffect isnegligible,giventhatthedistributionofIPz aresimilarbetween

thenumeratorofEq.(1)andright-handsideofEq.(3),aswasthe caseinthisanalysis.

Themethodusedinthisanalysistoextracttheinclusive num-berofchargedparticlesfromtheFMDisthesameasforprevious publishedresults[6],except thatthedata-drivencorrectionE

(

η

)

— ratherthan asimulation-basedone S

(

η

)

— isusedto correctfor secondaryparticles.

4. Systematicuncertainties

Table 2summarises thesystematicuncertaintiesofthis analy-sis.Thecommonsystematicuncertaintyfromthecentrality selec-tioniscorrelatedacross

η

anddetailedelsewhere[13].

FortheSPDmeasurements,thesystematicuncertaintiesarethe sameasforthepreviouslypublishedmid-rapidityresult[7],except foracontributionfromthecorrectionduetothelargeracceptance usedinthisanalysis. ThisuncertaintystemsfromtherangeofIPz

usedintheanalysis(here

|

IPz

|

<

15 cm).Atlargerabsolutevalues

ofIPz theacceptance correction fortheSPD trackletsgrows, and

the uncertaintywith it, beingtherefore

η

-dependent andlargest at

|

η

|

2.

The various sources of systematic uncertainties for the FMD measurements are detailed elsewhere [6], but will be expanded uponinthefollowingsincesomevalueshavechangeddueto bet-terunderstandingofthedetectorresponse.

In the analysis, three

η

-dependent thresholds are used. The values for these thresholds are obtained by fitting a convoluted Landau–Gaussdistribution[18] tothe energyloss spectrum mea-suredbytheFMDinagiven

η

range.Theuncertaintiesassociated withthesethresholdsaredetailedbelow.

A charged particle traversing the FMD can deposit energy in more than one element i.e., strip, of the detector. Therefore it is necessaryto recombine two signalsto get thesingle charged-particleenergylossinthosecases.Thisrecombinationdependson alowerthresholdforacceptingasignal,andanupperthresholdto considera signal asisolated i.e.,all energyis depositedina sin-gle strip. Thesystematic uncertainties fromtherecombination of signalsarefoundbyvaryingthelowerandupperthresholdvalues withinboundsoftheenergylossfitsandbysimulationstudies.

Tocalculatetheinclusivenumberofchargedparticles,a statis-ticalapproachisused[6].Thestripsofthe FMDaredividedinto

Table 2

Summaryofsystematicuncertainties:thecommonsystematicuncertaintiesshared byboththeSPDandtheFMD,andtheuncertaintiesparticulartothedetectors.

Detector Source Uncertainty (%) Common Centrality 0.4–6.2 SPD Background subtraction 0.1 Particle composition 1 Weak decays 1 Extrapolation to pT=0 2 Event generator 2 Acceptance 0–2a FMD Recombination 1 Threshold +12 Secondary particles 6.1 Particle composition & pT 2b a Pseudorapiditydependentuncertainty,largestat|η|=2. b Additionalcontributionin3.7<η<5.Seealsotext.

regions, andthe number ofempty strips is compared to the to-tal numberofstripsinagivenregion.Strips withasignal below agiventhresholdareconsideredempty.Thethresholdwasvaried within boundsofthe energyloss fitsandinvestigatedin simula-tionstudiestoobtainthesystematicuncertainty.

The data-driven correction for secondary particles defined in Eq. (2) is derived from the previously published results, and as such contains contributions from the systematic uncertainties of those results [6]. Factoring out common correlated uncertainties e.g., the contribution from the centrality determination, we find a contribution of 4.7% from the previously published results. By studying the variation of the numerator of Eq. (1) under differ-entexperimentalconditionse.g.,differentdata-takingperiods,and adding the variance in quadrature, the uncorrelated, total uncer-tainty on E

(

η

)

is found to be 6.1%. Systematic uncertainties can in generalnot becancelled betweenthenumerator and denomi-nator ofEq.(1),sincethesame

η

regionsare probedbydifferent detectorelementsineach.

Note, that the previously published result [6]used in Eq. (1)

alreadycarriesa2%systematicuncertaintyfromtheparticle com-positionand pT distribution

[6]

.Thiscontributioniscontainedin

the4.7%quotedabove,andispropagatedtothefinal6.1% system-aticuncertaintyon E

(

η

)

.

Finally, it was found through simulations that the acceptance region of FMD1 is particularly affected by the variations in the number of secondary particles stemming from variations in the particlecompositionandpTdistribution,andgivesrisetoan

addi-tional2% systematicuncertainty, whichisaddedinquadratureto therestofthesystematicuncertainties,butonlyfor

η

>

3

.

7. 5. Results

Fig. 2showsthecharged-particlepseudorapiditydensityfor dif-ferentcentralitiesfromeachdetectorseparately.

The combined distributions inFig. 3are calculated asthe av-erage of the individual measurements from the FMD and SPD, weighted by statisticalerrors and systematicuncertainties, omit-tingthosewhicharecommonsuchasthatfromthecentrality de-termination.Thedistributionsarethensymmetrisedaround

η

=

0 bytakingtheweightedaverageof

±

η

points.Pointsat3

.

5

<

η

<

5 are reflected on to

5

<

η

<

3

.

5 to provide the dNch

/

d

η

dis-tributions ina range comparableto the previously published re-sults[6].

