• Non ci sono risultati.

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sqrt(s_NN) = 2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sqrt(s_NN) = 2.76 TeV"

Copied!
13
0
0

Testo completo

(1)

s

NN

=

2.76 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received5October2015

Receivedinrevisedform3December2015 Accepted20December2015

Availableonline26January2016 Editor: L.Rolandi

Thecentralitydependenceofthecharged-particlepseudorapiditydensitymeasuredwithALICEinPb–Pb collisions at√sNN=2.76 TeV over abroadpseudorapidityrangeispresented.ThisLetterextendsthe

previousresultsreportedbyALICEtomoreperipheralcollisions.Nostrongchangeoftheoverallshapeof charged-particlepseudorapiditydensitydistributionswithcentralityisobserved,andwhennormalisedto thenumberofparticipatingnucleonsinthecollisions,theevolutionoverpseudorapiditywithcentrality islikewisesmall. Thebroadpseudorapidityrange(3.5<

η

<5)allowspreciseestimatesofthetotal numberofproducedchargedparticleswhichwefindtorangefrom162±22(syst.) to17170±770(syst.) in 80–90% and 0–5% central collisions, respectively. The total charged-particle multiplicity is seen to approximatelyscalewiththenumberofparticipatingnucleonsinthecollision.Thissuggeststhathard contributionstothecharged-particlemultiplicityarelimited.Theresultsarecomparedtomodelswhich describedNch/d

η

atmid-rapidityinthemostcentralPb–Pbcollisionsanditisfoundthatthesemodels donotcaptureallfeaturesofthedistributions.

©2016CERNforthebenefitoftheALICECollaboration.PublishedbyElsevierB.V.Thisisanopen accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The measurement of the charged-particle pseudorapidity (

η

) density distribution in heavy-ion collisions provides insight into thedominantparticleproductionmechanisms,suchasparton frag-mentation[1]andtheobservedphenomenonoflimiting fragmen-tation[2]. The unique capability of ALICE to perform such mea-surementsfromlargetosmalloverlapsofthecollidingnucleiover abroad pseudorapidity rangeallows forsignificant additional in-formationtobe extractede.g., thetotalnumberofcharged parti-clesandtheevolutionofthedistributionswithcentrality.

The charged-particle pseudorapidity density (dNch

/

d

η

) per se

doesnotprovideimmediateunderstandingoftheparticle produc-tionmechanism,butasabenchmarktoolforcomparingmodelsit isindispensable.Variousmodels

[3–5]

makedifferentassumptions onhowparticlesareproducedinheavy-ioncollisionsresultingin verydifferentcharged-particlepseudorapiditydensitydistributions —bothintermsofscaleandshape.Modelsmay,forexample, in-corporatedifferentschemesforthehadronisation oftheproduced quarks and gluons which leads to very different pseudorapidity distributionsofthechargedparticles.

 E-mail address:[email protected].

TheALICECollaborationhaspreviously reportedresultsonthe charged-particlepseudorapiditydensityinthe0–30%mostcentral Pb–Pb collisions at

sNN

=

2

.

76 TeV overa wide pseudorapidity

range [6], andin the 80% mostcentral collisions atmid-rapidity (

η

0) only [7]. The ATLAS Collaboration has reported on the charged-particle pseudorapidity density in the 80% most central eventsin a limitedpseudorapidityrange of

|

η

|

<

2[8].Similarly, theCMSCollaborationhasreportedonthesamemeasurementsin the90%mostcentraleventsat

η

0,andforselectedcentralities upto

|

η

|

<

2[9].

In this Letter we present the primary charged-particle pseu-dorapidity densitydependenceonthe eventcentralityfrom mid-central (30–40%) to peripheral (80–90%) collisions over a broad pseudorapidity range to complement results previously reported byALICEinthe0–30%centralityrange.Unlikeprevious

[6]

,inthe forwardregions wherethesignalisdominatedby secondary par-ticlesproducedinthesurroundingmaterial,we usea data-driven correctiontoextracttheprimarycharged-particledensity.

Primary chargedparticles are defined asprompt charged par-ticles produced in the collision, including their decay products, butexcludingproductsofweakdecaysofmuonsandlightflavour hadrons. Secondary charged particles are all other particles ob-servedintheexperimente.g.,particlesproducedthrough interac-tionswithmaterialandproductsofweakdecays.

http://dx.doi.org/10.1016/j.physletb.2015.12.082

0370-2693/©2016CERNforthebenefitoftheALICECollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

Inthefollowingsection,theexperimentalset-upwillbebriefly described. Section 3outlines analysis procedures anddescribesa data-drivenmethodtoisolatethenumberofprimarycharged par-ticles fromthe secondary particle backgroundat large pseudora-pidity.Systematicuncertainties arediscussedinSect.4.InSect.5, theresultantcharged-particlepseudorapiditydensitydistributions are presentedalong withtheir evolution withcentrality. Further-more we extract from the measured dNch

/

d

η

distributions the

totalnumberofchargedparticles asafunction ofthenumberof participatingnucleons.Wefinallycomparethemeasured charged-particlepseudorapiditydensityto anumberofmodelpredictions beforeconcludinginSect.6.

2. Experimentalsetup

AdetaileddescriptionofALICEcanbefoundelsewhere[10,11]. Inthefollowingwe briefly describethedetectorsrelevantto this analysis.

The Silicon PixelDetector (SPD) is the inner-most detector of ALICE. The SPD consists of two cylindrical layers of 9

.

8

×

106 silicon-pixels possessing binary read-out. It provides a measure-mentofchargedparticles over

|

η

|

<

2 using so-calledtracklets —

acombinationofhitsoneach ofthetwo layers(1and2) consis-tent with a trackoriginating fromthe interaction point. Possible combinationsofhitsnot consistentwithprimaryparticles canbe removed from the analysis, withonly a small (afew %) residual correction for secondary particles derived from simulations. The SPDalso provides a measurement,by combininghits on its two layers,oftheoffsetwithrespecttotheinteractionpoint,wherethe collisions occurred.IP

= (

0

,

0

,

0

)

isatthecentreoftheALICE co-ordinatesystem,andIPz istheoffsetalongthebeamaxis.Finally,

ahardware logicalor of hitsineach ofthetwolayers providesa triggerforALICE.

TheForwardMultiplicityDetector(FMD)isasiliconstrip detec-torwith51 200individualread-outchannelsrecordingtheenergy depositedby particles traversing thedetector.It consistsofthree sub-detectorsFMD1,2,and3,placedapproximately320 cm,79 cm and

69 cm along the beamline, respectively. FMD1consists of oneinner type ring(1i), whilebothFMD2and3consist ofinner (2i,3i) and outer type rings(2o, 3o). The ringshave almost full coverageinazimuth(

ϕ

),andhighgranularityintheradial(

η

) di-rection(see

Table 1

).

TheV0isthemostforwardofthethreedetectorsusedinthis analysis.Itconsistsoftwosub-detectors:V0-A andV0-C placedat approximately333 cm and

90 cm alongthe beamline, respec-tively.Each of thesub-detectors are madeup of scintillator tiles withahightimingresolution.WhiletheV0providespulse-height measurements,theenergy-lossresolutionisnotfineenoughtodo an independent charged particle measurement.In previous mea-surements, using so-called satellite–main collisions (see Sect. 3), one could match the V0amplitude to the SPDmeasurements to obtainarelativemeasurementofthenumberofchargedparticles. However,forcollisions at

|

IPz

|

<

15 cm nosuch matchingis

pos-sible,andtheV0isthereforenot usedtoprovideameasurement ofthenumberofchargedparticlesinthisanalysis.Thedetectoris used,inan inclusivelogicalor with theSPD,fortriggering ALICE andtoprovideameasureoftheeventcentrality[7].

