• Non ci sono risultati.

Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species

N/A
N/A
Protected

Academic year: 2021

Condividi "Impacts of warming and changes in precipitation frequency on the regeneration of two Acer species"

Copied!
10
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Flora

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f l o r a

Impacts

of

warming

and

changes

in

precipitation

frequency

on

the

regeneration

of

two

Acer

species

M.M.

Carón

a,∗

,

P.

De

Frenne

a

,

O.

Chabrerie

b

,

S.A.O.

Cousins

c

,

L.

De

Backer

d

,

G.

Decocq

b

,

M.

Diekmann

e

,

T.

Heinken

f

,

A.

Kolb

e

,

T.

Naaf

g

,

J.

Plue

c

,

F.

Selvi

h

,

G.R.

Strimbeck

i

,

M.

Wulf

g

,

K.

Verheyen

a

aForest&NatureLab,GhentUniversity,Gontrode-Melle,Belgium

bJulesVerneUniversityofPicardie,UREcologieetDynamiquedesSystèmesAnthropisés(EDYSAN,FRE3498CNRS-UPJV),1ruedesLouvels,F-80037

AmiensCedex1,France

cDepartmentofPhysicalGeographyandQuaternaryGeology,StockholmUniversity,Stockholm,Sweden dSylvanurseriesBVBA,Waarschoot,Belgium

eVegetationEcologyandConservationBiology,InstituteofEcology,FB2,UniversityofBremen,Bremen,Germany fBiodiversityandSystematicBotany,InstituteofBiochemistryandBiology,UniversityofPotsdam,Potsdam,Germany gInstituteofLandUseSystems,Leibniz-CentreforAgriculturalLandscapeResearch(ZALF)Müncheberg,Germany

hDepartmentofAgrifoodProductionandEnvironmentalSciences,SectionofSoilandPlantSciencesUniversityofFlorence,Firenze,Italy iDepartmentofBiology,NorwegianUniversityofScienceandTechnology,Trondheim,Norway

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16September2014 Receivedinrevisedform20May2015 Accepted21May2015

Availableonline22May2015

Keywords: Seedprovenance Germination Climatechange Interactiveeffects

a

b

s

t

r

a

c

t

Climateprojectionsindicatethattemperatureswillincreasebyupto4.5◦CinEuropebytheendof

thiscentury,andthatmoreextremerainfalleventsandlongerinterveningdryperiodswilltakeplace. Climatechangewilllikelyaffectallphasesofthelifecycleofplants,butplantreproductionhasbeen suggestedtobeespeciallysensitive.Here,usingacombinationofapproaches(soilheatersanddifferent provenancesalongalatitudinalgradient),weanalyzedtheregenerationfromseedsofAcerplatanoides andA.pseudoplatanus,twotreespeciesconsidered,fromamanagementpointofview,ofsecondary rel-evance.Westudiedgermination,seedlingsurvivalandgrowthinafull-factorialexperimentincluding warmingandchangesinwateringfrequency.Bothspeciesrespondedtowarming,wateringfrequency andseedprovenance,withstronger(negative)effectsofwarmingandprovenancethanofwatering frequency.Ingeneral,thecentralprovenancesperformedbetterthanthenorthernmostand southern-mostprovenances.Wealsodetectedinteractiveeffectsbetweenwarming,wateringfrequencyand/or seedprovenance.Basedontheseresults,bothspeciesareexpectedtoshowdissimilarresponsestothe changesinthestudiedclimaticfactors,butalsotheimpactsofclimatechangeonthedifferentphases ofplantregenerationmaydifferindirectionandmagnitude.Ingeneralincreasesintheprecipitation, frequencywillstimulategerminationwhilewarmingwillreducesurvivalandgrowth.Moreover,the frequentdivergentresponsesofseedlingsalongthelatitudinalgradientsuggestthatclimatechangewill likelyhaveheterogeneousimpactsacrossEurope,withstrongerimpactsinthenorthernandsouthern partsofthespecies’distributionranges.

©2015ElsevierGmbH.Allrightsreserved.

1. Introduction

Depending on the concentration-driven scenario considered (suiteofgreenhousegases,aerosolsandchemicallyactivegases),a futureincreaseoftheaverageannualtemperaturebetween0.6◦C

∗ Correspondingauthor.Tel.:+3292649036·

E-mailaddresses:MariaMercedes.Caron@UGent.be,mechicaron@gmail.com (M.M.Carón).

and4.5◦CisexpectedinEuropebytheendofthiscentury(IPCC, 2013).Theprojectionspredictthatthewintermeantemperature will risemore in NorthernEurope than in Central Europe and theMediterraneanareawhilethesummerwarmingwilllikelybe moreintenseintheMediterraneanareaandCentralEuropethan inNorthernEurope(Christensenetal.,2013).Extremeeventsof warmingarealsoexpected;thelength,frequency,and/or inten-sityofwarmperiodsareexpectedtoincrease(IPCC,2013).Asa consequenceofglobalwarming,thewatercycleisalsoexpected tochangenon-uniformly.Precipitationfrequencieswillbelikely http://dx.doi.org/10.1016/j.flora.2015.05.005

(2)

modified,withmoreextremerainfalleventsandlongerdry inter-vals(Chaoyangetal.,2012;IPCC,2012,2013).However,notonly thechangesinindividualfactorswillbeimportantinthefuture.The interactionbetweendifferentclimaticfactorscanproducedifferent impactsonterrestrialecosystemscomparedtotheeffectsof indi-vidualfactors;forexample,thecombinationofdrought,extreme heatand/orlowhumiditywillclearlyhavestrongerimpactsthan anyfactoralone(IPCC,2012,2013).Additionally,changesin cli-maticfactorscaninducechangesinotherabioticenvironmental factors.Forinstance,soilmoistureistheresultofacombination ofdifferentabioticfactorssuchasprecipitation,temperature,air humidity,soiltextureandorganicmattercontent(Wang,2005; Chaoyangetal.,2012;Schneideretal.,2014).

Eventhoughthechangesinclimaticdriversandotherrelated abioticaspectsareexpectedtobelargerattheendofthecentury, theeffectsofcurrentglobalwarmingarealreadyvisibleinseveral ecosystems(Hedhlyetal.,2008;VanMantgemetal.,2009)and affecttheecologyofmanyspecies,includingtheirgeographical dis-tribution,phenology,bioticinteractionsandextinctionrisks(fora reviewseePe ˜nuelasetal.,2013).Temperaturehasbeenshownto influenceseedproduction(Walcketal.,2011;Carónetal.,2014a), germination,establishment(Lewisetal.,1999;Jensen,2001)and growthofplants(Rappetal.,2012).Rainfallamountorsoilmoisture contentmayaffectplantdistributions(Northetal.,2005),seed ger-mination(Fay&Schultz,2009,b;Carónetal.,2014a,b),growth(Fay andSchultz,2009;Dreesenetal.,2012),phenology(Seghierietal., 2009),andmortality(Andereggetal.,2013).However,changesof differentclimaticfactorshavenotreceivedthesamelevelof atten-tion.Forinstance,theimpactsofchangesinprecipitationfrequency arerarelyassessed(butseee.g.Fayetal.,2003;Chaoyangetal., 2012;Schneideretal.,2014).Precipitationfrequencymaychange separatelyfromrainfalltotalswhenthetotalamountofrainfall overacertainperiodremainsconstant,butthenumberof rain-falleventsdecreasesandtheprecipitationamountineachrainfall eventincreases.Someofthefewavailablestudiesonplantshave shownthatreducedrainfallfrequenciescanincreaseproductivity, decreaseroot-to-shootratiosoraffectleaf senescencein grass-landspecies(Fayetal.,2003,2002;Schneideretal.,2014).Yet, moreresearchisurgentlyneededtobetterunderstandtheeffectof changesinprecipitationfrequencyonotherplantgrowth parame-ters,functionalgroups,andecosystems(Schneideretal.,2014).

Even though climate change will likely affect all plant life cyclephases,plantreproductionhasbeensuggestedtobe espe-ciallysensitive(Hedhlyetal.,2008;Walcketal.,2011).Inmany cases,warminghasbeenshowntopositivelyinfluenceseed ger-mination (Milbau et al., 2009; McCarragher et al., 2011) or to enhanceseedlingsurvivalandgrowth(Piperetal.,2013).In con-trast,reducedsoilmoisturecontentstendtonegativelyaffectseed germinationandseedlingsurvivalandgrowth(FayandSchultz, 2009;Shevtsovaetal.,2009).Informationabouttheimpactsof cli-matechangeonregenerationfromseedsisessentialfortreespecies becauseitisthemostcommonnaturalwaythroughwhichforests regeneratearoundtheglobe.Inpractice,themajorityoftreespecies usedforafforestationorreforestationinEuropearegrownfrom seeds(DenOudenetal.,2010).ThroughoutEurope,youngtreesthat areusedforreforestationandafforestationgenerallycomefroma poolofrecommendedand/orautochthonousprovenances(cf.the EUDirective1999/105/EConthemarketingofforestreproductive material).However,onlyverylimitedinformationisavailableon howtheserecommendedprovenanceswillperformunderfuture climaticconditions.