Thelinesin

Fig. 3

arefitsof

fGG

(

η

;

A1

,

σ

1

,

A2

,

σ

2

)

=

A1e −1 2 η2 σ12

A 2e −1 2 η2 σ22

,

(5)

(5)

Fig. 2. (Colouronline.)MeasurementofdNch/dηpercentralityfromSPD(squares)andFMD(circles)separately.Errorbarsreflectthetotaluncorrelatedsystematicuncertainty

andstatisticalerroroneachpoint.ErrorbarsontheleftandrightreflectthecorrelatedsystematicuncertaintiesontheSPDandFMDpoints,respectively.Previouslypublished resultsfor0–30%overthefullpseudorapidityrange(diamonds)[6]andfor0–80%atmid-rapidity(stars)[7]arealsoshown.

Fig. 3. (Colouronline.)MeasurementofdNch/dηforallcentralitiesandabroadηrange.CombinedandsymmetriseddNch/dηover30–90%centralityfrombothSPDand

FMD(circles).Openboxesreflectthetotaluncorrelatedsystematicuncertaintiesandstatisticalerrors,whilethefilledboxesontherightreflectthecorrelatedsystematic uncertainty.Alsoshown,isthereflectionofthe3.5<η<5 valuesaroundη=0 (opencircles).Previouslypublishedresultsfor0–30%overthefullpseudorapidityrange (diamonds)[6]arealsoshown.ThelinescorrespondtofitsofEq.(5)tothedata.

tothe measured distributions. Thefunction fGG isthe difference

of two Gaussian distributions centred at

η

=

0 with amplitudes

A1, A2, andwidths

σ

1,

σ

2.The function describesthe data well

withinthemeasuredregionwithareduced

χ

2smallerthan1.We

findvaluesofA2

/

A1 forallcentralities,from0

.

20 to0

.

31 butare

consistentwithinfituncertainties,withaconstantvalueof0

.

23

±

0

.

02.Likewisevaluesof

σ

2

/

σ

1forallcentralities,rangesfrom0

.

28

to0

.

36 andareconsistentwithaconstantvalueof0

.

31

±

0

.

02. Qualitatively the shape ofthe charged-particle pseudorapidity densitydistributions broadens only slightlytoward more periph-eralevents,consistentwiththeaboveobservation.Indeed,the full-width half-maximum(FWHM) shown in Fig. 4 versus the num-berofparticipatingnucleons



Npart



—calculatedusinga Glauber

model [13] — increase sharply only in the very most peripheral collisions. The dNch

/

d

η

distributions doesnot extendfar enough

tocalculate reliable valuesfor FWHMdirectly fromthe data. In-stead fGG

(

η

)

max

(

fGG

)/

2

=

0 was numericallysolved, andthe

uncertaintiesevaluatedastheerrorof fGGattheroots,dividedby

theslope atthose roots. The widthofthe dNch

/

d

η

distributions

follows the same trend, in the region of 0–50%, as was seen in lowerenergyresults fromPHOBOSreproduced in

Fig. 4

for com-parison

[2]

.

Fig. 5presentsthecharged-particle pseudorapiditydensityper averagenumberofparticipatingnucleonpairs



Npart

/

2 asa

func-tionoftheaveragenumberofparticipants



Npart



.Althoughthere

isaslightincreaseintheratiotothecentralpseudorapidity den-sitydistribution atlow



Npart



(see lower partof

Fig. 5

), the

un-certainties are large andno strongevolution of theshape of the pseudorapidity density distribution over pseudorapidity with re-spect to centrality is observed. The ratio at3

.

5

<

|

η

|

<

4

.

5 does deviate somewhat inperipheral collisions, which is attributed to thegeneralbroadeningofthepseudorapiditydensitydistributions inthosecollisions.

To extract the total number of charged particles produced in Pb–Pbcollisions atvarious centralities,anumberoffunctions, in-cludingEq.(5),isfittedtothedNch

/

d

η

distributions.Atrapezoid

fT

(

η

;

ybeam

,

M

,

A

)

=

A

×

0

|

η

| >

ybeam

(

ybeam

+

η

)

η

<

M

(

ybeam

M

)

|

η

| <

M

(

ybeam

η

)

η

>

+

M

,

(6)

was successfully used by PHOBOS to describe limiting fragmen-tation [2]. Here,

[−

M

,

M

]

is the range in which the function is constant,andA istheamplitude.Theparameterisation

fP

(

η

;

A

,

α

, β,

a

)

=

A



1

1

/

[

α

cosh

(

η

)

]2

1

+

e(|η|−β)/a

,

(7)

assuggestedbyPHOBOS,islikewisefittedtothedNch

/

d

η

(6)

Fig. 4. (Colouronline.)Full-widthhalf-maximumofthecharged-particlepseudorapiditydistributionsversustheaveragenumberofparticipants.Theuncertaintiesonthe ALICEmeasurementsarefromthefitof fGGonlyandevaluatedat95%confidencelevel.AlsoshownarelowerenergyresultsfromPHOBOS[2].

Fig. 5. (Colouronline.)Thecharged-particlepseudorapiditydensitydistributionsscaledbytheaveragenumberofparticipantsinvariouspseudorapidityintervalsasafunction ofthenumberofparticipants.Thefourright-mostpoints(opensymbols)ineachηrange,aswellasthemid-rapiditypoints(circles)arefrompreviouslypublishedresults[6, 17].Theuncertaintieson NpartfromtheGlaubercalculationsareonlyincludedonthepointsatmid-rapidity.Thus,theuncertaintybandaroundthemid-rapiditypoints

reflectboththemeasurementuncertaintiesandtheuncertaintyon Npart,whileotherηrangesonlyshowthemeasurementuncertainties.Thelowerpartshowstheratio

ofeachdistributiontothepreviouslypublisheddistributionsfor|η|<0.5.