Details on the coverage, resolution, and segmentation of the threeuseddetectorsaregivenin

Table 1

.

3. Datasampleandanalysismethod

TheresultspresentedinthispaperarebasedonPb–Pbcollision dataat

sNN

=

2

.

76 TeV taken by ALICEin2010. About 100 000

Table 1

Overviewoftheresolution(δ),segmentation(),and coverageofthedetectors usedintheanalysis.The‘A’sidecorrespondsto

z

>0,whilethe‘C’sidecorresponds to

z

<0.TheηrangeisspecifiedforcollisionswithIPz=0.

Detector δrϕ δz ηrange SPD1 12 μm 100 μm −2.0 to 2.0 2 12 μm 100 μm −1.4 to 1.4 Detector r ηrange FMD1i 18◦ 254 μm 3.7 to 5.0 2i 18◦ 254 μm 2.3 to 3.7 2o 9◦ 508 μm 1.7 to 2.3 3o 9◦ 508 μm −2.3 to−1.7 3i 18◦ 254 μm −3.4 to−2.0 V0-A 45◦ 34 to 186 mm 2.8 to 5.1 -C 45◦ 26 to 127 mm −3.7 to−1.7

events with a minimum bias trigger requirement [7]were anal-ysedinthecentralityrangefrom0%to90%.Thedatawascollected over roughly 30 minutes where the experimental conditions did notchange.

The standardALICEeventselection [12]andcentrality estima-tor basedonthe V0-amplitudeare usedinthisanalysis[13].We includeherethe80–90%centralityclasswhichwasnotpresentin thepreviousresults[7].Asdiscussedelsewhere[13],the90–100% centrality class has substantial contributions fromQED processes andisthereforenotincludedinthisLetter.

Resultsinthemid-rapidityregion(

|

η

|

<

2)areobtainedfroma trackletanalysisusingthetwo layersoftheSPDasmentionedin Sect.2. Theanalysismethod anddatausedare identicalto what haspreviouslybeenpresented[6,7].

Themeasurementsintheforwardregion(

|

η

|

>

2)areprovided bytheFMD.TheFMDrecordsthefullenergydepositionofcharged particles that impingeon thedetector.Since allcharged particles thathittheFMDareboostedinthelaboratoryframe,thedetection efficiencyiscloseto100%forallmomenta.Asreportedearlier[6], the mainchallenge inmeasuring thenumberofchargedprimary particlesinthisregion,isthelargebackgroundofsecondary parti-clesproducedinthesurroundingmaterial.Duetothecomplexity andthelimitedknowledgeofthematerialdistributionofsupport structures away fromthe central barrel, it hasnot been possible toadequately describe(onthefew%-level)thegenerationof sec-ondary particlesintheforwarddirections withintheprecision of thecurrentsimulationoftheALICEapparatus.

Asuitablemeanstoextractthenumberofprimarycharged par-ticleswasfoundbyutilisingcollisionsbetweenso-called‘satellite’ bunchesandmainbunchesoffsetinintervalsof37.5 cmalongthe beam-line.Satellitebunchesarecausedbytheso-called debunch-ing effect[14]. Asmall fraction ofthe beam can be captured in unwanted RF buckets, due the way beams are injected into the accelerator, andcreate these satellite bunches spaced by 2.5 ns. Collisionsbetweensatelliteandmainbunchescancause instabili-tiesinthebeam,andtheLHChastakenstepstoreducethe num-ber ofthesekinds ofcollisions. ALICEhasthereforenot recorded collisions betweensatellite andmain bunchesbeforeor afterthe Pb–Pb runof2010. Insatellite–main collisions thebackgroundof secondaryparticleswasmuchsmallerandmuchbetterunderstood since significantlylessdetectormaterial shadowsthe forward de-tectors

[6]

.

Astudyutilisingthesesatellite–maincollisionsledtothe publi-cationofthemeasurementofthecharged-particle pseudorapidity densityinthe30%mostcentraleventsover

|

η

|

<

5[6].Thestudy waslimitedincentralityreachbytheneedtousetheZero-Degree Calorimeter (ZDC) for the centrality estimation for collisions be-tween satellite and mainbunches. TheZDCmeasures theenergy ofspectator(non-interacting)nucleonswithtwocomponents:one

(3)

Fig. 1. (Colouronline.)Comparisonofdata-driventosimulation-basedcorrectionsforsecondaryparticlesimpingingontheFMD.Differentmarkerscorrespondtodifferent collisionsystemsandenergies,andthecoloursindicatethefiveFMDrings.

S

(η)isshownfor0 cm<IPz<2 cm asanexample,while

E

(η)isindependentofIPz(seealso

text). Pythia wasusedforppcollisions,andthePb–PbpointsarefromsimulationwithaparameterisationwhichincludetheavailableALICEdataonparticlecomposition and

p

Tdistributions.Blackcirclescorrespondto

E

(η).

measuresprotonsandtheothermeasures neutrons.TheZDCwas locatedatabout114 m fromtheinteraction pointon eitherside ofthe experiment[10],and was thereforeideally suitedfor that study.Thecentrality determinationcapabilityofthe ZDCis how-everlimitedtothe30%mostcentralcollisions[13].

Forcentralitieslargerthan30%theV0amplitudeisusedasthe centralityestimator,whichisavailableonlyforcollisionsat

|

IPz

|

<

15 cm —theso-callednominalinteractionpointcorrespondingto main bunches of one beam colliding with main bunches of the otherbeam.

To extend the centrality reach of the dNch

/

d

η

measurement,

a data-driven correctionforthenumber ofsecondariesimpinging ontheFMDhasbeenimplemented.ForeachcentralityclassC ,we formtheratio

EC

(

η

)

=

dNch

/

d

η

|C

,inclusive,nominal dNch

/

d

η

|C

,primary,satellite

.

(1)

Thatis,theratioofthemeasured inclusive charged-particledensity frommain–main collisions (

|

IPz

|

<

10 cm) provided by the FMD

tothe primary charged-particle densityfrom satellite–main colli-sions[6].Here,‘inclusive’denotesprimary and secondarycharged particles i.e., nocorrection was applied to account forsecondary particlesimpingingontheFMD.

Note,that thecorrection isformedbin-by-bin in pseudorapid-ity,sothatthepseudorapidityisthesameforboththenumerator anddenominator. However, the numeratorand denominator dif-fer in the offset along the beam line of origin of the measured particles:Forthenumeratortheoriginlieswithinthenominal in-teraction region,while forthedenominator theoriginwas offset bymultiplesof37.5 cm.

This ratio is obtained separately for all previously published centralityclasses:0–5%,5–10%,10–20%and20–30%.Thevariation of Ec fordifferent centralities is small (

<

1%, much smaller than

theprecisionofthemeasurements).Theweightedaverage

E

(

η

)

=



C





C EC(

η

)

C



C

,

(2)

is used as a global correction to obtain the primary charged-particlepseudorapiditydensity

dNch d

η





X,primary

=

1 E

(

η

)

dNch d

η





X,inclusive,nominal

,

(3)

whereX standsforaneventselectione.g.,acentralityrange.

Thesimulation-basedcorrectionS

(

η

)

forsecondaryparticlesto the charged-particle pseudorapidity densityinthe forward direc-tionsisgivenby

S

(

η

)

=

Ninclusive,FMD

(

η

)

Nprimary,generated

(

η

)

,

(4)

whereNinclusive,FMDisthenumberofprimaryand secondary

parti-clesimpingingontheFMD—asgivenbythetrackpropagationof the simulation, and Nprimary,generated is the number of generated

primary particles at a given pseudorapidity. Complete detector-simulation studies show that three effects can contribute to the generationofsecondaries,andhencethevalueofS

(

η

)

.Thesethree effectsare:materialinwhichsecondariesareproduced,the trans-versemomentum(pT)distributionandparticlecompositionofthe

generatedparticles, andlastly thetotal numberofproduced par-ticles. Of thesethree the material is by far the dominant effect, whilethepTandparticlecompositiononlyeffectsS

(

η

)

onthefew

percentlevel.Thetotalnumberofgeneratedparticleshasa negli-gibleeffectonS

(

η

)

.Thatis,thematerialsurroundingthedetectors amplifies the primary-particle signal through particle production byaconstantfactorthatfirstandforemostdependsontheamount ofmaterialitself,andonlysecondarilyonthepT andparticle

com-positionofthegeneratedprimaryparticles.