Here,weanalyzetheeffectsofwarmingandchangedwatering frequencyonregenerationfromseedsoftwoimportant,currently secondarytreespeciesinforestmanagement,namelyA.platanoides andA.pseudoplatanus.Bothspeciesmightbecomemoreabundant inthecontextofclimatechangeduetotheprojected

composi-tionalchangeinEuropeanforestsasaconsequenceofthedecline infitnessandabundanceofcurrentlyprimaryspeciessuchasPicea abiesand Fagus sylvatica(Hanewinkelet al.,2012).We analyze theimpactsofwarmingandchanges inprecipitationfrequency (assimulatedbyvariouswateringintervals)ongerminationand earlyestablishmentofthesetwoAcerspeciesfromdifferent Euro-peanprovenances.Avarietyoftechniquesareavailabletostudy theeffectsofclimatechangeonplantspeciesincludingsoilheating cables,opentopchambers,growthchambers,andnaturalclimatic gradientssuchasthoseacrosslatitudesorelevations(Carónetal., 2015;DeFrenneetal.,2013;Deinesetal.,2007;DunnettandGrime, 1999).Thetechniqueselectedineachcasedependsonseveral fac-torsincludingthelifecyclephasethatisbeinginvestigated.Here, wecombinetheuseofsoilheatingmats(Carónetal.,2014a)with seedcollectionalongalatitudinalgradient(FukamiandWardle, 2005;De Frenneetal.,2013).Thecombinationof various tech-niquesconstitutesaninterestingstepfurther,relativetotheuse ofonlyonetechniquebecauseitallowstoilluminatetheimpacts ofclimatechangeondifferentaspectsofplantpopulationssuchas differentphasesofplantreproduction(DeFrenneetal.,2013).

We specificallyaddress(i)Howdo warmingand changesin wateringfrequencyaffectseedgermination,seedlingsurvivaland growth?(ii)Isthereaninteractingeffectofwarmingandwatering frequencyontreespecies’regeneration?(iii)Isthereavariation intheseedandseedlingsresponsetochangesintemperatureand wateringfrequencyaccordingtotheprovenanceoftheseeds?We hypothesizethattheseedsandseedlingsfrommothertreesfrom southernprovenanceswillbeabletobettercopewithinteractive warmingandlessfrequentwateringthantheseedsandseedlings from mother trees growingunder colder and wetter northerly conditions. Additionally, we expect that warming willenhance seedlingsurvivalandgrowthandthatmorefrequentwateringwill stimulategermination.

2. Materialandmethods 2.1. Studyspecies

AcerplatanoidesL.andA.pseudoplatanusL.aretwosecondary foresttreespeciesthatcurrentlycover≤3%ofthetotalforestcover in Europein purestands(Spieckeretal.,2009).However,both speciesarelikely tobecomemoreabundantandimportantdue toaclimatechange-drivendecreaseinfitnessandabundanceof currentlyprimaryforesttreespecies(Hanewinkeletal.,2012).

BothspecieshavearelativewidedistributioninEuropeand sim-ilarsoilrequirements.Bothspeciescangrowonloamyandclayey soilsaslongasthesearerichinnutrients.Additionally,thestudy species showphenologicaland morphologicalsimilarities: They flowerinApril,areinsectpollinated,andthewind-dispersedseeds ripeninSeptember–October(ForestEcology&ForestManagement Group,2005).

Acerpseudoplatanusisnaturallydistributedacrosswestern, cen-tralandsouthern Europe(ForestEcology &ForestManagement Group,2005).Thisspecieshasmoderatesiterequirements(Krabel andWolf,2013)ismediumshadetolerantandmediumdrought tolerant.Thisspecieshasa wideecologicalamplitudeand high reproductivecapacity(KrabelandWolf,2013).Itswide ecologi-calamplitudeandhighreproductivecapacityexplainthepotential expansiontosomeEuropeanareassuchasSwedenandNorway (WeidemaandBuchwald,2010;KrabelandWolf,2013).

A.platanoidesisanativespeciesinnorthernandcentralEurope, intheKaukasusandTurkey(ForestEcology&ForestManagement Group,2005).Thisspeciesisconsideredmoreshadetolerantthan A.pseudoplatanus.SomeauthorsindicatethatA.platanoidesand A.pseudoplatanusaresimilarlydroughttolerant(ForestEcology&

(3)

Fig.1.Locationofthecountries/regionsofseedcollectionofAcerplatanoidesandA. pseudoplatanusalongalatitudinalgradient.

ForestManagementGroup,2005), while othersconsiderA. pla-tanoidesmore droughttolerantthan A.pseudoplatanus (Hemery etal.,2009).Itsrobustgrowthandhighshadetolerancemakethis speciesanimportantinvasivespecies,especiallyinNorthAmerica (Martin,1999).

Withongoing climate change,both species are expected to movetheirdistributionrangenorthwardsandtohigherelevations (Hemeryetal.,2009).Moreover,itislikelythatthesusceptibilityto pathogenswillincreasewithstressbyintensewarmanddry con-ditions(Hemeryetal.,2009).Takingintoaccountthatthespecies mightbedifferentlysusceptibletodrought,divergentresponsesto theprojecteddryersummerconditionsmaybeexpected,including topshootdiebackandprematuremortality(Hemeryetal.,2009). Moreover,itisknownthatbothAcerspeciesdonotshow identi-calgrowthandwatereconomy.GrowthofstemandleavesofA. platanoidesisfasterthaninA.pseudoplatanus,andA.platanoides consumeslesswaterperunitofleafareathanA.pseudoplatanus (Braun,1977).Itisthusverylikelythatthesespecieswillbeaffected differentlybyclimatechange.Changesinthesoilmoisturecontent mightalsodifferentlyaffecttheseedsbecausetheseedsofA. pla-tanoidesareconsideredorthodox(desiccation-tolerant),whileA. pseudoplatanus’seedsarerecalcitrant(desiccationsensitive)(Hong andEllis,1990).Alsodormancybreak mightbeaffectedby cli-matechange,aswarmingmayreducethenumberofcolddays.A. platanoidesrequiresapproximately105daysofcoldstratification, whileA.pseudoplatanusonlyneeds49–63days(BaskinandBaskin, 1998).Finally,A.platanoidesshowsaninhibitionofgermination attemperaturesabove10–15◦C, butcangerminateaftera sec-ondchillingperiod(Jensen,2001),whileA.pseudoplatanusshows verygoodgerminationathightemperaturessuchas25◦C(Jinks etal.,2006).Thisdissimilarbehaviourunderlinestherelevanceof studyingtheresponsetoclimatechangeofcloselyrelatedspecies, avoidingimproperconclusionsforthegenuslevel.

2.2. Experimentaldesign

SeedsofA.platanoidesandA.pseudoplatanuswerecollectedin 2012fromfourandfiveregions,respectively.Theregionsselected forthisstudywerelocatedalonga2200kmlonglatitudinal gra-dient,fromItalythroughHungary,Poland,DenmarkandSweden toNorway (Fig. 1). Seeds were either (i) bought from a

nurs-erywhich couldprovide exactprovenanceinformation (Poland, DenmarkandHungary),or(ii)collectedfromthreeforestpatches inanareaof40km×40km(Italy,CentralSwedenandNorway). Inthelattercase,oneseed-bearinghealthymothertreewasused forseedcollectionineachforestpatchandtheseedswerepicked fromtheforestfloorimmediatelyafterseeddispersal(Italy, Cen-tralSwedenandNorway).Theselocationswereselectedduethe relativelyhighviabilityoftheseedsproducedintheseregionsin 2011:Italy(40.0±35.3S.E.%viableseedspertree),CentralSweden (40.0±12.0)andNorway(55.6±10.7)(Carónetal.,2014a).