α

and

β

,andexpressesthewidthanddepthofthedipat

η

0, respectively. A is an overall scale parameter. Finally, to remedy someoftheobviousdefectsofthetrapezoidi.e.,anon-continuous firstderivativeat

η

=

M,weuseaBjorken-inspiredfunction[6]

fB

(

η

;

A

,

μ

,

σ

)

=

A

×

e+μ)2 2σ2

η

<

μ

eμ)2 2σ2

η

>

+

μ

1

|

η

| <

μ

,

(8)

whichhasplateauat A for

|

η

|

<

μ

connectedtoGaussianfall-off beyond

±

μ

.The fittedfunctionsare integratedover

η

up tothe beam rapidity

±

ybeam

= ±

7

.

99. Although the dNch

/

d

η

distribu-tionsinprinciplecontinuetoinfinity,thereisnosignificantlossin generalityorprecisionbycuttingtheintegralat

η

= ±

ybeamsince

thedistributionsrapidlyapproachzero.Noticethatallparameters ofthefunctionsareleftfreeinthefittingprocedure.Allfunctions give reasonable fits (with a reduced

χ

2 smaller than 1), though

thetrapezoidandBjorken-inspiredansatzaretooflatatthe mid-rapidity.Thecalculationofthecentralvaluesanduncertaintiesare done as for previous results [6]: The central value is calculated fromtheintegralofthetrapezoidfittocomparedirectlyto

previ-ousresults;thespreadbetweentheintegralsandthecentralvalue isevaluatedtoobtaintheuncertaintyonthetotal Nch.

TheextrapolatedtotalNchversus



Npart



isshownin

Fig. 6

,and

comparedtolowerenergyresultsfromPHOBOS[19].AtLHC ener-giestheparticleproductionasafunctionof



Npart



showsasimilar

behaviour tothelowerenergyresults,andthefactorisation[2]in centralityandenergyseemstohold(seefitin

Fig. 6

).

In

Fig. 7

weshowcomparisonsofvariousmodelcalculationsto the measured charged-particle pseudorapidity density asa func-tionofcentrality.Thecentralityclassforagivenmodel-generated event was determined by sharp cuts in the impact parameter b

andaGlaubercalculation

[13]

.

The HIJING model [3] (version 1.383, with jet-quenching dis-abled, shadowing enabled, and a hard pT cut-off of 2.3 GeV) is

seentoovershootthedataforallcentralities.Inaddition,the dis-tributionsatallcentralitiesdecreasewithincreasing

|

η

|

fasterthan thedatawouldsuggest.

AMPT[4]withoutstringmeltingreproducesthedatafairlywell atcentralpseudorapidityforthemostcentralevents—exactlyin the region it was tuned to, but it fails to describe the charged-particle pseudorapidity density for more peripheral events. Also, AMPT without string melting would suggest a wider central re-gion than supported by data, and similarly to HIJING decreases

(7)

Fig. 6. (Colouronline.)Extrapolationtothetotalnumberofchargedparticlesasafunctionofthenumberofparticipatingnucleons[13].Theuncertaintyontheextrapolation issmallerthanthesizeofthemarkers.Thefourright–mostpointsarethepreviouslypublishedresults[6].Afunctioninspiredbyfactorisation[2]isfittedtothedata,and thebestfityield

a

=35.8±4.2,

b

=0.22±0.05 withareducedχ2of0.18.AlsoshownisthePHOBOSresultatlowerenergyresult[19]scaledtotheALICEtotalnumber

ofchargedparticlesperparticipantatNpart=180.

Fig. 7. (Colouronline.)ComparisonofdNch/dηpercentralityclassfromHIJING,AMPT(withandwithoutstringmelting),andEPOS-LHCmodelcalculationstothemeasured

distributions.

fasterthanthedata.AMPTwithstringmelting—whichessentially implementsquarkcoalescence,andthereforeamorepredominant partonphase—isseentobeveryflatatmid-rapidityand under-estimatestheyield,exceptforperipheralcollisions.

Finally,EPOS–LHC[5]reproduces theshapefairlywell, but un-derestimatesthedataby10to30%.

6. Conclusions

Thecharged-particlepseudorapiditydensityhasbeenmeasured in Pb–Pb collisions at

sNN

=

2

.

76 TeV over a broad

pseudo-rapidity range, extending previous published results by ALICE to more peripheral collisions. In the mid-rapidity region the

(8)

well-established tracklet procedure was used. In the forward regions, a newdata-driven procedure tocorrect forthe large background dueto secondary particles was used. The results presented here areconsistentwiththebehaviourpreviously seeninmorecentral collisions andin a limited pseudorapidity range. No strong evo-lutionofthe overallshape ofthecharged-particle pseudorapidity density distributions as a function of collision centrality is ob-served.Whennormalisedtothenumberofparticipatingnucleons inthecollision,thecentralityevolutionissmallover the pseudo-rapidityrange.Sincethemeasurementwasperformedoveralarge pseudorapidityrange (

3

.

5

<

η

<

5), itallows foran estimate of the total number of charged particles produced in Pb–Pb colli-sions at

sNN

=

2

.