Toestimatehow much EC

(

η

)

itself wouldhavechanged if

an-other system or centrality range was used to calculate the cor-rection, S

(

η

)

is analysed from simulations with various collision systems and energies. We find that, even for large variations in particlecomposition and pT distributions, S

(

η

)

only variesbyup

to 5%. Reweighting the particle composition and pT distributions

fromthe various systemsto matchproduces consistent valuesof

S

(

η

)

ensuringthat the5%variations foundwereonlydueto par-ticlecompositionandpT distributionsdifferences.Thisuncertainty

is applied to E

(

η

)

to account for all reasonable variations ofthe particle composition and pT distributions,which cannot be

mea-suredintheforwardregionsofALICE.

Fig. 1showsthecomparisonofthedatadrivencorrectionE

(

η

)

tothesimulation-basedcorrection S

(

η

)

from Pythia[15](pp)and a parameterisation of the available ALICE results [16,17] for Pb– Pbcollisions.Thesimulatedcollisionsarefortwodistinctsystems andspan over almost an order ofmagnitude in collisionenergy. Thetotal numberofproduced particlesinthesesimulations span fiveordersofmagnitude,andnodependenceof S

(

η

)

on charged-particlemultiplicityisobserved.

BycomparingE

(

η

)

to S

(

η

)

fromsimulations,one findsagood correspondence between the two corrections except in regions

(4)

wherethematerialdescriptioninthesimulations isknowntobe inadequate.This,togetherwiththefactthatthenumeratorand de-nominatorofEq.(1)measurethesamephysicalprocess,butdiffer foremost in the material traversed by the primary particles, and hence the number of secondary particles observed, implies that the correction E

(

η

)

is universal. Thatis, Eq.(3) is applicable for

any eventselection X in anycollision system orat anycollision energy,wheretheproducedmultiplicity,pT distributions,and

par-ticle composition is close to the range ofthe simulated systems usedtostudyS

(

η

)

.

Note, for the previously published results [6], which used satellite–main collisions, the simulation-based approach for cor-recting for secondary particles i.e., applying S

(

η

)

directly, was valid. As mentioned above, insatellite–main collisions, the parti-clesthatimpingeontheFMDtraversefarlessandbetterdescribed material in the simulation of the ALICE apparatus. The use of a simulation-based correction for secondary particles was in that analysiscross-checkedbycomparingtoandcombiningwith mea-surementsfromthe V0and SPD[6]. Despiteconcertedeffortsto improvethesimulationsbytheCollaborationithasnotbeen possi-bletoachievethesameaccuracyinS

(

η

)

formain–maincollisions. Finally, the effect of variation of the location of the primary interactionpointonE

(

η

)

wasstudied.Itwasfound,thattheeffect isnegligible,giventhatthedistributionofIPz aresimilarbetween

thenumeratorofEq.(1)andright-handsideofEq.(3),aswasthe caseinthisanalysis.

Themethodusedinthisanalysistoextracttheinclusive num-berofchargedparticlesfromtheFMDisthesameasforprevious publishedresults[6],except thatthedata-drivencorrectionE

(

η

)

— ratherthan asimulation-basedone S

(

η

)

— isusedto correctfor secondaryparticles.

4. Systematicuncertainties

Table 2summarises thesystematicuncertaintiesofthis analy-sis.Thecommonsystematicuncertaintyfromthecentrality selec-tioniscorrelatedacross

η

anddetailedelsewhere[13].

FortheSPDmeasurements,thesystematicuncertaintiesarethe sameasforthepreviouslypublishedmid-rapidityresult[7],except foracontributionfromthecorrectionduetothelargeracceptance usedinthisanalysis. ThisuncertaintystemsfromtherangeofIPz

usedintheanalysis(here

|

IPz

|

<

15 cm).Atlargerabsolutevalues

ofIPz theacceptance correction fortheSPD trackletsgrows, and

the uncertaintywith it, beingtherefore

η

-dependent andlargest at

|

η

|

2.

The various sources of systematic uncertainties for the FMD measurements are detailed elsewhere [6], but will be expanded uponinthefollowingsincesomevalueshavechangeddueto bet-terunderstandingofthedetectorresponse.

In the analysis, three

η

-dependent thresholds are used. The values for these thresholds are obtained by fitting a convoluted Landau–Gaussdistribution[18] tothe energyloss spectrum mea-suredbytheFMDinagiven

η

range.Theuncertaintiesassociated withthesethresholdsaredetailedbelow.

A charged particle traversing the FMD can deposit energy in more than one element i.e., strip, of the detector. Therefore it is necessaryto recombine two signalsto get thesingle charged-particleenergylossinthosecases.Thisrecombinationdependson alowerthresholdforacceptingasignal,andanupperthresholdto considera signal asisolated i.e.,all energyis depositedina sin-gle strip. Thesystematic uncertainties fromtherecombination of signalsarefoundbyvaryingthelowerandupperthresholdvalues withinboundsoftheenergylossfitsandbysimulationstudies.

Tocalculatetheinclusivenumberofchargedparticles,a statis-ticalapproachisused[6].Thestripsofthe FMDaredividedinto

Table 2

Summaryofsystematicuncertainties:thecommonsystematicuncertaintiesshared byboththeSPDandtheFMD,andtheuncertaintiesparticulartothedetectors.

Detector Source Uncertainty (%) Common Centrality 0.4–6.2 SPD Background subtraction 0.1 Particle composition 1 Weak decays 1 Extrapolation to pT=0 2 Event generator 2 Acceptance 0–2a FMD Recombination 1 Threshold +12 Secondary particles 6.1 Particle composition & pT 2b a Pseudorapiditydependentuncertainty,largestat|η|=2. b Additionalcontributionin3.7<η<5.Seealsotext.

regions, andthe number ofempty strips is compared to the to-tal numberofstripsinagivenregion.Strips withasignal below agiventhresholdareconsideredempty.Thethresholdwasvaried within boundsofthe energyloss fitsandinvestigatedin simula-tionstudiestoobtainthesystematicuncertainty.

The data-driven correction for secondary particles defined in Eq. (2) is derived from the previously published results, and as such contains contributions from the systematic uncertainties of those results [6]. Factoring out common correlated uncertainties e.g., the contribution from the centrality determination, we find a contribution of 4.7% from the previously published results. By studying the variation of the numerator of Eq. (1) under differ-entexperimentalconditionse.g.,differentdata-takingperiods,and adding the variance in quadrature, the uncorrelated, total uncer-tainty on E

(

η

)

is found to be 6.1%. Systematic uncertainties can in generalnot becancelled betweenthenumerator and denomi-nator ofEq.(1),sincethesame

η

regionsare probedbydifferent detectorelementsineach.

Note, that the previously published result [6]used in Eq. (1)

alreadycarriesa2%systematicuncertaintyfromtheparticle com-positionand pT distribution

[6]

.Thiscontributioniscontainedin

the4.7%quotedabove,andispropagatedtothefinal6.1% system-aticuncertaintyon E

(

η

)

.

Finally, it was found through simulations that the acceptance region of FMD1 is particularly affected by the variations in the number of secondary particles stemming from variations in the particlecompositionandpTdistribution,andgivesrisetoan

addi-tional2% systematicuncertainty, whichisaddedinquadratureto therestofthesystematicuncertainties,butonlyfor

η

>

3

.