We performed a full factorial experiment with soil heating andwateringfrequencymanipulation,tosimulateatotalofnine climatechangescenarios. Webasedourexperimentonthe dif-ferentrepresentativeconcentrationpathway-scenariosproposed bytheIntergovernmentalPanelonClimateChange(IPCC,2013). InEurope,anincreaseoftheairtemperaturebetween0.6◦Cand 4.5◦Cisprojected,whichinturnwillresultinanincreaseofthe soiltemperatureduetotherelationshipbetweenthesefactors,but thewarmingoftheairandsoilisexpectednottobeequaldue tothenatural variationbetweenthesefactors(seeCarónetal., 2015).Themeanannualprecipitationisalsoprojectedtochange, andis expectedtoincrease innorthernandcentralEuropeand decreaseintheMediterraneanarea(IPCC,2013).Moreover, con-sidering the possible changes in precipitation frequency, three wateringfrequencytreatmentswereapplied.Theamountofwater wasexpressedassoilmoisturecontentratherthanmillimetresof rainfallsince(i)thisisastrongerpredictoroftheimpactonplant establishmentthanprecipitation(Walcketal.,2011),(ii) germina-tionandotherearlyestablishmentvariablesarehighlydependent onavailablesoilmoisture(KosandPoschlod,2008),and(iii)itis easiertocomparetheresultswithpreviousstudiesthatusedthis variable(Viccaetal.,2012;Carónetal.,2014b).

Allseedswerecoldstratifieduntildormancybreak.Theseeds were soaked in water until the desired level of moisture was reached(i.e.48%and38%forA.pseudoplatanusandA.platanoides, respectively),afterwhichtheseedswereplacedundercontrolled coldconditions(0–1◦Cand90–95%humidity)untilgermination started. Because the stratification time is highly dependent on speciesandprovenance,andtoensurethattheseedsfromallthe provenanceswereatthesamedevelopmentalstageatthestartof theexperiment, seedlotsthatstartedtogerminatewerestored inafreezerat−2◦Cuntilthestartoftheexperiment(52daysof differencebetweenthefirstandthelastseedlotgermination).

Fourseedsofeachspeciesandregionwererandomlysownin eachof12plasticpots(112cm3,7cmdeep)(4×12=48seeds)per treatment,filledwithstandardpottingsoil(meanpH6,nutrient contentratioNPK15:10:11 at1kg/m3,organicmatter 20%and waterholdingcapacityof80%).Themanipulationsofthesoil tem-peraturewere:(1)Controlatambienttemperature(theaverage forthewholeperiodwas19.2±3.2◦C(mean±SD)measuredevery minute,andaveragedandloggedevery15minusingDecagondata loggers Em50ECH2OLogger inside thesoilof thepotsat 4cm depth);(2)warmingwith+2.8◦C(22.0±2.9◦C),and(3)extreme warmingwith +7.0◦C (26.2±4.6◦C). Additionally, the watering frequencywasmanipulatedbyaddingthesametotalamountof wateroneachoccasion,butindifferentintervals(one,twoorthree timesperweek).Thenecessaryamountofwatertobeaddedevery weekwascalculatedbyweighingthreerandomlychosenpotsper warmingtreatmentandcalculatingthenecessaryamountofwater toreachfieldcapacity.Thenthenecessaryamountofwaterwas dividedbythewateringintervalassuringthatallthetreatments receivedexactlythesameamountofwaterperweekbutin differ-entintervals.Theaverageweeklyamountofwateraddedtoeach potduringtheexperimentundereachtreatmentwas:+0◦C:24ml (control),+2.8◦C:25ml,and+7.0◦C:29ml.

(4)

Table1

Establishmentandgrowthvariablesasafunctionofthecountryofprovenanceoftheseedsandtheexperimentalconditions:warming(temperatureincreasedby2.8◦Cor

7.0◦Ccomparedtothecontrol)andwateringfrequency(one,twoorthreetimesperweek).

Acerplatanoides Acerpseudoplatanus

Establishmentvariables Predictor LRT Predictor LRT

Germination Wateringfrequency ↑6.38* Wateringfrequency ↑4.49*

Seedprovenance 183.69*** Seedprovenance 545.79***

Warming ↓10.46**

Survival Warming ↓84.11*** Warming×seedprovenance 13.24*

Warming×wateringfrequency×seedprovenance 11.68*

Growth Predictor Scaleddev Predictor Scaleddev

Totalbiomass Warming ↓99.38*** Warming ↓49.42***

Seedprovenance 36.58*** Seedprovenance 71.99***

Warming×seedprovenance 114.61*** Warming×Wateringfrequency 31.40***

Abovegroundbiomass Warming ↓88.86*** Warming ↓43.87***

Seedprovenance 28.14*** Seedprovenance 42.1***

Warming×seedprovenance 103.22*** Warming×Wateringfrequency 25.00***

Belowgroundbiomass Warming ↓92.98*** Warming ↓35.54***

Seedprovenance 40.20*** Seedprovenance 77.88***

Warming×seedprovenance 106.17***

Wateringfrequency×seedprovenance 32.53***

Root:shootratio Warming ↓24.33*** Warming ↓10.76**

Seedprovenance 36.10*** Seedprovenance 53.52***

Height Warming ↓64.69*** Warming ↓139.72***

Seedprovenance 32.23*** Seedprovenance 57.54***

Warming×seedprovenance 89.69***

LRT:likelihoodratiotest;scaleddev:scaleddeviance.Thedirectionoftheeffectisindicatedbyarrows:↑and↓correspondtoanincreaseanddecreaseofthevariables analyzed,respectively.

*P<0.05. **P<0.01. ***P<0.001.

Warmingwasachievedthroughevenlyspreadsoilheatingmats (ACDheatingmatsHMT-A,OberweidbachGermany).The experi-mentwasinstalledfacingwestattheedgeofadeciduousforest in Gontrode,Belgium (50◦58N,3◦48E), withF.sylvatica, Fraxi-nusexcelsior,Quercus roburand Acerpseudoplatanusdominating thecanopy.Thelocationoftheexperimentwasclosetotheforest edge(<10m)butnotdirectlyundertheforestcanopyassuringthat thewholeexperimentalareareceiveddirectmid-daylightwithout interferenceoftheforestcanopy.Thepotswereplacedontopof thesoilheatingmats,onwoodentablesunderplasticroofs(70cm abovethepots)toexcludethenaturalprecipitationandallowfree airexchange.Duringtheexperiment,thepotswerecontinuously randomlyrelocated.

Attheendoftheexperiment(ca.3monthsaftersowing),we assessed the regeneration in terms of germination (number of emerged seedlings),survival (number ofliving seedlings atthe endoftheexperiment)andseedlinggrowth(height,aboveground andbelowground biomassandtotalbiomass).Germinationwas recordedonceperweek.Attheendoftheexperiment,theseedlings werecarefullyremovedfromthesoil,theabovegroundand below-groundpartsseparated,driedat60◦Cfor24handweighed.

2.3. Dataanalysis

Generalized linear models (GLM) in Rversion 3.1.0 (R Core Team, 2013)were applied.For thebinomial data (germination andsurvival)andcontinuousdata(aboveground,belowgroundand totalbiomass,root:shootratioandheight),weusedbinomialand Gaussianerrorsstructures,respectively.Tofulfiltherequirements ofnormalityandhomoscedasticity,for bothspecies,the above-ground,belowgroundandtotalbiomasswerelogtransformedand root:shoot ratiowas square root-transformed.Additionally, the heightofA.platanoideswaslog-transformedpriortoanalyses.The

temperature treatments(+0◦C, +2.8◦C and +7◦C), thewatering frequencytreatments(one,twoandthreetimesweekly)andthe countryofseedprovenance(Poland,Denmark,Sweden,Norway, Italy andHungary)wereusedasfixedeffects. Theaprioridata explorationshowedthattheseeds’origin(i.e.collectedbyusvs. purchasedfromtreenurseries)didnotaffecttheresults,therefore, thisfactorwasnotincludedintheanalyses.Foreachvariable ana-lysed,firstthefullmodelwasfitted(allthefixedeffectsandtheir interactions),afterwhichmodelsweresimplifiedbydroppingfirst theleastsignificantinteractionandthentheleastsignificant indi-vidualvariableateachstep.Thecomparisonbetweenmodelswas basedonthelikelihoodratiotestorthescaleddevianceforthe binomialandGaussiandata,respectively,untilalltheremaining termsweresignificant(Zuuretal.,2009).