76 TeV. The total charged-particle multiplicity

isfound toscale approximatelywiththenumberof participating nucleons.This wouldsuggest that hardcontributions to thetotal charged-particle multiplicityare small.Fromperipheral tocentral collisions we observe an increase oftwo orders of magnitudein thenumberofproducedchargeparticles.Acomparisonofthedata tothedifferentavailablepredictionsfromHIJING,AMPT,and EPOS-LHCshowthatnoneofthesemodelscapturesboththeshapeand level of the measured distributions. AMPT however comes close in limited ranges of centrality. The exact centrality ranges that AMPTdescribesdependstronglyonwhetherstringmeltingisused inthe model ornot. EPOS-LHC —although systematically low — shows a reasonable agreement with the shape of the measured charged-particle pseudorapidity densitydistribution over a wider pseudorapidityrange.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechnicians fortheir invaluablecontributionstothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcentres andtheWorldwide LHCComputing Grid(WLCG) Collaboration. The ALICE Collaboration acknowledges the follow-ing funding agencies for their support in building and running theALICEdetector:StateCommitteeofScience,World Federation ofScientists (WFS) andSwiss Fonds Kidagan, Armenia; Conselho Nacionalde DesenvolvimentoCientífico e Tecnológico (CNPq), Fi-nanciadorade Estudose Projetos(FINEP),Fundação de Amparoà Pesquisa do Estado de São Paulo (FAPESP); National Natural Sci-enceFoundation ofChina (NSFC), theChinese Ministryof Educa-tion(CMOE)andtheMinistryofScienceandTechnologyofChina (MSTC); Ministry of Education andYouth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Founda-tionandthe DanishNationalResearchFoundation;The European ResearchCouncilundertheEuropeanCommunity’sSeventh Frame-work Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Re-gion Alsace’, ‘Region Auvergne’ and CEA, France; German Bun-desministerium fur Bildung, Wissenschaft, Forschung und Tech-nologie(BMBF)andtheHelmholtzAssociation;GeneralSecretariat forResearchandTechnology,MinistryofDevelopment,Greece; Na-tionalResearch,DevelopmentandInnovationOffice(NKFIH), Hun-gary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi–Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Italy; Japan So-ciety for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Re-search Foundation ofKorea (NRF); Consejo Nacional de Cienca y Tecnologia(CONACYT),DireccionGeneralde Asuntosdel Personal Academico (Dirección General Asuntos del Personal Académico,

UniversidadNacionalAutónomadeMéxico),México,Amerique La-tine Formationacademique–European Commission (ALFA-EC)and the EPLANET Program (European Particle Physics Latin Ameri-can Network); Stichting voor Fundamenteel Onderzoek der Ma-terie (FOM) and the Nederlandse Organisatie voor Wetenschap-pelijkOnderzoek(NWO),Netherlands;ResearchCouncilofNorway (NFR); National Science Centre, Poland; Ministry of National Ed-ucation/Institute for Atomic Physics and National Council of Sci-entific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry ofEducation andScience of RussianFederation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian FederalAgencyforScience andInnovationsandThe Rus-sian Foundation forBasic Research; MinistryofEducation of Slo-vakia;DepartmentofScienceandTechnology,SouthAfrica;Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT),E-InfrastructuresharedbetweenEuropeandLatin Amer-ica(EELA),Ministeriode EconomíayCompetitividad(MINECO)of Spain,XuntadeGalicia(ConselleríadeEducación),Centrode Apli-cacionesTecnológicasyDesarrolloNuclear(CEADEN),Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry ofEducation and Science; United King-dom ScienceandTechnologyFacilities Council(STFC);The United States Department of Energy, the United States National Science Foundation, theState ofTexas,andtheStateofOhio; Ministryof Science,EducationandSportsofCroatiaandUnitythrough Knowl-edge Fund, Croatia; Council of Scientific and Industrial Research (CSIR),NewDelhi,India;PontificiaUniversidadCatólicadelPerú. References

[1]L. Gribov, E. Levin, M. Ryskin, Semihard processes in QCD, Phys. Rep. 100

(1983) 1–150.

[2]PHOBOS Collaboration, B. Alver, et al., Charged-particle multiplicity and

pseu-dorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, p+p collisions at ultrarelativistic energies, Phys. Rev. C 83 (2011) 024913.

[3]X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet

produc-tion in pp, pA and AA collisions, Phys. Rev. D 44 (1991) 3501–3516.

[4]Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A multi-phase transport model

for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-th/0411110.

[5]T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, EPOS LHC: test of

col-lective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92 (3) (2015) 034906, arXiv:1306.0121 [hep-ph].

[6]ALICE Collaboration, E. Abbas, et al., Centrality dependence of the

pseudora-pidity density distribution for charged particles in Pb–Pb collisions at √sNN=

2.76 TeV, Phys. Lett. B 726 (2013) 610–622, arXiv:1304.0347 [nucl-ex].

[7]ALICE Collaboration, K. Aamodt, et al., Centrality dependence of the

charged-particle multiplicity density at mid-rapidity in Pb–Pb collisions at √sNN=

2.76 TeV, Phys. Rev. Lett. 106 (2011) 032301, arXiv:1012.1657 [nucl-ex].

[8]ATLAS Collaboration, G. Aad, et al., Measurement of the centrality dependence

of the charged particle pseudorapidity distribution in lead–lead collisions at √s

NN=2.76 TeV with the ATLAS detector, Phys. Lett. B 710 (2012) 363–382,

arXiv:1108.6027 [hep-ex].