7. 5. Results

Fig. 2showsthecharged-particlepseudorapiditydensityfor dif-ferentcentralitiesfromeachdetectorseparately.

The combined distributions inFig. 3are calculated asthe av-erage of the individual measurements from the FMD and SPD, weighted by statisticalerrors and systematicuncertainties, omit-tingthosewhicharecommonsuchasthatfromthecentrality de-termination.Thedistributionsarethensymmetrisedaround

η

=

0 bytakingtheweightedaverageof

±

η

points.Pointsat3

.

5

<

η

<

5 are reflected on to

5

<

η

<

3

.

5 to provide the dNch

/

d

η

dis-tributions ina range comparableto the previously published re-sults[6].

Thelinesin

Fig. 3

arefitsof

fGG

(

η

;

A1

,

σ

1

,

A2

,

σ

2

)

=

A1e −1 2 η2 σ12

A 2e −1 2 η2 σ22

,

(5)

(5)

Fig. 2. (Colouronline.)MeasurementofdNch/dηpercentralityfromSPD(squares)andFMD(circles)separately.Errorbarsreflectthetotaluncorrelatedsystematicuncertainty

andstatisticalerroroneachpoint.ErrorbarsontheleftandrightreflectthecorrelatedsystematicuncertaintiesontheSPDandFMDpoints,respectively.Previouslypublished resultsfor0–30%overthefullpseudorapidityrange(diamonds)[6]andfor0–80%atmid-rapidity(stars)[7]arealsoshown.

Fig. 3. (Colouronline.)MeasurementofdNch/dηforallcentralitiesandabroadηrange.CombinedandsymmetriseddNch/dηover30–90%centralityfrombothSPDand

FMD(circles).Openboxesreflectthetotaluncorrelatedsystematicuncertaintiesandstatisticalerrors,whilethefilledboxesontherightreflectthecorrelatedsystematic uncertainty.Alsoshown,isthereflectionofthe3.5<η<5 valuesaroundη=0 (opencircles).Previouslypublishedresultsfor0–30%overthefullpseudorapidityrange (diamonds)[6]arealsoshown.ThelinescorrespondtofitsofEq.(5)tothedata.

tothe measured distributions. Thefunction fGG isthe difference

of two Gaussian distributions centred at

η

=

0 with amplitudes

A1, A2, andwidths

σ

1,

σ

2.The function describesthe data well

withinthemeasuredregionwithareduced

χ

2smallerthan1.We

findvaluesofA2

/

A1 forallcentralities,from0

.

20 to0

.

31 butare

consistentwithinfituncertainties,withaconstantvalueof0

.

23

±

0

.

02.Likewisevaluesof

σ

2

/

σ

1forallcentralities,rangesfrom0

.

28

to0

.

36 andareconsistentwithaconstantvalueof0

.

31

±

0

.

02. Qualitatively the shape ofthe charged-particle pseudorapidity densitydistributions broadens only slightlytoward more periph-eralevents,consistentwiththeaboveobservation.Indeed,the full-width half-maximum(FWHM) shown in Fig. 4 versus the num-berofparticipatingnucleons



Npart



—calculatedusinga Glauber

model [13] — increase sharply only in the very most peripheral collisions. The dNch

/

d

η

distributions doesnot extendfar enough

tocalculate reliable valuesfor FWHMdirectly fromthe data. In-stead fGG

(

η

)

max

(

fGG

)/

2

=

0 was numericallysolved, andthe

uncertaintiesevaluatedastheerrorof fGGattheroots,dividedby

theslope atthose roots. The widthofthe dNch

/

d

η

distributions

follows the same trend, in the region of 0–50%, as was seen in lowerenergyresults fromPHOBOSreproduced in

Fig. 4

for com-parison

[2]

.

Fig. 5presentsthecharged-particle pseudorapiditydensityper averagenumberofparticipatingnucleonpairs



Npart

/

2 asa

func-tionoftheaveragenumberofparticipants



Npart



.Althoughthere

isaslightincreaseintheratiotothecentralpseudorapidity den-sitydistribution atlow



Npart



(see lower partof

Fig. 5

), the

un-certainties are large andno strongevolution of theshape of the pseudorapidity density distribution over pseudorapidity with re-spect to centrality is observed. The ratio at3

.

5

<

|

η

|

<

4

.

5 does deviate somewhat inperipheral collisions, which is attributed to thegeneralbroadeningofthepseudorapiditydensitydistributions inthosecollisions.

To extract the total number of charged particles produced in Pb–Pbcollisions atvarious centralities,anumberoffunctions, in-cludingEq.(5),isfittedtothedNch

/

d

η

distributions.Atrapezoid

fT

(

η

;

ybeam

,

M

,

A

)

=

A

×

0

|

η

| >

ybeam

(

ybeam

+

η

)

η

<

M

(

ybeam

M

)

|

η

| <

M

(

ybeam

η

)

η

>

+

M

,

(6)

was successfully used by PHOBOS to describe limiting fragmen-tation [2]. Here,

[−

M

,

M

]

is the range in which the function is constant,andA istheamplitude.Theparameterisation

fP

(

η

;

A

,

α

, β,

a

)

=

A



1

1

/

[

α

cosh

(

η

)

]2

1

+

e(|η|−β)/a

,

(7)

assuggestedbyPHOBOS,islikewisefittedtothedNch

/

d

η

(6)

Fig. 4. (Colouronline.)Full-widthhalf-maximumofthecharged-particlepseudorapiditydistributionsversustheaveragenumberofparticipants.Theuncertaintiesonthe ALICEmeasurementsarefromthefitof fGGonlyandevaluatedat95%confidencelevel.AlsoshownarelowerenergyresultsfromPHOBOS[2].

Fig. 5. (Colouronline.)Thecharged-particlepseudorapiditydensitydistributionsscaledbytheaveragenumberofparticipantsinvariouspseudorapidityintervalsasafunction ofthenumberofparticipants.Thefourright-mostpoints(opensymbols)ineachηrange,aswellasthemid-rapiditypoints(circles)arefrompreviouslypublishedresults[6, 17].Theuncertaintieson NpartfromtheGlaubercalculationsareonlyincludedonthepointsatmid-rapidity.Thus,theuncertaintybandaroundthemid-rapiditypoints

reflectboththemeasurementuncertaintiesandtheuncertaintyon Npart,whileotherηrangesonlyshowthemeasurementuncertainties.Thelowerpartshowstheratio

ofeachdistributiontothepreviouslypublisheddistributionsfor|η|<0.5.

α

and

β

,andexpressesthewidthanddepthofthedipat

η

0, respectively. A is an overall scale parameter. Finally, to remedy someoftheobviousdefectsofthetrapezoidi.e.,anon-continuous firstderivativeat

η

=

M,weuseaBjorken-inspiredfunction[6]

fB

(

η

;

A

,

μ

,

σ

)

=

A

×

e+μ)2 2σ2

η

<

μ

eμ)2 2σ2

η

>

+

μ

1

|

η

| <

μ

,

(8)

whichhasplateauat A for

|

η

|

<

μ

connectedtoGaussianfall-off beyond

±

μ

.The fittedfunctionsare integratedover

η

up tothe beam rapidity

±

ybeam

= ±

7

.

99. Although the dNch

/

d

η

distribu-tionsinprinciplecontinuetoinfinity,thereisnosignificantlossin generalityorprecisionbycuttingtheintegralat

η

= ±

ybeamsince

thedistributionsrapidlyapproachzero.Noticethatallparameters ofthefunctionsareleftfreeinthefittingprocedure.Allfunctions give reasonable fits (with a reduced

χ

2 smaller than 1), though

thetrapezoidandBjorken-inspiredansatzaretooflatatthe mid-rapidity.Thecalculationofthecentralvaluesanduncertaintiesare done as for previous results [6]: The central value is calculated fromtheintegralofthetrapezoidfittocomparedirectlyto

previ-ousresults;thespreadbetweentheintegralsandthecentralvalue isevaluatedtoobtaintheuncertaintyonthetotal Nch.