3. Results

3.1. Establishmentvariables

Both species germination and seedlings’ performance responded to temperature, watering frequency and the coun-tryoforigin,withstrongereffectsoftemperatureandthecountry oforiginthanofwateringfrequency(Table1).Seedprovenance significantly affected germination in both species; the highest germinationofbothspecies wasrecorded approximatelyin the centre ofthedistribution range(Table1 and Fig.2).Moreover, germinationwas19and12%(A.platanoides)and16and12%(A. pseudoplatanus)higherwhenthewateringtreatmentwasapplied twoandthreetimesperweek,respectively,comparedtotheleast frequentwatering(Table1,Fig.2andElectronicAppendixTables A1andA2).Additionally,forA.pseudoplatanus,thetemperature increase reduced germination, being 17.3% lower with 2.8◦C

(5)

Fig.2.GerminationofAcerplatanoidesandA.pseudoplatanusasafunctionofwateringfrequency(one,twoandthreetimesperweek)andseedprovenance.Thesignificance ofthefactorsthataredisplayedisindicated.Theerrorbarsindicatestandarderrorsacross12replicatesoffourseedsperprovenanceandtreatment(totaln=3888).

warmingthanunder controlconditions (Table1 and Electronic AppendixTableA2).

Significantdifferenceswereobservedbetweenthespeciesin termsofseedlingsurvival.A.platanoides’survivaldecreasedwith warming,andwas,onaverageacrossthecountries,49.9%lower underwarmestcondition(+7.0◦C)thanundercontrolcondition (Table 1, Fig. 3 and Electronic Appendix TableA1). Survival of A. pseudoplatanus, on the other hand, responded differently to increasesintemperaturedependingonthecountryof originof theseeds(significantwarming×provenanceinteraction,Table1 andFig.3).SurvivalofseedlingsofseedsfromHungaryand Cen-tralSwedenincreasedunderthewarmestcondition(+7.0◦C),while survivalofseedlingsofseedsfromDenmarkandNorwaydeclined withwarming(+2.8◦Cand +7.0◦C)(Fig.3).Thejoint manipula-tionoftemperatureandwatering frequencydifferentlyaffected seedlingsurvivaldependingontheseeds’provenance(Table1). Forexample,seedlings fromItalianseedsshowedahigher sur-vivalwithwarmingwhen watered onceper week,butshowed reducedsurvivalunderwarmingwhenwateredmoreoften(3times perweek).TheCentralSwedishprovenanceexhibitedaconstant increaseofsurvivalwithwarmingacrossallthewatering frequen-ciestreatments.

3.2. Growthvariables

Regardingthebiomassvariables,bothspeciesshowedsimilar responsestothemanipulatedfactors(Table1), despitethatthe seedlingsofA.platanoidesweremuchbiggerthantheseedlingsof A.pseudoplatanus(Figs.4and5).

Warmingnegatively affectedtheaboveground, belowground and consequently the total biomass of both species. The total biomasswas53.5%(A.platanoides)and37.9%(A.pseudoplatanus) lowerinseedlingsgrowingunderthewarmestcondition(+7.0◦C) thanunderthecontroltemperaturetreatment(+0◦C)(Fig.5and ElectronicAppendixTablesA1andA2).Furthermore,the prove-nanceoftheseedsinfluencedtheaboveground,belowgroundand thetotalbiomass,whichgenerallyincreasedtothenorth,butthe highestvalueswererecordedinCentralSweden(A.platanoides)and Denmark(A.pseudoplatanus).Inaddition,analysesrevealed inter-activeeffectsaffectingbothspecies(Table1).Theaboveground, belowgroundandtotalseedlingbiomassofA.platanoidesgenerally decreasedwithwarming,butseedlingsgrownfromseedsofmiddle latitudes(PolandandCentralSweden)weresmallerundera mod-eratewarming(+2.8◦C)thanunderextremewarming(significant warming×provenanceinteraction,Table1,Fig.4andElectronic

Fig.3. SurvivalofAcerplatanoidesandA.pseudoplatanusasafunctionoftemperature(ambienttemperatureandincreasesof2.8◦Cand7C)andtheseedprovenance.The

significanceofthefactorsandinteractionsthataredisplayedisindicated.Theerrorbarsindicatestandarderrorsacross12replicatesoffourseedsperprovenanceand treatment(A.platanoidestotaln=1080,A.pseudoplatanustotaln=992).

(6)

Fig.4.Totalbiomassandbiomassallocation(rootvs.shoot)ofAcerplatanoidesandA.pseudoplatanusunderthedifferenttemperaturetreatmentsandinrelationtoseed provenance.Thesignificanceofthefactorsandinteractionsthataredisplayedisindicated.Errorbarsindicatestandarderrorsacross12replicatesoffourseeds(A.platanoides totaln=536,A.pseudoplatanustotaln=514).

AppendixTableA1).InA.pseudoplatanus,theabovegroundbiomass andtotalbiomassshowedareductionof38and48%,respectively, whengrowingunderthewarmestconditionandthemostfrequent wateringtreatment(7.0◦Candwateredthreetimesperweek) com-paredwiththelessfrequentlywateringandunwarmedconditions (controltemperatureandwateredonetimeperweek)(Table1and ElectronicAppendixTableA2).

The root:shoot ratio of both species depended onthe seed provenanceandwasaffectedbyexperimentalwarming(Table1). Root:shootratioswerehighestinCentralSweden(A.platanoides) andDenmark(A.pseudoplatanus)(Fig.4andElectronicAppendix TablesA1andA2).Warmingdecreasedtheroot:shootratioinboth species(Table1,Figs.4and5andElectronicAppendixTablesA1 andA2).

Fig.5.Totalbiomassandbiomassallocation(rootandshoot)ofAcerplatanoidesandA.pseudoplatanusasafunctionofthewarmingandwateringfrequencytreatments.The significanceofthefactorsandinteractionsthataredisplayedisindicated.Errorbarsindicatestandarderrorsacross12replicatesoffourseeds(A.platanoidestotaln=536, A.pseudoplatanustotaln=514).

(7)

Finally, the height of both species was negatively affected by warming. The seedlings of A. platanoides and A. pseudopla-tanus were 18.3% and 24.2% shorter when growing under the warmestconditionscomparedtothecontrol(Table1andElectronic AppendixTablesA1andA2).Inaddition,seedlingheightappeared tobeprovenance-specific;seedlingsgrownfromseedscollectedin Poland(A.platanoides)orCentralSweden(A.pseudoplatanus)were thetallest.Moreover,theseedlingsofA.platanoidesfromthe south-ernandnorthernprovenances(HungaryandNorway)showeda strongheightgrowthreductionundersimulatedwarming(2.8◦C and7.0◦C),whilethatwasnotthecaseforthecentralprovenances (Table1andElectronicAppendixTableA1).

4. Discussion

Differentresponsestowarmingandwateringfrequencywere observedinbothspeciesandamongthelifephasesanalysed(i.e. germination,seedlingsurvivalandgrowth).Germinationofboth specieswasstronglyinfluencedbythewateringfrequencyandthe countryoforiginoftheseeds,whilewarmingwasthemainfactor affectingseedlinggrowth.Overall,temperatureand thecountry oforiginoftheseedsappearedtobethemostimportantfactors affectinggerminationandseedlingsurvivalandgrowthofthese species.Theinteractiveeffects betweenwarming,watering fre-quencyand/orseedprovenancewerelessimportantthaninitially expected.

Thefrequency ofwateringaffectedseedgerminationofboth species.Precipitationfrequencyhasbeenshowntoaffectsoil mois-turevariability(FayandSchultz,2009),whichinturnmayinfluence germinationpatterns(Shevtsovaetal.,2009;Carónetal.,2014b). Our results, consistent with the observations of Fay & Schultz (2009),showthatcyclesofhydrationanddehydration(i.e.lower amountsof water, but morefrequent watering events) tendto enhancegermination.Bothspeciesshoweddifferentgermination percentagesaccordingtoseedprovenance.Germinationgenerally appearedtobehigherinseedsfrommorenortherlyprovenances, probablyduetohighernortherlyseedmass(Carónetal.,2014a), likelycaused by aslowerseed ripening atlower temperatures, slowerseed fillingprocessand thereforeagreater total assimi-lation(FennerandThompson,2005).However,contradictingour hypothesis,seedprovenancedidnotinfluenceseedgermination inresponsetothetreatmentsapplied(warmingand changesin watering frequency), which indicates that climate change will affectgerminationof thesespecies similarly in Europe,despite thevariablegerminationratesobservedalong theirdistribution range.Ontheotherhand,warmingonlyaffectedgerminationof oneofthespecies,A.pseudoplatanus,withgermination decreas-ingatincreasedtemperatures.Itispossiblethattheexperimental warmingreachedalevelclosetothethresholdtemperaturesfor thespecies’germination(Chmuraetal.,2011)andthatasimilar futurewarmingwillaffectthisspecies’recruitmentbyreducing germinationprobability.Thedecreaseingerminationdueto warm-ingobservedhere wasnotcaused bya correspondingnegative effectofwarmingondormancybreakbecausethestratification processwascompletedbeforethebeginningoftheexperiment. Eventhoughdormancybreakwasnotevaluatedhere,itislikely thatbothspecies’dormancywillbedifferentlyimpactedby cli-matechange.ConsideringthatA.platanoidesrequiresmoredaysof coldstratificationforsuccessfuldormancybreakthanA. pseudopla-tanus(BaskinandBaskin,1998),itislikelythatA.platanoideswillbe impactedmorethanA.pseudoplatanusbythepredictedreduction oftheamountofchillingdaysinwintercausedbyglobalwarming. Treatmenteffectsonseedlingsurvivaldifferedmorebetween thetwospeciesthantheireffectsongermination,apartfromthe effectsofwarmingonseedgerminationthatwereclearly