[9]CMS Collaboration, S. Chatrchyan, et al., Dependence on pseudorapidity and

centrality of charged hadron production in PbPb collisions at a nucleon– nucleon centre-of-mass energy of 2.76 TeV, J. High Energy Phys. 08 (2011) 141, arXiv:1107.4800 [nucl-ex].

[10]ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC,

J. Instrum. 3 (2008) S08002.

[11]ALICE Collaboration, B. Abelev, et al., Performance of the ALICE experiment at

the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[12]ALICE Collaboration, K. Aamodt, et al., Charged-particle multiplicity density at

mid-rapidity in central Pb–Pb collisions at √sNN=2.76 TeV, Phys. Rev. Lett.

105 (2010) 252301, arXiv:1011.3916 [nucl-ex].

[13]ALICE Collaboration, B. Abelev, et al., Centrality determination of Pb–Pb

col-lisions at √sNN=2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909,

arXiv:1301.4361 [nucl-ex].

[14]C.P. Welsch, et al., Measurement of satellite bunches at the LHC, Conf. Proc. C

1205201 (2012) 97–99.

[15]T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High

(9)

V. Anguelov

93

,

J. Anielski

54

,

T. Antiˇci ´c

97

,

F. Antinori

107

,

P. Antonioli

104

,

L. Aphecetche

113

,

H. Appelshäuser

53

,

S. Arcelli

28

,

R. Arnaldi

110

,

O.W. Arnold

37

,

92

,

I.C. Arsene

22

,

M. Arslandok

53

,

B. Audurier

113

,

A. Augustinus

36

,

R. Averbeck

96

,

M.D. Azmi

19

,

A. Badalà

106

,

Y.W. Baek

67

,

44

,

S. Bagnasco

110

,

R. Bailhache

53

,

R. Bala

90

,

A. Baldisseri

15

,

R.C. Baral

61

,

A.M. Barbano

27

,

R. Barbera

29

,

F. Barile

33

,

G.G. Barnaföldi

135

,

L.S. Barnby

101

,

V. Barret

70

,

P. Bartalini

7

,

K. Barth

36

,

J. Bartke

117

,

E. Bartsch

53

,

M. Basile

28

,

N. Bastid

70

,

S. Basu

132

,

B. Bathen

54

,

G. Batigne

113

,

A. Batista Camejo

70

,

B. Batyunya

66

,

P.C. Batzing

22

,

I.G. Bearden

80

,

H. Beck

53

,

C. Bedda

110

,

N.K. Behera

50

,

I. Belikov

55

,

F. Bellini

28

,

H. Bello Martinez

2

,

R. Bellwied

122

,

R. Belmont

134

,

E. Belmont-Moreno

64

,

V. Belyaev

75

,

G. Bencedi

135

,

S. Beole

27

,

I. Berceanu

78

,

A. Bercuci

78

,

Y. Berdnikov

85

,

D. Berenyi

135

,

R.A. Bertens

57

,

D. Berzano

36

,

L. Betev

36

,

A. Bhasin

90

,

I.R. Bhat

90

,

A.K. Bhati

87

,

B. Bhattacharjee

45

,

J. Bhom

128

,

L. Bianchi

122

,

N. Bianchi

72

,

C. Bianchin

57

,

134

,

J. Bielˇcík

40

,

J. Bielˇcíková

83

,

A. Bilandzic

80

,

R. Biswas

4

,

S. Biswas

79

,

S. Bjelogrlic

57

,

J.T. Blair

118

,

D. Blau

99

,

C. Blume

53

,

F. Bock

93

,

74

,

A. Bogdanov

75

,

H. Bøggild

80

,

L. Boldizsár

135

,

M. Bombara

41

,

J. Book

53

,

H. Borel

15

,

A. Borissov

95

,

M. Borri

82

,

124

,

F. Bossú

65

,

E. Botta

27

,

S. Böttger

52

,

C. Bourjau

80

,

P. Braun-Munzinger

96

,

M. Bregant

120

,

T. Breitner

52

,

T.A. Broker

53

,

T.A. Browning

94

,

M. Broz

40

,

E.J. Brucken

46

,

E. Bruna

110

,

G.E. Bruno

33

,

D. Budnikov

98

,

H. Buesching

53

,

S. Bufalino

27

,

36

,

P. Buncic

36

,

O. Busch

93

,

128

,

Z. Buthelezi

65

,

J.B. Butt

16

,

J.T. Buxton

20

,

D. Caffarri

36

,

X. Cai

7

,

H. Caines

136

,

L. Calero Diaz