TheextrapolatedtotalNchversus



Npart



isshownin

Fig. 6

,and

comparedtolowerenergyresultsfromPHOBOS[19].AtLHC ener-giestheparticleproductionasafunctionof



Npart



showsasimilar

behaviour tothelowerenergyresults,andthefactorisation[2]in centralityandenergyseemstohold(seefitin

Fig. 6

).

In

Fig. 7

weshowcomparisonsofvariousmodelcalculationsto the measured charged-particle pseudorapidity density asa func-tionofcentrality.Thecentralityclassforagivenmodel-generated event was determined by sharp cuts in the impact parameter b

andaGlaubercalculation

[13]

.

The HIJING model [3] (version 1.383, with jet-quenching dis-abled, shadowing enabled, and a hard pT cut-off of 2.3 GeV) is

seentoovershootthedataforallcentralities.Inaddition,the dis-tributionsatallcentralitiesdecreasewithincreasing

|

η

|

fasterthan thedatawouldsuggest.

AMPT[4]withoutstringmeltingreproducesthedatafairlywell atcentralpseudorapidityforthemostcentralevents—exactlyin the region it was tuned to, but it fails to describe the charged-particle pseudorapidity density for more peripheral events. Also, AMPT without string melting would suggest a wider central re-gion than supported by data, and similarly to HIJING decreases

(7)

Fig. 6. (Colouronline.)Extrapolationtothetotalnumberofchargedparticlesasafunctionofthenumberofparticipatingnucleons[13].Theuncertaintyontheextrapolation issmallerthanthesizeofthemarkers.Thefourright–mostpointsarethepreviouslypublishedresults[6].Afunctioninspiredbyfactorisation[2]isfittedtothedata,and thebestfityield

a

=35.8±4.2,

b

=0.22±0.05 withareducedχ2of0.18.AlsoshownisthePHOBOSresultatlowerenergyresult[19]scaledtotheALICEtotalnumber

ofchargedparticlesperparticipantatNpart=180.

Fig. 7. (Colouronline.)ComparisonofdNch/dηpercentralityclassfromHIJING,AMPT(withandwithoutstringmelting),andEPOS-LHCmodelcalculationstothemeasured

distributions.

fasterthanthedata.AMPTwithstringmelting—whichessentially implementsquarkcoalescence,andthereforeamorepredominant partonphase—isseentobeveryflatatmid-rapidityand under-estimatestheyield,exceptforperipheralcollisions.

Finally,EPOS–LHC[5]reproduces theshapefairlywell, but un-derestimatesthedataby10to30%.

6. Conclusions

Thecharged-particlepseudorapiditydensityhasbeenmeasured in Pb–Pb collisions at

sNN

=

2

.

76 TeV over a broad

pseudo-rapidity range, extending previous published results by ALICE to more peripheral collisions. In the mid-rapidity region the

(8)

well-established tracklet procedure was used. In the forward regions, a newdata-driven procedure tocorrect forthe large background dueto secondary particles was used. The results presented here areconsistentwiththebehaviourpreviously seeninmorecentral collisions andin a limited pseudorapidity range. No strong evo-lutionofthe overallshape ofthecharged-particle pseudorapidity density distributions as a function of collision centrality is ob-served.Whennormalisedtothenumberofparticipatingnucleons inthecollision,thecentralityevolutionissmallover the pseudo-rapidityrange.Sincethemeasurementwasperformedoveralarge pseudorapidityrange (

3

.

5

<

η

<

5), itallows foran estimate of the total number of charged particles produced in Pb–Pb colli-sions at

sNN

=

2

.

76 TeV. The total charged-particle multiplicity

isfound toscale approximatelywiththenumberof participating nucleons.This wouldsuggest that hardcontributions to thetotal charged-particle multiplicityare small.Fromperipheral tocentral collisions we observe an increase oftwo orders of magnitudein thenumberofproducedchargeparticles.Acomparisonofthedata tothedifferentavailablepredictionsfromHIJING,AMPT,and EPOS-LHCshowthatnoneofthesemodelscapturesboththeshapeand level of the measured distributions. AMPT however comes close in limited ranges of centrality. The exact centrality ranges that AMPTdescribesdependstronglyonwhetherstringmeltingisused inthe model ornot. EPOS-LHC —although systematically low — shows a reasonable agreement with the shape of the measured charged-particle pseudorapidity densitydistribution over a wider pseudorapidityrange.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechnicians fortheir invaluablecontributionstothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcentres andtheWorldwide LHCComputing Grid(WLCG) Collaboration. The ALICE Collaboration acknowledges the follow-ing funding agencies for their support in building and running theALICEdetector:StateCommitteeofScience,World Federation ofScientists (WFS) andSwiss Fonds Kidagan, Armenia; Conselho Nacionalde DesenvolvimentoCientífico e Tecnológico (CNPq), Fi-nanciadorade Estudose Projetos(FINEP),Fundação de Amparoà Pesquisa do Estado de São Paulo (FAPESP); National Natural Sci-enceFoundation ofChina (NSFC), theChinese Ministryof Educa-tion(CMOE)andtheMinistryofScienceandTechnologyofChina (MSTC); Ministry of Education andYouth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Founda-tionandthe DanishNationalResearchFoundation;The European ResearchCouncilundertheEuropeanCommunity’sSeventh Frame-work Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Re-gion Alsace’, ‘Region Auvergne’ and CEA, France; German Bun-desministerium fur Bildung, Wissenschaft, Forschung und Tech-nologie(BMBF)andtheHelmholtzAssociation;GeneralSecretariat forResearchandTechnology,MinistryofDevelopment,Greece; Na-tionalResearch,DevelopmentandInnovationOffice(NKFIH), Hun-gary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi–Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Italy; Japan So-ciety for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Re-search Foundation ofKorea (NRF); Consejo Nacional de Cienca y Tecnologia(CONACYT),DireccionGeneralde Asuntosdel Personal Academico (Dirección General Asuntos del Personal Académico,

UniversidadNacionalAutónomadeMéxico),México,Amerique La-tine Formationacademique–European Commission (ALFA-EC)and the EPLANET Program (European Particle Physics Latin Ameri-can Network); Stichting voor Fundamenteel Onderzoek der Ma-terie (FOM) and the Nederlandse Organisatie voor Wetenschap-pelijkOnderzoek(NWO),Netherlands;ResearchCouncilofNorway (NFR); National Science Centre, Poland; Ministry of National Ed-ucation/Institute for Atomic Physics and National Council of Sci-entific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry ofEducation andScience of RussianFederation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian FederalAgencyforScience andInnovationsandThe Rus-sian Foundation forBasic Research; MinistryofEducation of Slo-vakia;DepartmentofScienceandTechnology,SouthAfrica;Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT),E-InfrastructuresharedbetweenEuropeandLatin Amer-ica(EELA),Ministeriode EconomíayCompetitividad(MINECO)of Spain,XuntadeGalicia(ConselleríadeEducación),Centrode Apli-cacionesTecnológicasyDesarrolloNuclear(CEADEN),Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry ofEducation and Science; United King-dom ScienceandTechnologyFacilities Council(STFC);The United States Department of Energy, the United States National Science Foundation, theState ofTexas,andtheStateofOhio; Ministryof Science,EducationandSportsofCroatiaandUnitythrough Knowl-edge Fund, Croatia; Council of Scientific and Industrial Research (CSIR),NewDelhi,India;PontificiaUniversidadCatólicadelPerú. References

[1]L. Gribov, E. Levin, M. Ryskin, Semihard processes in QCD, Phys. Rep. 100

(1983) 1–150.