species-specific.SeedlingsurvivalofA.platanoidesdecreasedunderwarmer conditions.Itisknownthatwarmerconditionstendtoenhance physiological processes, thereby also increasing thechances of survival (Chmuraet al.,2011).Warmertemperatures at north-ernlatitudesmayenhancephotosynthesisinborealandtemperate treesduetoanincreaseinthecontentofphotosyntheticpigments, light-saturatedphotosyntheticrateandquantumyield(Saxeetal., 2001).Effectsonphotoinhibitionandphotorespirationaremore difficulttogeneralizebecausetheydependonthespeciesand gen-eralclimaticconditionsoftheareabut,overall,slightlywarmer conditions(ca.2◦C)areexpectedtopromotephotoinhibitionand photorespiration(Saxe etal.,2001).However,thesoil moisture contentis alsoimportantand mightbeeven morerelevant for photosynthesisthantemperatureperse(Saxeetal.,2001;Chmura etal.,2011).Moreover,itisknownthatwarmingnotonlyaffects abovegroundprocesses butalsocanaffectsoil respiration(root andmicrobialrespiration),nutrientavailabilityandroot dynam-icswhichareallimportantaspectsforseedlings’survival(Baietal., 2010;Zhouetal.,2012).Warmingintherangeof0.3–6.0◦Ccan indeedincrease soilrespirationratesby 20%,netN mineraliza-tionrates by46%,and plantproductivityby19% (Rustad etal., 2001).Theresponseofsoilrespirationandmineralizationratesto warmingnotonlydependsonthetemperaturechange,butalso onotherfactorssuchasthesoilsubstrate,theorganicmatterand soilmoisturecontent(Rustad etal.,2001;Saxe etal.,2001).In termsofrootdynamics,warmingcanreducerootbiomasswhile increases in precipitationcan increase root biomass(Baiet al., 2010).It ispossiblethat theobservednegativeeffectof warm-ingonA.platanoidessurvivaliscausedbyanexcessivewarming appliedinthisexperiment.Consideringthepreviousconcepts,itis likelythatthedirectionoftheimpactofclimatechangeonseedling survivalwilldependonthelevelofwarmingexperiencedbythe seedlingsbutalsoofmanyinteractingfactorsasobservedforA. pseudoplatanus.ThesurvivalofA.pseudoplatanuswasinfluenced byacomplexinteractionofwarming,seedprovenanceand water-ingfrequency.Underextremewarming(+7.0◦C),morefrequent wateringenhancedsurvival.Extremelywarmconditionsintensify evapotranspiration, and, consequently, more frequent watering tendstoresultinhighersoilmoistureintheupperlayersofthesoil duetothemoreintenseheatatthebottomofthepotswhichisin directcontactwiththesoilheaters.Moreover,asmentionedbefore, manyphysiologicalprocessesnotonlydependonthetemperature butalsothesoilmoisturecontentandthiscanbethecausebehind thesignificanceofthisinteraction.Thisresultnotonlyhighlights therelevanceofmultipleinteractingfactors(Shaveretal.,2000), butalsopointstosomeofthepossibleproblems(i.e.possible not-uniformwarmingofthesoilcolumninthepot)associatedwith themethodsutilizedforstudyingtheeffectsofclimatechangeon plants.However,becausethepotsusedinthisexperimentwere relativelysmall(112cm3),itislikelythatnosignificantdifferences inwarmingexistedalongthesoilcolumnorthatthehighspecific heatofwaterplayedaroleinthesignificanceofthisinteraction regardingseedlingsurvival.Finally,itisimportanttoconsiderthat underfutureclimaticconditions,warmingoftheairwillbe accom-paniedbypotentiallynon-uniformwarmingofthesoil.Toclarify therelevanceandroleofalltheseaspectsandtounraveltheeffectof temperatureandwateringfrequency,moreexperimentsusing dif-ferentmethodscanbeperformedemploying,forexample,growth chambers(e.g.Deinesetal.,2007;DeFrenneetal.,2012).In addi-tion,A.pseudoplatanusalsoshowedprovenance-specificresponses toincreasesintemperature.Thesurvivalofseedlingsgrownfrom seedscollectedin Hungaryand Central Sweden wasin general higherunderwarmerconditions,whilesurvivalofseedlingsgrown fromseedscollectedinDenmarkandNorwayshowedan oppo-siteresponse(i.e.lowersurvivalunderwarmerconditions).This islikelyrelatedtotheenvironmentalconditionsexperiencedby

(8)

themothertreeduringseedproduction(Johnsenetal.,2005a,b; Skrøppaetal.,2010;Carónetal.,2014a).Whilewelackdetailed informationonenvironmentalconditionsexperiencedbyallthe mothertrees,previousstudiessuggestthattheobservedpattern (differentsurvivalaccordingtotheseedprovenanceunder chang-ingenvironmentalconditions)islikelyrelatedtothetemperature experiencedduringseedproduction(Johnsenetal.,2005a,b;Carón etal.,2014a,b).Nevertheless,ourresultsclearlypointoutthe influ-enceofseedprovenanceonseedlingresponsestoclimatechange (Atzmonetal.,2004;Thieletal.,2014).Additionally,thepossibility ofthepresenceoflocaladaptationsshouldbeanalysed(Kawecki andEbert,2004)throughtheuseof,forinstance,transplant exper-iments(DeFrenneetal.,2011;HilleRisLambersetal.,2013;Ibá ˜nez andMcCarthy-Neumann,2014).

Regardingseedlinggrowth,thetotalbiomasswasmuchmore affectedbywarmingthanbythechangesinwateringfrequency. Theabsenceofeffectsofwateringfrequency(individualfactor)is surprisinggiventhatpreviousexperimentsdemonstratedeffects of precipitationamount(e.g. Dreesenet al.,2012; Carónet al., 2014a)andofsoilmoisturevariability(e.g.Fayetal.,2002,2012) on growth.However, it is possible that the high organic mat-ter content (20%) of the potting soil used in this experiment inducedahighwaterretentioncapacity,therefore,irrespectiveof thetreatments applied,theseedlings never experienced strong droughtstressrelated tothedifferences inwatering frequency. Conversely,warmingnegativelyaffectedseedlinggrowthinboth species despite that under warmer conditions, the physiologi-calprocessesofplantsincludingphotosynthesisandrespiration increaseaslongasthewatercontentisadequate(Chmuraetal., 2011).However, theincrease ofphotosynthesis andrespiration mightnotbeequalandcan,insomecases,negativelyaffectspecies growth ifthe fraction of gross photosyntheticproduction con-sumedbyrespirationbecomestoohigh(Saxeetal.,2001).Growth of A. platanoides was strongly reduced in both warming treat-ments(+2.8◦Cand+7.0◦C),whilegrowthofA.pseudoplatanusalso declinedunderwarmerconditionsbutnotasabruptlyasinA. pla-tanoides.Inapreviousstudy,similarresultswereobtained,with bothspeciesnotshowingapositivegrowthresponsetowarming (Carónetal.,2014b).Warmingreducedbelowgroundand above-groundbiomass.However,thestrongernegativeeffectofwarming onbelowgroundbiomassresultedinareductionoftheroot:shoot ratiounderwarmerconditions.Itwasobservedbeforethat warm-ingcandecreaseannualrootproduction(Baietal.,2010)andfine rootbiomass(Wanetal.,2004)butalsocandecreaseroot mor-tality(Baietal.,2010).However,otherstudiessuggestthatthe evapotranspirationcaused bywarmingdecreasesthesoil mois-turecontentandcanincreasetheproportionalallocationtowards rootsinordertofacilitateplantwateruptake.Thiseffect,however, mightalsosuppressoverallrootgrowth(Rustadetal.,2001;Zhou etal.,2012).Moreover,thereductionoftheroot:shootratiomight alsobelinkedtoanimbalancebetweenphotosynthesisand res-piration.Therelevanceofinteractingfactorswasespeciallyclear forA.pseudoplatanus’growth.Theinteractionbetweenfactorshas beenhighlightedaskeywhenpredictingspeciesresponsesto cli-matechange(Baietal.,2010).Theresultsreportedherecorroborate therelevance ofstudying interactingfactorsof climatechange. Regardingtheinfluenceof theprovenanceonseedling’s perfor-mance,itisinterestingtonotethatA.pseudoplatanusdidnotshow provenance-specificgrowthresponsestothetreatmentsapplied. Thisindicatesthat,independentoftheprovenanceofA. pseudopla-tanusseeds,theseedlingsareequallyaffectedintermsofgrowth. However,A.platanoidesshowedprovenance-specificresponsesin biomassgrowthasobservedearlierforothertreespeciessuchas F.sylvaticawherethemarginalprovenancesshowedamorestable performanceunderdroughtbutapparentlytherewasatrade-off betweendroughttoleranceandgrowth(Thieletal.,2014).