72

,

A. Caliva

57

,

E. Calvo Villar

102

,

P. Camerini

26

,

F. Carena

36

,

W. Carena

36

,

F. Carnesecchi

28

,

J. Castillo Castellanos

15

,

A.J. Castro

125

,

E.A.R. Casula

25

,

C. Ceballos Sanchez

9

,

J. Cepila

40

,

P. Cerello

110

,

J. Cerkala

115

,

B. Chang

123

,

S. Chapeland

36

,

M. Chartier

124

,

J.L. Charvet

15

,

S. Chattopadhyay

132

,

S. Chattopadhyay

100

,

V. Chelnokov

3

,

M. Cherney

86

,

C. Cheshkov

130

,

B. Cheynis

130

,

V. Chibante Barroso

36

,

D.D. Chinellato

121

,

S. Cho

50

,

P. Chochula

36

,

K. Choi

95

,

M. Chojnacki

80

,

S. Choudhury

132

,

P. Christakoglou

81

,

C.H. Christensen

80

,

P. Christiansen

34

,

T. Chujo

128

,

S.U. Chung

95

,

C. Cicalo

105

,

L. Cifarelli

12

,

28

,

F. Cindolo

104

,

J. Cleymans

89

,

F. Colamaria

33

,

D. Colella

59

,

33

,

36

,

A. Collu

74

,

25

,

M. Colocci

28

,

G. Conesa Balbastre

71

,

Z. Conesa del Valle

51

,

M.E. Connors

136

,

ii

,

J.G. Contreras

40

,

T.M. Cormier

84

,

Y. Corrales Morales

110

,

I. Cortés Maldonado

2

,

P. Cortese

32

,

M.R. Cosentino

120

,

F. Costa

36

,

P. Crochet

70

,

R. Cruz Albino

11

,

E. Cuautle

63

,

L. Cunqueiro

36

,

T. Dahms

92

,

37

,

A. Dainese

107

,

A. Danu

62

,

D. Das

100

,

I. Das

51

,

100

,

S. Das

4

,

A. Dash

121

,

79

,

S. Dash

48

,

S. De

120

,

A. De Caro

31

,

12

,

G. de Cataldo

103

,

C. de Conti

120

,

J. de Cuveland

43

,

A. De Falco

25

,

D. De Gruttola

12

,

31

,

N. De Marco

110

,

S. De Pasquale

31

,

A. Deisting

96

,

93

,

A. Deloff

77

,

E. Dénes

135

,

i

,

C. Deplano

81

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

36

,

P. Di Nezza

72

,

M.A. Diaz Corchero

10

,

T. Dietel

89

,

P. Dillenseger

53

,

R. Divià

36

,

Ø. Djuvsland

18

,

A. Dobrin

57

,

81

,

D. Domenicis Gimenez

120

,

B. Dönigus

53

,

O. Dordic

22

,

T. Drozhzhova

53

,

A.K. Dubey

132

,

A. Dubla

57

,

L. Ducroux

130

,

P. Dupieux

70

,

R.J. Ehlers

136

,

D. Elia

103

,

H. Engel

52

,

E. Epple

136

,

B. Erazmus

113

,

I. Erdemir

53

,

F. Erhardt

129

,

B. Espagnon

51

,

M. Estienne

113

,

S. Esumi

128

,

J. Eum

95

,

D. Evans

101

,

S. Evdokimov

111

,

G. Eyyubova

40

,

L. Fabbietti

92

,

37

,

D. Fabris

107

,

J. Faivre

71

,

A. Fantoni

72

,

M. Fasel

74

,

L. Feldkamp

54

,

A. Feliciello

110

,

G. Feofilov

131

,

J. Ferencei

83

,

A. Fernández Téllez

2

,

E.G. Ferreiro

17

,

A. Ferretti

27

,

A. Festanti

30

,

V.J.G. Feuillard

15

,

70

,

J. Figiel

117

,

M.A.S. Figueredo

124

,

120

,

S. Filchagin

98

,

D. Finogeev

56

,

F.M. Fionda

25

,

E.M. Fiore

33

,

M.G. Fleck

93

,

M. Floris

36

,

S. Foertsch

65

,

P. Foka

96

,

S. Fokin

99

,

E. Fragiacomo

109

,

A. Francescon

30

,

36

,

U. Frankenfeld

96

,

U. Fuchs

36

,

C. Furget

71

,

A. Furs

56

,

M. Fusco Girard

31

,

J.J. Gaardhøje

80

,

M. Gagliardi

27

,

A.M. Gago

102

,

M. Gallio

27

,

D.R. Gangadharan

74

,

P. Ganoti

36

,

88

,

C. Gao

7

,

C. Garabatos

96

,

E. Garcia-Solis

13

,

C. Gargiulo

36

,

P. Gasik

37

,

92

,

E.F. Gauger

118

,

M. Germain

113

,

(10)