[2]PHOBOS Collaboration, B. Alver, et al., Charged-particle multiplicity and

pseu-dorapidity distributions measured with the PHOBOS detector in Au+Au, Cu+Cu, d+Au, p+p collisions at ultrarelativistic energies, Phys. Rev. C 83 (2011) 024913.

[3]X.-N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet

produc-tion in pp, pA and AA collisions, Phys. Rev. D 44 (1991) 3501–3516.

[4]Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, A multi-phase transport model

for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901, arXiv:nucl-th/0411110.

[5]T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, EPOS LHC: test of

col-lective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92 (3) (2015) 034906, arXiv:1306.0121 [hep-ph].

[6]ALICE Collaboration, E. Abbas, et al., Centrality dependence of the

pseudora-pidity density distribution for charged particles in Pb–Pb collisions at √sNN=

2.76 TeV, Phys. Lett. B 726 (2013) 610–622, arXiv:1304.0347 [nucl-ex].

[7]ALICE Collaboration, K. Aamodt, et al., Centrality dependence of the

charged-particle multiplicity density at mid-rapidity in Pb–Pb collisions at √sNN=

2.76 TeV, Phys. Rev. Lett. 106 (2011) 032301, arXiv:1012.1657 [nucl-ex].

[8]ATLAS Collaboration, G. Aad, et al., Measurement of the centrality dependence

of the charged particle pseudorapidity distribution in lead–lead collisions at √s

NN=2.76 TeV with the ATLAS detector, Phys. Lett. B 710 (2012) 363–382,

arXiv:1108.6027 [hep-ex].

[9]CMS Collaboration, S. Chatrchyan, et al., Dependence on pseudorapidity and

centrality of charged hadron production in PbPb collisions at a nucleon– nucleon centre-of-mass energy of 2.76 TeV, J. High Energy Phys. 08 (2011) 141, arXiv:1107.4800 [nucl-ex].

[10]ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC,

J. Instrum. 3 (2008) S08002.

[11]ALICE Collaboration, B. Abelev, et al., Performance of the ALICE experiment at

the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[12]ALICE Collaboration, K. Aamodt, et al., Charged-particle multiplicity density at

mid-rapidity in central Pb–Pb collisions at √sNN=2.76 TeV, Phys. Rev. Lett.

105 (2010) 252301, arXiv:1011.3916 [nucl-ex].

[13]ALICE Collaboration, B. Abelev, et al., Centrality determination of Pb–Pb

col-lisions at √sNN=2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909,

arXiv:1301.4361 [nucl-ex].

[14]C.P. Welsch, et al., Measurement of satellite bunches at the LHC, Conf. Proc. C

1205201 (2012) 97–99.

[15]T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High

(9)