Consideringtheresultsofthisstudy,itispossibletosuggest thatbothspecieswillbeaffectedbychangesinsomeclimatic fac-tors(warmingandprecipitationfrequency).Divergenteffectsof changes inclimaticfactorscanbeexpectedondifferentphases of plant recruitment,and theirimpacts may differ in direction and magnitude.Stronger effects of warmingwereobserved for bothspecies,whilewateringfrequencyappearedtobeless impor-tant.Furtherresearchshouldfocusonmorerealisticsimulationsof changesinprecipitationfrequencywithpossiblylonger interme-diatedryperiods(see,forinstance,Dreesenetal.,2012)tomore clearlyshowtherelevanceofthisfactoronthesespecies’ recruit-ment.Moreover,duetothefrequentdivergentresponsesofseeds andseedlingsalongthegradientanalysed,itislikelythattheimpact will not be homogenous across Europe. In general, more cen-tralEuropeanprovenancesperformedbetterirrespectivewhether seedswerecollectedfromtreesgrowinginnaturalforestsorwere purchasedfromnurseries.Theseresultspoint outtherelevance ofperformingmoreexperimentswheredifferentprovenancesare testedundersimulatedfutureclimaticconditions,including trans-plantexperimentstoanalysethepresenceoflocaladaptationandto deliverurgently-neededinformationforthedevelopmentof strate-giesofforestadaptationinthecontextofclimatechange(Pereira etal.,2010;Bellardetal.,2012).

Acknowledgments

WethanktheResearchFoundation-Flanders(FWO)for fund-ingtheScientificResearchNetwork‘FLEUR’(www.fleur.ugent.be) allowingtheseedcollection.Theexperimentwasperformedand thispaperwaswrittenwhileMMCheldaPhDfellowshipfromthe ErasmusMundusfundingthroughtheEuroTangoprojectandPDF heldapostdoctoralfellowshipfromtheFWO.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.flora.2015.05.005 References

Anderegg,W.R.L.,Kane,J.M.,Anderegg,L.D.L.,2013.Consequencesofwidespread treemortalitytriggeredbydroughtandtemperaturestress.Nat.Clim.Change 3,30–36.

Atzmon,N.,Moshe,Y.,Schiller,G.,2004.Ecophysiologicalresponsetosevere droughtinPinushalepensisMill.treesoftwoprovenances.PlantEcol.171, 15–22.

Bai,W.,Wan,S.,Niu,S.,Liu,W.,Chen,Q.,Wang,Q.,Zhang,W.,Han,X.,Li,L.,2010. Increasedtemperatureandprecipitationinteracttoaffectrootproduction, mortality,andturnoverinatemperatesteppe:implicationsforecosystemC cycling.GlobalChangeBiol.16,1306–1316.

Baskin,C.C.,Baskin,J.M.,1998.Seeds.In:Ecology,Biogeography,andEvolutionof DormancyandGermination.AcademicPress,SanDiego,California,USA. Bellard,C.,Bertelsmeier,C.,Leadley,P.,Thuiller,W.,Courchamp,F.,2012.Impacts

ofclimatechangeonthefutureofbiodiversity.Ecol.Lett.15,365–377. Braun,H.J.,1977.Zumwachstumundzurproduktivitätdeswasserverbrauchesder

baumartenAcerplatanoidesL.,AcerpseudoplatanusL.undFraxinusexcelsiorL. ZeitschriftPflanzenphysiol.84,459–462.

Carón,M.M.,DeFrenne,P.,Brunet,J.,Chabrerie,O.,Cousins,S.A.O.,DeBacker,L., Diekmann,M.,Graae,B.J.,Heinken,T.,Kolb,A.,Naaf,T.,Plue,J.,Selvi,F., Strimbeck,G.R.,Wulf,M.,Verheyen,K.,2014a.Latitudinalvariationinseeds characteristicsofAcerplatanoidesandA.pseudoplatanus.PlantEcol.215, 911–925.

Carón,M.M.,DeFrenne,P.,Brunet,J.,Chabrerie,O.,Cousins,S.A.O.,DeBacker,L., Decocq,G.,Diekmann,M.,Heinken,T.,Kolb,A.,Naaf,T.,Plue,J.,Selvi,F., Strimbeck,G.R.,Wulf,M.,Verheyen,K.,2014b.Interactingeffectsofwarming anddroughtonregenerationandearlygrowthofAcerpseudoplatanusandA. platanoides.PlantBiol.17,52–62.

Carón,M.M.,DeFrenne,P.,Brunet,J.,Chabrerie,O.,Cousins,S.A.O.,Decocq,G., Diekmann,M.,Graae,B.J.,Heinken,T.,Kolb,A.,Lenoir,J.,Naaf,T.,Plue,J.,Selvi, F.,Wulf,M.,Verheyen,K.,2015.Divergentregenerationresponsesoftwo closelyrelatedtreespeciestodirectabioticandindirectbioticeffectsof climatechange.For.Ecol.Manage.342,21–29.

Chaoyang,W.,Chen,J.M.,Pumpanen,J.,Cescatti,A.,Marcolla,B.,Blanken,P.D., Ardö,J.,Yanhong,T.,Magliulo,V.,Georgiadis,T.,Soegaard,H.,Cook,D.R.,

(9)

Harding,R.J.,2012.Anunderestimatedroleofprecipitationfrequencyin regulatingsummersoilmoisture.Environ.Res.Lett.7,24011.

Chmura,D.J.,Anderson,P.D.,Howe,G.T.,Harrington,C.A.,Halofsky,J.E.,Peterson, D.L.,Shaw,D.C.,BradStClair,J.,2011.Forestresponsestoclimatechangeinthe northwesternUnitedStates:Ecophysiologicalfoundationsforadaptive management.For.Ecol.Manage.261,1121–1142.

Christensen,J.H.,KrishnaKumar,K.,Aldrian,E.,An,S.-I.,Cavalcanti,I.F.A.,de Castro,M.,Dong,W.,Goswami,P.,Hall,A.,Kanyanga,J.K.,Kitoh,A.,Kossin,J., Lau,N.-C.,Renwick,J.,Stephenson,D.B.,Xie,S.-P.,Zhou,T.,2013.Climate PhenomenaandtheirRelevanceforFutureRegionalClimateChange.In: Stocker,T.F.,Qin,D.,Plattner,G.-K.,Tignor,M.,Allen,S.K.,Boschung,J.,Nauels, A.,Xia,Y.,Bex,V.,Midgley,P.M.(Eds.),In:ClimateChange2013:ThePhysical ScienceBasis.ContributionofWorkingGroupItotheFifthAssessmentReport oftheIntergovernmentalPanelonClimateChange.CambridgeUniversity Press,Cambridge,UnitedKingdomandNewYork,NY,USA,pp.1217–1308, http://dx.doi.org/10.1017/CBO9781107415324.028

DeFrenne,P.,Brunet,J.,Shevtsova,A.,Kolb,A.,Graae,B.J.,Chabrerie,O.,Cousins, S.A.,Decocq,G.,DeSchrijver,A.N.,Diekmann,M.,Gruwez,R.,Heinken,T., Hermy,M.,Nilsson,C.,Stanton,S.,Tack,W.,Willaert,J.,Verheyen,K.,2011. Temperatureeffectsonforestherbsassessedbywarmingandtransplant experimentsalongalatitudinalgradient.GlobalChangeBiol.17,3240–3253. DeFrenne,P.,Graae,B.J.,Brunet,J.,Shevtsova,A.,DeSchrijver,A.,Chabrerie,O.,

Cousins,S.A.O.,Decocq,G.,Diekmann,M.,Hermy,M.,Heinken,T.,Kolb,A., Nilsson,C.,Stanton,S.,Verheyen,K.,2012.Theresponseofforestplant regenerationtotemperaturevariationalongalatitudinalgradient.Ann.Bot. 109,1037–1046.