A. Gheata

36

,

M. Gheata

62

,

36

,

P. Ghosh

132

,

S.K. Ghosh

4

,

P. Gianotti

72

,

P. Giubellino

36

,

110

,

P. Giubilato

30

,

E. Gladysz-Dziadus

117

,

P. Glässel

93

,

D.M. Goméz Coral

64

,

A. Gomez Ramirez

52

,

V. Gonzalez

10

,

P. González-Zamora

10

,

S. Gorbunov

43

,

L. Görlich

117

,

S. Gotovac

116

,

V. Grabski

64

,

O.A. Grachov

136

,

L.K. Graczykowski

133

,

K.L. Graham

101

,

A. Grelli

57

,

A. Grigoras

36

,

C. Grigoras

36

,

V. Grigoriev

75

,

A. Grigoryan

1

,

S. Grigoryan

66

,

B. Grinyov

3

,

N. Grion

109

,

J.M. Gronefeld

96

,

J.F. Grosse-Oetringhaus

36

,

J.-Y. Grossiord

130

,

R. Grosso

96

,

F. Guber

56

,

R. Guernane

71

,

B. Guerzoni

28

,

K. Gulbrandsen

80

,

T. Gunji

127

,

A. Gupta

90

,

R. Gupta

90

,

R. Haake

54

,

Ø. Haaland

18

,

C. Hadjidakis

51

,

M. Haiduc

62

,

H. Hamagaki

127

,

G. Hamar

135

,

J.W. Harris

136

,

A. Harton

13

,

D. Hatzifotiadou

104

,

S. Hayashi

127

,

S.T. Heckel

53

,

M. Heide

54

,

H. Helstrup

38

,

A. Herghelegiu

78

,

G. Herrera Corral

11

,

B.A. Hess

35

,

K.F. Hetland

38

,

H. Hillemanns

36

,

B. Hippolyte

55

,

R. Hosokawa

128

,

P. Hristov

36

,

M. Huang

18

,

T.J. Humanic

20

,

N. Hussain

45

,

T. Hussain

19

,

D. Hutter

43

,

D.S. Hwang

21

,

R. Ilkaev

98

,

M. Inaba

128

,

M. Ippolitov

75

,

99

,

M. Irfan

19

,

M. Ivanov

96

,

V. Ivanov

85

,

V. Izucheev

111

,

P.M. Jacobs

74

,

M.B. Jadhav

48

,

S. Jadlovska

115

,

J. Jadlovsky

115

,

59

,

C. Jahnke

120

,

M.J. Jakubowska

133

,

H.J. Jang

68

,

M.A. Janik

133

,

P.H.S.Y. Jayarathna

122

,

C. Jena

30

,

S. Jena

122

,

R.T. Jimenez Bustamante

96

,

P.G. Jones

101

,

H. Jung

44

,

A. Jusko

101

,

P. Kalinak

59

,

A. Kalweit

36

,

J. Kamin

53

,

J.H. Kang

137

,

V. Kaplin

75

,

S. Kar

132

,

A. Karasu Uysal

69

,

O. Karavichev

56

,

T. Karavicheva

56

,

L. Karayan

93

,

96

,

E. Karpechev

56

,

U. Kebschull

52

,

R. Keidel

138

,

D.L.D. Keijdener

57

,

M. Keil

36

,

M. Mohisin Khan

19

,

P. Khan

100

,

S.A. Khan

132

,

A. Khanzadeev

85

,

Y. Kharlov

111

,

B. Kileng

38

,

D.W. Kim

44

,

D.J. Kim

123

,

D. Kim

137

,

H. Kim

137

,

J.S. Kim

44

,

M. Kim

44

,

M. Kim

137

,

S. Kim

21

,

T. Kim

137

,

S. Kirsch

43

,

I. Kisel

43

,

S. Kiselev

58

,

A. Kisiel

133

,

G. Kiss

135

,

J.L. Klay

6

,

C. Klein

53

,

J. Klein

36

,

93

,

C. Klein-Bösing

54

,

S. Klewin

93

,

A. Kluge

36

,

M.L. Knichel

93

,

A.G. Knospe

118

,

T. Kobayashi

128

,

C. Kobdaj

114

,

M. Kofarago

36

,

T. Kollegger

96

,

43

,

A. Kolojvari

131

,

V. Kondratiev

131

,

N. Kondratyeva

75

,

E. Kondratyuk

111

,

A. Konevskikh

56

,

M. Kopcik

115

,

M. Kour

90

,

C. Kouzinopoulos

36

,

O. Kovalenko

77

,

V. Kovalenko

131

,

M. Kowalski

117

,

G. Koyithatta Meethaleveedu

48

,

I. Králik

59

,

A. Kravˇcáková

41

,

M. Kretz

43

,

M. Krivda

101

,

59

,

F. Krizek

83

,

E. Kryshen

36

,

M. Krzewicki

43

,

A.M. Kubera

20

,

V. Kuˇcera

83

,

C. Kuhn

55

,

P.G. Kuijer

81

,

A. Kumar

90

,

J. Kumar

48

,

L. Kumar

87

,

S. Kumar

48

,

P. Kurashvili

77

,

A. Kurepin

56

,

A.B. Kurepin

56

,

A. Kuryakin

98

,

M.J. Kweon

50

,

Y. Kwon

137

,

S.L. La Pointe

110

,

P. La Rocca

29

,

P. Ladron de Guevara

11

,

C. Lagana Fernandes

120

,

I. Lakomov

36

,

R. Langoy

42

,

C. Lara

52

,

A. Lardeux

15

,

A. Lattuca

27

,

E. Laudi

36

,

R. Lea

26

,

L. Leardini

93

,

G.R. Lee

101

,

S. Lee

137

,

F. Lehas

81

,

R.C. Lemmon

82

,

V. Lenti

103

,

E. Leogrande

57

,

I. León Monzón

119

,

H. León Vargas

64

,

M. Leoncino

27

,

P. Lévai

135

,

S. Li

70

,

7

,

X. Li

14

,

J. Lien

42

,

R. Lietava

101

,

S. Lindal

22

,

V. Lindenstruth

43

,

C. Lippmann

96

,

M.A. Lisa

20

,

H.M. Ljunggren

34

,

D.F. Lodato

57

,

P.I. Loenne

18

,

V. Loginov

75

,

C. Loizides

74

,

X. Lopez

70

,

E. López Torres

9

,

A. Lowe

135

,

P. Luettig

53

,

M. Lunardon

30

,

G. Luparello

26

,

A. Maevskaya

56

,

M. Mager

36

,

S. Mahajan

90

,

S.M. Mahmood

22

,

A. Maire

55

,

R.D. Majka

136

,

M. Malaev

85

,

I. Maldonado Cervantes

63

,

L. Malinina

66

,

iii

,

D. Mal’Kevich

58

,