V. Anguelov

93

,

J. Anielski

54

,

T. Antiˇci ´c

97

,

F. Antinori

107

,

P. Antonioli

104

,

L. Aphecetche

113

,

H. Appelshäuser

53

,

S. Arcelli

28

,

R. Arnaldi

110

,

O.W. Arnold

37

,

92

,

I.C. Arsene

22

,

M. Arslandok

53

,

B. Audurier

113

,

A. Augustinus

36

,

R. Averbeck

96

,

M.D. Azmi

19

,

A. Badalà

106

,

Y.W. Baek

67

,

44

,

S. Bagnasco

110

,

R. Bailhache

53

,

R. Bala

90

,

A. Baldisseri

15

,

R.C. Baral

61

,

A.M. Barbano

27

,

R. Barbera

29

,

F. Barile

33

,

G.G. Barnaföldi

135

,

L.S. Barnby

101

,

V. Barret

70

,

P. Bartalini

7

,

K. Barth

36

,

J. Bartke

117

,

E. Bartsch

53

,

M. Basile

28

,

N. Bastid

70

,

S. Basu

132

,

B. Bathen

54

,

G. Batigne

113

,

A. Batista Camejo

70

,

B. Batyunya

66

,

P.C. Batzing

22

,

I.G. Bearden

80

,

H. Beck

53

,

C. Bedda

110

,

N.K. Behera

50

,

I. Belikov

55

,

F. Bellini

28

,

H. Bello Martinez

2

,

R. Bellwied

122

,

R. Belmont

134

,

E. Belmont-Moreno

64

,

V. Belyaev

75

,

G. Bencedi

135

,

S. Beole

27

,

I. Berceanu

78

,

A. Bercuci

78

,

Y. Berdnikov

85

,

D. Berenyi

135

,

R.A. Bertens

57

,

D. Berzano

36

,

L. Betev

36

,

A. Bhasin

90

,

I.R. Bhat

90

,

A.K. Bhati

87

,

B. Bhattacharjee

45

,

J. Bhom

128

,

L. Bianchi

122

,

N. Bianchi

72

,

C. Bianchin

57

,

134

,

J. Bielˇcík

40

,

J. Bielˇcíková

83

,

A. Bilandzic

80

,

R. Biswas

4

,

S. Biswas

79

,

S. Bjelogrlic

57

,

J.T. Blair

118

,

D. Blau

99

,

C. Blume

53

,

F. Bock

93

,

74

,

A. Bogdanov

75

,

H. Bøggild

80

,

L. Boldizsár

135

,

M. Bombara

41

,

J. Book

53

,

H. Borel

15

,

A. Borissov

95

,

M. Borri

82

,

124

,

F. Bossú

65

,

E. Botta

27

,

S. Böttger

52

,

C. Bourjau

80

,

P. Braun-Munzinger

96

,

M. Bregant

120

,

T. Breitner

52

,

T.A. Broker

53

,

T.A. Browning

94

,

M. Broz

40

,

E.J. Brucken

46

,

E. Bruna

110

,

G.E. Bruno

33

,

D. Budnikov

98

,

H. Buesching

53

,

S. Bufalino

27

,

36

,

P. Buncic

36

,

O. Busch

93

,

128

,

Z. Buthelezi

65

,

J.B. Butt

16

,

J.T. Buxton

20

,

D. Caffarri

36

,

X. Cai

7

,

H. Caines

136

,

L. Calero Diaz

72

,

A. Caliva

57

,

E. Calvo Villar

102

,

P. Camerini

26

,

F. Carena

36

,

W. Carena

36

,

F. Carnesecchi

28

,

J. Castillo Castellanos

15

,

A.J. Castro

125

,

E.A.R. Casula

25

,

C. Ceballos Sanchez

9

,

J. Cepila

40

,

P. Cerello

110

,

J. Cerkala

115

,

B. Chang

123

,

S. Chapeland

36

,

M. Chartier

124

,

J.L. Charvet

15

,

S. Chattopadhyay

132

,

S. Chattopadhyay

100

,

V. Chelnokov

3

,

M. Cherney

86

,

C. Cheshkov

130

,

B. Cheynis

130

,

V. Chibante Barroso

36

,

D.D. Chinellato

121

,

S. Cho

50

,

P. Chochula

36

,

K. Choi

95

,

M. Chojnacki

80

,

S. Choudhury

132

,

P. Christakoglou

81

,

C.H. Christensen

80

,

P. Christiansen

34

,

T. Chujo

128

,

S.U. Chung

95

,

C. Cicalo

105

,

L. Cifarelli

12

,

28

,

F. Cindolo

104

,

J. Cleymans

89

,

F. Colamaria

33

,

D. Colella

59

,

33

,

36

,

A. Collu

74

,

25

,

M. Colocci

28

,

G. Conesa Balbastre

71

,

Z. Conesa del Valle

51

,

M.E. Connors

136

,

ii

,

J.G. Contreras

40

,

T.M. Cormier

84

,

Y. Corrales Morales

110

,

I. Cortés Maldonado

2

,

P. Cortese

32

,

M.R. Cosentino

120

,

F. Costa

36

,

P. Crochet

70

,

R. Cruz Albino

11

,

E. Cuautle

63

,

L. Cunqueiro

36

,

T. Dahms

92

,

37

,

A. Dainese

107

,

A. Danu

62

,

D. Das

100

,

I. Das

51

,

100

,

S. Das

4

,

A. Dash

121

,

79

,

S. Dash

48

,

S. De

120

,

A. De Caro

31

,

12

,

G. de Cataldo

103

,

C. de Conti

120

,

J. de Cuveland

43

,

A. De Falco

25

,

D. De Gruttola

12

,

31

,

N. De Marco

110

,

S. De Pasquale

31

,

A. Deisting

96

,

93

,

A. Deloff

77

,

E. Dénes

135

,

i

,

C. Deplano

81

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

36

,

P. Di Nezza

72

,

M.A. Diaz Corchero

10

,

T. Dietel

89

,

P. Dillenseger

53

,

R. Divià

36

,

Ø. Djuvsland

18

,

A. Dobrin

57

,

81

,

D. Domenicis Gimenez

120

,

B. Dönigus

53

,

O. Dordic

22

,

T. Drozhzhova

53

,

A.K. Dubey

132

,

A. Dubla

57

,

L. Ducroux

130

,

P. Dupieux

70

,

R.J. Ehlers

136

,

D. Elia

103

,

H. Engel

52

,

E. Epple

136

,

B. Erazmus

113

,

I. Erdemir

53

,

F. Erhardt

129

,

B. Espagnon

51

,

M. Estienne

113

,

S. Esumi

128

,

J. Eum

95

,

D. Evans

101

,

S. Evdokimov

111

,

G. Eyyubova

40

,

L. Fabbietti

92

,

37

,

D. Fabris

107

,

J. Faivre

71

,

A. Fantoni

72

,

M. Fasel

74

,

L. Feldkamp

54

,

A. Feliciello

110

,

G. Feofilov

131

,

J. Ferencei

83

,

A. Fernández Téllez

2

,

E.G. Ferreiro

17

,

A. Ferretti

27

,

A. Festanti

30

,

V.J.G. Feuillard

15

,

70

,

J. Figiel

117

,

M.A.S. Figueredo

124

,

120

,

S. Filchagin

98

,

D. Finogeev

56

,

F.M. Fionda

25

,

E.M. Fiore

33

,

M.G. Fleck

93

,

M. Floris

36

,

S. Foertsch

65

,

P. Foka

96

,

S. Fokin

99

,

E. Fragiacomo

109

,

A. Francescon

30

,

36

,

U. Frankenfeld

96

,

U. Fuchs

36

,

C. Furget

71

,

A. Furs

56

,

M. Fusco Girard

31

,

J.J. Gaardhøje

80

,

M. Gagliardi

27

,

A.M. Gago

102

,

M. Gallio

27

,

D.R. Gangadharan

74

,

P. Ganoti

36

,

88

,

C. Gao

7

,

C. Garabatos

96

,

E. Garcia-Solis

13

,

C. Gargiulo

36

,

P. Gasik

37

,

92

,

E.F. Gauger

118

,

M. Germain

113

,

(10)