DeFrenne,P.,Graae,B.J.,Rodríguez-Sánchez,F.,Kolb,A.,Chabrerie,O.,Decocq,G., DeKort,H.,DeSchrijver,A.,Diekmann,M.,Eriksson,O.,Gruwez,R.,Hermy,M., Lenoir,J.,Plue,J.,Coomes,D.A.,Verheyen,K.,2013.Latitudinalgradientsas naturallaboratoriestoinferspecies’responsestotemperature.J.Ecol.101, 493–501.

Deines,L.,Rosentreter,R.,Eldridge,D.J.,Serpe,M.D.,2007.Germinationand seedlingestablishmentoftwoannualgrassesonlichen-dominatedbiological soilcrusts.PlantSoil295,23–35.

DenOuden,J.,Muys,B.,Mohren,F.,Verheyen,K.,2010.BosecolgieenBosbeheer. UitgeverijAcco,Leuven,Belgium.

Dreesen,F.E.,DeBoeck,H.J.,Janssens,I.A.,Nijs,I.,2012.Summerheatanddrought extremestriggerunexpectedchangesinproductivityofatemperate annual/biannualplantcommunity.Environ.Exp.Bot.79,21–30. Dunnett,N.P.,Grime,J.P.,1999.Competitionasanamplifierofshort-term

vegetationresponsestoclimate:anexperimentaltest.Funct.Ecol.13, 388–395.

Fay,P.A.,Schultz,M.J.,2009.Germination,survival,andgrowthofgrassandforb seedlings:effectsofsoilmoisturevariability.ActaOecol.35,679–684. Fay,P.A.,Carlisle,J.D.,Danner,B.T.,Lett,M.S.,McCarron,J.K.,Stewart,C.,Knapp,

A.K.,Blair,J.M.,Collins,S.L.,2002.Alteredrainfallpatterns,gasexchange,and growthingrassesandforbs.Int.J.PlantSci.163,549–557.

Fay,P.A.,Carlisle,J.D.,Knapp,A.K.,Blair,J.M.,Collins,S.L.,2003.Productivity responsestoalteredrainfallpatternsinaC4-dominatedgrassland.Oecologia 137,245–251.

Fay,P.A.,Jin,V.L.,Way,D.A.,Potter,K.N.,Gill,R.A.,Jackson,R.B.,WaynePolley,H., 2012.Soil-mediatedeffectsofsubambienttoincreasedcarbondioxideon grasslandproductivity.Nat.Clim.Change2,742–746.

Fenner,M.,Thompson,K.,2005.TheEcologyofSeeds.CambridgeUniversityPress, NewYork.

ForestEcologyandForestManagementGroup,2005.TreeDatabase.Wageningen Universityhttp://www.wageningenur.nl/en/Expertise-Services/Chair-groups/ Environmental-Sciences/Forest-Ecology-and-Forest-Management-Group/ Education/Tree-database.htm

Fukami,T.,Wardle,D.A.,2005.Long-termecologicaldynamics:reciprocalinsights fromnaturalandanthropogenicgradients.Proc.R.Soc.BBiol.Sci.272, 2105–2115.

Hanewinkel,M.,Cullmann,D.A.,Schelhaas,M.-J.,Nabuurs,G.-J.,Zimmermann, N.E.,2012.Climatechangemaycauseseverelossintheeconomicvalueof Europeanforestland.Nat.Clim.Change3,203–207.

Hedhly,A.,Hormaza,J.I.,Herrero,M.,2008.Globalwarmingandsexualplant reproduction.TrendsPlantSci.14,30–36.

Hemery,G.E.,Clark,J.R.,Aldinger,E.,Claessens,H.,Malvolti,M.E.,O’Connor,E., Raftoyannis,Y.,Savill,P.S.,Brus,R.,2009.Growingscatteredbroadleavedtree speciesinEuropeinachangingclimate:areviewofrisksandopportunities. Forestry83,65–81.

HilleRisLambers,J.,Harsch,M.A.,Ettinger,A.K.,Ford,K.R.,Theobald,E.J.,2013.How willbioticinteractionsinfluenceclimatechange-inducedrangeshifts?AnnN. Y.Acad.Sci.1297,112–125.

Hong,T.D.,Ellis,R.H.,1990.Acomparisonofmaturationdryinggermination,and desiccationtolerancebetweendevelopingseedsofAcerpseudoplatanusL.and AcerplatanoidesL.NewPhytol.116,589–596.

Ibá ˜nez,I.,McCarthy-Neumann,S.,2014.Integratedassessmentofthedirectand indirecteffectsofresourcegradientsontreespeciesrecruitment.Ecology95, 364–375.

IPCC,2012.Managingtherisksofextremeeventsanddisasterstoadvanceclimate changeadaptation.In:ASpecialReportofWorkingGroupsIandIIofthe IntergovernmentalPanelonClimateChange.CambridgeUniversityPress,New York,USA.

IPCC,2013.Climatechange2013:Thephysicalsciencebasis.contributionof workinggroupitothefifthassessmentreportoftheintergovernmentalpanel

onclimatechange.CambridgeUniversityPress,Cambridge,UnitedKingdom andNewYork,NY,USA.

Jensen,M.,2001.TemperaturerelationsofgerminationinAcerplatanoidesL.seeds. Scand.J.For.Res.16,404–414.

Jinks,R.L.,Willoughby,I.,Baker,C.,2006.Directseedingofash(Fraxinusexcelsior L.)andsycamore(AcerpseudoplatanusL.):theeffectsofsowingdate, pre-emergentherbicides,cultivation,andprotectiononseedlingemergence andsurvival.For.Ecol.Manage.237,373–386.

Johnsen,Ø.,Dæhlen,O.G.,Østreng,G.,Skrøppa,T.,2005a.Daylengthand temperatureduringseedproductioninteractivelyaffectadaptiveperformance ofPiceaabiesprogenies.NewPhytol.168,589–596.

Johnsen,Ø.,Fossdal,C.G.,Nagy,N.,Mølman,J.,Dæhlen,O.G.,Skrøppa,T.,2005b. ClimaticadaptationinPiceaabiesprogeniesisaffectedbythetemperature duringzygoticembryogenesisandseedmaturation.PlantCellEnviron.28, 1090–1102.

Kawecki,T.J.,Ebert,D.,2004.Conceptualissuesinlocaladaptation.Ecol.Lett.7, 1225–1241.

Kos,M.,Poschlod,P.,2008.Correlatesofinter-specificvariationingermination responsetowaterstressinasemi-aridsavannah.BasicAppl.Ecol.9,645–652. Krabel,D.,Wolf,H.,2013.SycamoreMaple(AcerpsuedoplatanusL.).In:Pâques,L.E.

(Ed.),ForestTreeBreedinginEurope.CurrentState-of-the-Artand

Perspectives.Springer,DordrechtHeidelberg,NewYork,London,pp.373–402. Lewis,J.D.,Olszyk,D.,Tingey,D.T.,1999.Seasonalpatternsofphotosyntheticlight

responseinDouglas-firseedlingssubjectedtoelevatedatmosphericCO2and

temperature.TreePhysiol.19,243–252.

Martin,P.H.,1999.Norwaymaple(Acerplatanoides)invasionofanaturalforest stand:understoryconsequenceandregenerationpattern.Biol.Invasions1, 215–222.

McCarragher,S.R.,Goldblum,D.,Rigg,L.S.,2011.Geographicvariationof germinationgrowth,andmortalityinSugarmaple(Acersaccharum)common gardenandreciprocaldispersalexperiments.Phys.Geogr.32,1–21. Milbau,A.,Graae,B.J.,Shevtsova,A.,Nijs,I.,2009.Effectsofawarmerclimateon

seedgerminationinthesubarctic.Ann.Bot.104,287–296.

North,M.,Oakley,B.,Fiegener,R.,Gray,A.,Barbour,M.,2005.Influenceoflightand soilmoistureonSierranmixed-coniferunderstorycommunities.PlantEcol. 177,13–24.