P. Malzacher

96

,

A. Mamonov

98

,

V. Manko

99

,

F. Manso

70

,

V. Manzari

36

,

103

,

M. Marchisone

27

,

65

,

126

,

J. Mareš

60

,

G.V. Margagliotti

26

,

A. Margotti

104

,

J. Margutti

57

,

A. Marín

96

,

C. Markert

118

,

M. Marquard

53

,

N.A. Martin

96

,

J. Martin Blanco

113

,

P. Martinengo

36

,

M.I. Martínez

2

,

G. Martínez García

113

,

M. Martinez Pedreira

36

,

A. Mas

120

,

S. Masciocchi

96

,

M. Masera

27

,

A. Masoni

105

,

L. Massacrier

113

,

A. Mastroserio

33

,

A. Matyja

117

,

C. Mayer

117

,

J. Mazer

125

,

M.A. Mazzoni

108

,

D. Mcdonald

122

,

F. Meddi

24

,

Y. Melikyan

75

,

A. Menchaca-Rocha

64

,

E. Meninno

31

,

J. Mercado Pérez

93

,

M. Meres

39

,

Y. Miake

128

,

M.M. Mieskolainen

46

,

K. Mikhaylov

66

,

58

,

L. Milano

36

,

J. Milosevic

22

,

L.M. Minervini

103

,

23

,

A. Mischke

57

,

A.N. Mishra

49

,

D. Mi´skowiec

96

,

J. Mitra

132

,

C.M. Mitu

62

,

N. Mohammadi

57

,

B. Mohanty

79

,

132

,

L. Molnar

55

,

113

,

L. Montaño Zetina

11

,

E. Montes

10

,

D.A. Moreira De Godoy

54

,

113

,

L.A.P. Moreno

2

,

S. Moretto

30

,

A. Morreale

113

,

A. Morsch

36

,

V. Muccifora

72

,

E. Mudnic

116

,

D. Mühlheim

54

,

S. Muhuri

132

,

M. Mukherjee

132

,

J.D. Mulligan

136

,

M.G. Munhoz

120

,

R.H. Munzer

92

,

37

,

S. Murray

65

,

L. Musa

36

,

J. Musinsky

59

,

B. Naik

48

,

R. Nair

77

,

B.K. Nandi

48

,

R. Nania

104

,

E. Nappi

103

,

M.U. Naru

16

,

H. Natal da Luz

120

,

C. Nattrass

125

,

K. Nayak

79

,

T.K. Nayak

132

,

S. Nazarenko

98

,

A. Nedosekin

58

,

L. Nellen

63

,

F. Ng

122

,

M. Nicassio

96

,

M. Niculescu

62

,

J. Niedziela

36

,

B.S. Nielsen

80

,

S. Nikolaev

99

,

S. Nikulin

99

,

V. Nikulin

85

,

F. Noferini

12

,

104

,

P. Nomokonov

66

,

G. Nooren

57

,

J.C.C. Noris

2

,

J. Norman

124

,

A. Nyanin

99

,

J. Nystrand

18

,

H. Oeschler

93

,

S. Oh

136

,

S.K. Oh

67

,

A. Ohlson

36

,

A. Okatan

69

,

T. Okubo

47

,

L. Olah

135

,

J. Oleniacz

133

,

A.C. Oliveira Da Silva

120

,

M.H. Oliver

136

,

J. Onderwaater

96

,

C. Oppedisano

110

,

R. Orava

46

,

A. Ortiz Velasquez

63

,

A. Oskarsson

34

,

J. Otwinowski

117

,

K. Oyama

93

,

76

,

M. Ozdemir

53

,

Y. Pachmayer

93

,

P. Pagano

31

,

G. Pai ´c

63

,

S.K. Pal

132

,

J. Pan

134

,

A.K. Pandey

48

,

Figura

Fig. 1. (Colour online.) Comparison of data-driven to simulation-based corrections for secondary particles impinging on the FMD
Table 2 summarises the systematic uncertainties of this analy- analy-sis. The common systematic uncertainty from the centrality  selec-tion is correlated across  η and detailed elsewhere [13] .
Fig. 2. (Colour online.) Measurement of dN ch / d η per centrality from SPD (squares) and FMD (circles) separately
Fig. 5. (Colour online.) The charged-particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants
+2

Riferimenti

Documenti correlati

On the basis of the current literature and results of cytokine-blocking therapies it is possible to distinguish, in the T cell-mediated psoriatic inflam- matory cascade, (i)

In this setup, positrons photoionized from electronically excited positronium atoms are trapped along the lines of magnetic field of the trap and accelerated

Specialty section: This article was submitted to Clinical and Health Psychology, a section of the journal Frontiers in Psychology Received: 14 August 2018 Accepted: 15 August

To do this a new stochastic simulation environment is necessary, an environment able to simulate various kind of distribution (Poisson distribution, power-law

Lo scopo della presente tesi è stato quello di analizzare le fasi della gestione dei pazienti con sepsi/sepsi severa/shock settico che dal Pronto Soccorso vengono

The comparison is detailed shown on the following Sections.. 3.19, the best A solution, regarding the power unit for the rotation around –z axis, resulted to be the rotation stage.

In the framework of distributions-oriented forecast verification, we investigate the ability of the WRF sys- tem to properly predict the local wind speed and direction

- Digital AS Cultural Heritage: entità digitali derivate dalla digitalizzazione e dalla dematerializzazione che registrano nei contenuti approcci culturali, processi, metodi