A. Gheata

36

,

M. Gheata

62

,

36

,

P. Ghosh

132

,

S.K. Ghosh

4

,

P. Gianotti

72

,

P. Giubellino

36

,

110

,

P. Giubilato

30

,

E. Gladysz-Dziadus

117

,

P. Glässel

93

,

D.M. Goméz Coral

64

,

A. Gomez Ramirez

52

,

V. Gonzalez

10

,

P. González-Zamora

10

,

S. Gorbunov

43

,

L. Görlich

117

,

S. Gotovac

116

,

V. Grabski

64

,

O.A. Grachov

136

,

L.K. Graczykowski

133

,

K.L. Graham

101

,

A. Grelli

57

,

A. Grigoras

36

,

C. Grigoras

36

,

V. Grigoriev

75

,

A. Grigoryan

1

,

S. Grigoryan

66

,

B. Grinyov

3

,

N. Grion

109

,

J.M. Gronefeld

96

,

J.F. Grosse-Oetringhaus

36

,

J.-Y. Grossiord

130

,

R. Grosso

96

,

F. Guber

56

,

R. Guernane

71

,

B. Guerzoni

28

,

K. Gulbrandsen

80

,

T. Gunji

127

,

A. Gupta

90

,

R. Gupta

90

,

R. Haake

54

,

Ø. Haaland

18

,

C. Hadjidakis

51

,

M. Haiduc

62

,

H. Hamagaki

127

,

G. Hamar

135

,

J.W. Harris

136

,

A. Harton

13

,

D. Hatzifotiadou

104

,

S. Hayashi

127

,

S.T. Heckel

53

,

M. Heide

54

,

H. Helstrup

38

,

A. Herghelegiu

78

,

G. Herrera Corral

11

,

B.A. Hess

35

,

K.F. Hetland

38

,

H. Hillemanns

36

,

B. Hippolyte

55

,

R. Hosokawa

128

,

P. Hristov

36

,

M. Huang

18

,

T.J. Humanic

20

,

N. Hussain

45

,

T. Hussain

19

,

D. Hutter

43

,

D.S. Hwang

21

,

R. Ilkaev

98

,

M. Inaba

128

,

M. Ippolitov

75

,

99

,

M. Irfan

19

,

M. Ivanov

96

,

V. Ivanov

85

,

V. Izucheev

111

,

P.M. Jacobs

74

,

M.B. Jadhav

48

,

S. Jadlovska

115

,

J. Jadlovsky

115

,

59

,

C. Jahnke

120

,

M.J. Jakubowska

133

,

H.J. Jang

68

,

M.A. Janik

133

,

P.H.S.Y. Jayarathna

122

,

C. Jena

30

,

S. Jena

122

,

R.T. Jimenez Bustamante

96

,

P.G. Jones

101

,

H. Jung

44

,

A. Jusko

101

,

P. Kalinak

59

,

A. Kalweit

36

,

J. Kamin

53

,

J.H. Kang

137

,

V. Kaplin

75

,

S. Kar

132

,

A. Karasu Uysal

69

,

O. Karavichev

56

,

T. Karavicheva

56

,

L. Karayan

93

,

96

,

E. Karpechev

56

,

U. Kebschull

52

,

R. Keidel

138

,

D.L.D. Keijdener

57

,

M. Keil

36

,

M. Mohisin Khan

19

,

P. Khan

100

,

S.A. Khan

132

,

A. Khanzadeev

85

,

Y. Kharlov

111

,

B. Kileng

38

,

D.W. Kim

44

,

D.J. Kim

123

,

D. Kim

137

,

H. Kim

137

,

J.S. Kim

44

,

M. Kim

44

,

M. Kim

137

,

S. Kim

21

,

T. Kim

137

,

S. Kirsch

43

,

I. Kisel

43

,

S. Kiselev

58

,

A. Kisiel

133

,

G. Kiss

135

,

J.L. Klay

6

,

C. Klein

53

,

J. Klein

36

,

93

,

C. Klein-Bösing

54

,

S. Klewin

93

,

A. Kluge

36

,

M.L. Knichel

93

,

A.G. Knospe

118

,

T. Kobayashi

128

,

C. Kobdaj

114

,

M. Kofarago

36

,

T. Kollegger

96

,

43

,

A. Kolojvari

131

,

V. Kondratiev

131

,

N. Kondratyeva

75

,

E. Kondratyuk

111

,

A. Konevskikh

56

,

M. Kopcik

115

,

M. Kour

90

,

C. Kouzinopoulos

36

,

O. Kovalenko

77

,

V. Kovalenko

131

,

M. Kowalski

117

,

G. Koyithatta Meethaleveedu

48

,

I. Králik

59

,

A. Kravˇcáková

41

,

M. Kretz

43

,

M. Krivda

101

,

59

,

F. Krizek

83

,

E. Kryshen

36

,

M. Krzewicki

43

,

A.M. Kubera

20

,

V. Kuˇcera

83

,

C. Kuhn

55

,

P.G. Kuijer

81

,

A. Kumar

90

,

J. Kumar

48

,

L. Kumar

87

,

S. Kumar

48

,

P. Kurashvili

77

,

A. Kurepin

56

,

A.B. Kurepin

56

,

A. Kuryakin

98

,

M.J. Kweon

50

,

Y. Kwon

137

,

S.L. La Pointe

110

,

P. La Rocca

29

,

P. Ladron de Guevara

11

,

C. Lagana Fernandes

120

,

I. Lakomov

36

,

R. Langoy

42

,

C. Lara

52

,

A. Lardeux

15

,

A. Lattuca

27

,

E. Laudi

36

,

R. Lea

26

,

L. Leardini

93

,

G.R. Lee

101

,

S. Lee

137

,

F. Lehas

81

,

R.C. Lemmon

82

,

V. Lenti

103

,

E. Leogrande

57

,

I. León Monzón

119

,

H. León Vargas

64

,

M. Leoncino

27

,

P. Lévai

135

,

S. Li

70

,

7

,

X. Li

14

,

J. Lien

42

,

R. Lietava

101

,

S. Lindal

22

,

V. Lindenstruth

43

,

C. Lippmann

96

,

M.A. Lisa

20

,

H.M. Ljunggren

34

,

D.F. Lodato

57

,

P.I. Loenne

18

,

V. Loginov

75

,

C. Loizides

74

,

X. Lopez

70

,

E. López Torres

9

,

A. Lowe

135

,

P. Luettig

53

,

M. Lunardon

30

,

G. Luparello

26

,

A. Maevskaya

56

,

M. Mager

36

,

S. Mahajan

90

,

S.M. Mahmood

22

,

A. Maire

55

,

R.D. Majka

136

,

M. Malaev

85

,

I. Maldonado Cervantes

63

,

L. Malinina

66

,

iii

,

D. Mal’Kevich

58

,

P. Malzacher

96

,

A. Mamonov

98

,

V. Manko

99

,

F. Manso

70

,

V. Manzari

36

,

103

,

M. Marchisone

27

,

65

,

126

,

J. Mareš

60

,

G.V. Margagliotti

26

,

A. Margotti

104

,

J. Margutti

57

,

A. Marín

96

,

C. Markert

118

,

M. Marquard

53

,

N.A. Martin

96

,

J. Martin Blanco

113

,

P. Martinengo

36

,

M.I. Martínez

2

,

G. Martínez García

113

,

M. Martinez Pedreira

36

,

A. Mas

120

,

S. Masciocchi

96

,

M. Masera

27

,

A. Masoni

105

,

L. Massacrier

113

,

A. Mastroserio

33

,

A. Matyja

117

,

C. Mayer

117

,

J. Mazer

125

,

M.A. Mazzoni

108

,

D. Mcdonald

122

,

F. Meddi

24

,

Y. Melikyan

75

,

A. Menchaca-Rocha

64

,

E. Meninno

31

,

J. Mercado Pérez

93

,

M. Meres

39

,

Y. Miake

128

,

M.M. Mieskolainen

46

,

K. Mikhaylov

66

,

58

,

L. Milano

36

,

J. Milosevic

22

,

L.M. Minervini

103

,

23

,

A. Mischke

57

,

A.N. Mishra

49

,

D. Mi´skowiec

96

,

J. Mitra

132

,

C.M. Mitu

62

,

N. Mohammadi

57

,

B. Mohanty

79

,

132

,

L. Molnar

55

,

113

,

L. Montaño Zetina

11

,

E. Montes

10

,

D.A. Moreira De Godoy

54

,

113

,

L.A.P. Moreno

2

,

S. Moretto

30

,

A. Morreale

113

,

A. Morsch

36

,

V. Muccifora

72

,

E. Mudnic

116

,

D. Mühlheim

54

,

S. Muhuri

132

,

M. Mukherjee

132

,

J.D. Mulligan

136

,

M.G. Munhoz

120

,

R.H. Munzer

92

,

37

,

S. Murray

65

,

L. Musa

36

,

J. Musinsky

59

,

B. Naik

48

,

R. Nair

77

,

B.K. Nandi

48

,

R. Nania

104

,

E. Nappi

103

,

M.U. Naru

16

,

H. Natal da Luz

120

,

C. Nattrass

125

,

K. Nayak

79

,

T.K. Nayak

132

,

S. Nazarenko

98

,

A. Nedosekin

58

,

L. Nellen

63

,

F. Ng

122

,

M. Nicassio

96

,

M. Niculescu

62

,

J. Niedziela

36

,

B.S. Nielsen

80

,

S. Nikolaev

99

,

S. Nikulin

99

,

V. Nikulin

85

,

F. Noferini

12

,

104

,

P. Nomokonov

66

,

G. Nooren

57

,

J.C.C. Noris

2

,

J. Norman

124

,

A. Nyanin

99

,

J. Nystrand

18

,

H. Oeschler

93

,

S. Oh

136

,

S.K. Oh

67

,

A. Ohlson

36

,

A. Okatan

69

,

T. Okubo

47

,

L. Olah

135

,

J. Oleniacz

133

,

A.C. Oliveira Da Silva

120

,

M.H. Oliver

136

,

J. Onderwaater

96

,

C. Oppedisano

110

,

R. Orava

46

,

A. Ortiz Velasquez

63

,

A. Oskarsson

34

,

J. Otwinowski

117

,

K. Oyama

93

,

76

,

M. Ozdemir

53

,

Y. Pachmayer

93

,

P. Pagano

31

,

G. Pai ´c

63

,

S.K. Pal

132

,

J. Pan

134

,

A.K. Pandey

48

,

Figura

Fig. 1. (Colour online.) Comparison of data-driven to simulation-based corrections for secondary particles impinging on the FMD
Table 2 summarises the systematic uncertainties of this analy- analy-sis. The common systematic uncertainty from the centrality  selec-tion is correlated across  η and detailed elsewhere [13] .
Fig. 2. (Colour online.) Measurement of dN ch / d η per centrality from SPD (squares) and FMD (circles) separately
Fig. 5. (Colour online.) The charged-particle pseudorapidity density distributions scaled by the average number of participants in various pseudorapidity intervals as a function of the number of participants
+2

Riferimenti

Documenti correlati

In the framework of distributions-oriented forecast verification, we investigate the ability of the WRF sys- tem to properly predict the local wind speed and direction

- Digital AS Cultural Heritage: entità digitali derivate dalla digitalizzazione e dalla dematerializzazione che registrano nei contenuti approcci culturali, processi, metodi

In this setup, positrons photoionized from electronically excited positronium atoms are trapped along the lines of magnetic field of the trap and accelerated

Specialty section: This article was submitted to Clinical and Health Psychology, a section of the journal Frontiers in Psychology Received: 14 August 2018 Accepted: 15 August

To do this a new stochastic simulation environment is necessary, an environment able to simulate various kind of distribution (Poisson distribution, power-law

Lo scopo della presente tesi è stato quello di analizzare le fasi della gestione dei pazienti con sepsi/sepsi severa/shock settico che dal Pronto Soccorso vengono

The comparison is detailed shown on the following Sections.. 3.19, the best A solution, regarding the power unit for the rotation around –z axis, resulted to be the rotation stage.

On the basis of the current literature and results of cytokine-blocking therapies it is possible to distinguish, in the T cell-mediated psoriatic inflam- matory cascade, (i)