Pe ˜nuelas,J.,Sardans,J.,Estiarte,M.,Ogaya,R.,Carnicer,J.,Coll,M.,Barbeta,A., Rivas-Ubach,A.,Llusià,J.,Garbulsky,M.,Filella,I.,Jump,A.S.,2013.Evidenceof currentimpactofclimatechangeonlife:awalkfromgenestothebiosphere. GlobalChangeBiol.19,2303–2338.

Pereira,H.M.,Leadley,P.W.,Proenc¸a,V.,Alkemade,R.,Scharlemann,J.P.W., Fernandez-Manjarrés,J.F.,Araújo,M.B.,Balvanera,P.,Biggs,R.,Cheung,W.W.L., Chini,L.,Cooper,H.D.,Gilman,E.L.,Guénette,S.,Hurtt,G.C.,Huntington,H.P., Mace,G.M.,Oberdorff,T.,Revenga,C.,Rodrigues,P.,Scholes,R.J.,Sumaila,U.R., Walpole,M.,2010.Scenariosforglobalbiodiversityinthe21stcentury. Science330,1496–1501.

Piper,F.I.,Fajardo,A.,Cavieres,L.A.,2013.Simulatedwarmingdoesnotimpair seedlingsurvivalandgrowthofNothofaguspumiliointhesouthernAndes. Perspect.PlantEcol.Evol.Syst.15,97–105.

RCoreTeam,2013.R:ALanguageandEnvironmentforStatisticalComputing.R FoundationforStatisticalComputing,Vienna,Austriahttp://www.R-project. org/

Rapp,J.M.,Silman,M.R.,Clark,J.S.,Girardin,C.A.J.,Galiano,D.,Tito,R.,2012. Intra-andinterspecifictreegrowthacrossalongaltitudinalgradientinthePeruvian Andes.Ecology93,2061–2072.

Rustad,L.E.,Campbell,J.L.,Marion,G.M.,Norby,R.J.,Mitchell,M.J.,Hartley,A.E., Cornelissen,J.H.C.,Gurevitch,J.,GCTE-NEWS,2001.Ameta-analysisofthe responseofsoilrespiration,netnitrogenmineralization,andaboveground plantgrowthtoexperimentalecosystemwarming.Oecologia126,543–562. Saxe,H.,Cannell,M.G.R.,Johnsen,Ø.,Ryan,M.G.,Vourlitis,G.,2001.Treeandforest

functioninginresponsetoglobalwarming.NewPhytol.149,369–400. Schneider,A.C.,Lee,T.D.,Kreiser,M.A.,Nelson,G.T.,2014.Comparativeand interactiveeffectsofreducedprecipitationfrequencyandvolumeonthe growthandfunctionoftwoperennialgrasslandspecies.Int.J.PlantSci.175, 702–712.

Seghieri,J.,Vescovo,A.,Padel,K.,Soubie,R.,Arjounin,M.,Boulain,N.,Rosnay,P.,de Galle,S.,Gosset,M.,Mouctar,A.H.,Peugeot,C.,Timouke,F.,2009.Relationships betweenclimate,soilmoistureandphenologyofthewoodycoverintwosites locatedalongtheWestAfricanlatitudinalgradient.J.Hydrol.375,78–89. Shaver,G.R.,Canadell,J.,Chapin,F.S.,Gurevitch,J.,Harte,J.,Henry,G.,Ineson,P.,

Jonasson,S.,Melillo,J.,Pitelka,L.,Rustad,L.,2000.Globalwarmingand terrestrialecosystems:aconceptualframeworkforanalysis.Bioscience50, 871–882.

Shevtsova,A.,Graae,B.J.,Jochum,T.,Milbau,A.,Kockelbergh,F.,Beyens,L.,Nijs,I., Shevtosova,A.,2009.Criticalperiodsforimpactofclimatewarmingonearly seedlingestablishmentinsubarctictundra.GlobalChangeBiol.15,2662–2680. Skrøppa,T.,Tollefsrud,M.M.,Sperisen,C.,Johnsen,Ø.,2010.Rapidchangein

adaptiveperformancefromonegenerationtothenextinPiceaabies—Central EuropeantreesinaNordicenvironment.TreeGenet.Genomes6,93–99. Spiecker,H.,Hein,S.,Makonnen-Spiecker,K.,Thies,M.(Eds.),2009.InValuable

BroadleavedForestsinEurope.EFIResearch-Report22.EuropeanForest Institute,Joensuu,Finland,p.256.

Thiel,D.,Kreyling,J.,Backhaus,S.,Beierkuhnlein,C.,Buhk,C.,Egen,K.,Huber,G., Konnert,M.,Nagy,L.,Jentsch,A.,2014.Differentreactionsofcentraland marginalprovenancesofFagussylvaticatoexperimentaldrought.Eur.J.For. Res.133,247–260.

(10)

VanMantgem,P.J.,Stephenson,N.L.,Byrne,J.C.,Daniels,L.D.,Franklin,J.F.,Fulé, P.Z.,Harmon,M.E.,Larson,A.J.,Smith,J.M.,Taylor,A.H.,Veblen,T.T.,2009. WidespreadincreaseoftreemortalityratesinthewesternUnitedStates. Science323,521–524.

Vicca,S.,Gilgen,A.K.,CaminoSerrano,M.,Dreesen,F.E.,Dukes,J.S.,Estiarte,M., Gray,S.B.,Guidolotti,G.,Hoeppner,S.S.,Leakey,A.D.B.,Ogaya,R.,Ort,D.R., Ostrogovic,M.Z.,Rambal,S.,Sardans,J.,Schmitt,M.,Siebers,M.,Vander Linden,L.,VanStraaten,O.,Granier,A.,2012.Urgentneedforacommonmetric tomakeprecipitationmanipulationexperimentscomparable.NewPhytol. 195,518–522.

Walck,J.L.,Hidayati,S.,Dixon,K.W.,Thompson,K.,Poschlod,P.,2011.Climate changeandplantregenerationfromseed.GlobalChangeBiol.17,2145–2161. Wan,S.,Norby,R.J.,Pregitzer,K.S.,Ledford,J.,O’Neill,E.G.,2004.CO2enrichment

andwarmingoftheatmosphereenhancebothproductivityandmortalityof mapletreefineroots.NewPhytol.162,437–446.

Wang,G.,2005.Agriculturaldroughtinafutureclimate:resultsfrom15global climatemodelsparticipatingintheIPCC4thassessment.Clim.Dyn.25, 739–753.

Weidema,I.,Buchwald,E.,2010.NOBANIS–InvasiveAlienSpeciesFactSheet– Acerpseudoplatanus[WWWDocument].OnlineDatabaseEur.Netw.Invasive AlienSpecies–NOBANIS.URLwww.nobanis.org

Zhou,X.,Fei,S.,Sherry,R.,Luo,Y.,2012.Rootbiomassdynamicsunder experimentalwarminganddoubledprecipitationinatallgrassprairie. Ecosystems15,542–554.

Zuur,A.F.,Ieno,E.N.,Walker,N.J.,Saveliev,A.A.,Smith,G.M.,2009.MixedEffects ModelsandExtensionsinEcologywithR.Springer,NewYork,USA.

Riferimenti

Documenti correlati

Senza andare in cerca di novità assolute o di ‘specificità’ rispetto alla tradizione, non è dunque sbagliato dire che un numero considerevole di testi stilnovisti disegna il

The study of living matter exposed to fields is very difficult due to the complexity of the cell membrane structure. In these cases, it is reasonable to suppose that the

Svaki aforizam predstavlja odvojenu značenjsku celinu i u slučaju kada zbog kulturoloških i drugih specifičnih aspekata vezanih za lingvističku strukturu različitih jezika

Attraverso l’esame puntuale e meticoloso dei dibattiti dei congressi e delle posizio- ni espresse dai giornali delle associazio- ni internazionali e nazionali — come pure

Pío Baroja è uno dei più prestigiosi scrittori della generazione del ’98 e attraverso i suoi tre articoli pubblicati nella rivista madrilena El Globo apre ed inaugura il

I risultati di prove di confronto gestione a lungo termine condotte nei vigneti FEM hanno permesso di verificare che dopo 7 anni di sperimentazione, nei

We, herein, investigated molecular mechanisms underlying phosphorylation of heat shock protein 27 (HSP27), oxidative stress responsive kinase 1 (OSR1), and myristolated

The present study investigated the effects of short-term heat events on the germination of alpine plants by exposing the seeds of 53 high mountain species that grow in the