• Non ci sono risultati.

The Earth Observation Data for Habitat Monitoring (EODHaM) system

N/A
N/A
Protected

Academic year: 2021

Condividi "The Earth Observation Data for Habitat Monitoring (EODHaM) system"

Copied!
12
0
0

Testo completo

(1)

International

Journal

of

Applied

Earth

Observation

and

Geoinformation

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j a g

The

Earth

Observation

Data

for

Habitat

Monitoring

(EODHaM)

system

Richard

Lucas

a

,

Palma

Blonda

b,∗

,

Peter

Bunting

c

,

Gwawr

Jones

c

,

Jordi

Inglada

d

,

Marcela

Arias

d

,

Vasiliki

Kosmidou

e

,

Zisis

I.

Petrou

e

,

Ioannis

Manakos

e

,

Maria

Adamo

b

,

Rebecca

Charnock

c

,

Cristina

Tarantino

b

,

Caspar

A.

Mücher

f

,

Rob

H.G.

Jongman

f

,

Henk

Kramer

f

,

Damien

Arvor

g

,

Jo ¯ao

Pradinho

Honrado

h

,

Paola

Mairota

i

aCentreforEcosystemSciences,SchoolofBiological,EarthandEnvironmentalScience,TheUniversityofNewSouthWales,HighStreet,Kensington,

NSW2052,Australia

bNationalResearchCouncilInstituteofIntelligentSystemsforAutomation(CNR-ISSIA),ViaG.Amendola122,70126Bari,Italy cInstituteofGeographyandEarthSciences,AberystwythUniversity,Aberystwyth,CeredigionSY233DB,UnitedKingdom dCESBIO(CNES/CNRS/UPS/IRD),18,AvenueEdouardBelin,31401ToulouseCedex9,France

eInformationTechnologiesInstitute(ITI),CentreforResearch&TechnologyHellas,6thkmHarilaouThermi,57001Thessaloniki,Greece fAlterra,WageningenUR,Droevendaalsesteeg3,6708PBWageningen,TheNetherlands

gIRD-UMR228ESPACE-DEV,MTD-Montpellier,500rueJean-Franc¸oisBreton,34093MontpellierCedex,France

hInBIO/CIBIO&FaculdadedeCiênciasdaUniversidadedoPorto,EdifícioFC4(Biologia),RuadoCampoAlegre,s/n,4169-007Porto,Portugal iDepartmentofAgro-EnvironmentalandTerrestrialSciences,UniversityofBari,AldoMoro,ViaOrbona4,70126Bari,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Availableonlinexxx Keywords: Habitat Landcover Classification Monitoring Remotesensing

a

b

s

t

r

a

c

t

Tosupportdecisionsrelatingtotheuseandconservationofprotectedareasandsurrounds,theEU-funded BIOdiversitymulti-SOurcemonitoringSystem:fromSpaceTOSpecies(BIOSOS)projecthasdeveloped theEarthObservationDataforHAbitatMonitoring(EODHaM)systemforconsistentmappingand mon-itoringofbiodiversity.TheEODHaMapproachhasadoptedtheFoodandAgricultureOrganizationLand CoverClassificationSystem(LCCS)taxonomyandtranslatesmappedclassestoGeneralHabitat Cate-gories(GHCs)fromwhichAnnexIhabitats(EUHabitatsDirective)canbedefined.TheEODHaMsystem usesacombinationofpixelandobject-basedprocedures.The1stand2ndstagesuseearthobservation (EO)dataalonewithexpertknowledgetogenerateclassesaccordingtotheLCCStaxonomy(Levels1to 3andbeyond).The3rdstagetranslatesthefinalLCCSclassesintoGHCsfromwhichAnnexIhabitattype mapsarederived.AnadditionalmodulequantifieschangesintheLCCSclassesandtheircomponents, indicesderivedfromearthobservation,objectsizesanddimensionsandthetranslatedhabitatmaps(i.e., GHCsorAnnexI).ExamplesareprovidedoftheapplicationofEODHaMsystemelementstoprotected sitesandtheirsurroundsinItaly,Wales(UK),theNetherlands,Greece,PortugalandIndia.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Landuseremainsasignificantdriverofhabitatdegradationand removalandassociatedlossesinbiodiversity.In Europe,Natura 2000siteswereestablishedtohaltsuchlosses(Mücheretal.,2006; Mücher,2009;EC,2011)butincreasinglypressuresfromwithin butparticularlyaroundthesesitesareleadingtodeteriorationof thehabitatstheyweredesigned toprotect (Lomba etal.,2013;

∗ Correspondingauthor.Tel.:+390805929433.

E-mailaddresses:richard.lucas@unsw.edu.au(R.Lucas),blonda@ba.issia.cnr.it (P.Blonda),pfb@aber.ac.uk(P.Bunting),jordi.inglada@cesbio.cnes.fr(J.Inglada), zpetrou@iti.gr(Z.I.Petrou),imanakos@iti.gr(I.Manakos),adamo@ba.issia.cnr.it (M.Adamo),tarantino@ba.issia.cnr.it(C.Tarantino),sander.mucher@wur.nl (C.A.Mücher),damien.arvor@ird.fr(D.Arvor),jhonrado@fc.up.pt(J.P.Honrado).

Mairotaetal.,2013;Vicenteetal.,2013).Quantitativeassessments ofthechangingextentandqualityofhabitatsandthethreatsand pressuresaffectingthesearethereforeurgentlyneeded.

As many protected sites and their surrounds are changing rapidly,theuseofEarthObservation(EO)datacombinedwithlocal knowledgeof thesiteshasbeenadvocatedfor monitoring.The benefitofEOdataisthat theseare acquiredin differentmodes (e.g.,optical,radarandLIDAR)andoftenroutinelyatvarious spa-tialandtemporalscales.However,experts(e.g.,ecologists,reserve wardens,vegetationsurveyors)withgoodknowledgeofthesites beingobservedareoftenneededtoensurethattheinterpretation oftheEOdataisaccurateandthatclassificationoutputsare appro-priateforconservationpurposes.Commonobstaclestoachieving thislinkhaveoftenincludedpartialknowledgeofhabitatsandof theneedsofusersbyEOscientists,andskepticismamongstthe potentialusersontheabilityofEOdatatodelivertheinformation http://dx.doi.org/10.1016/j.jag.2014.10.011

(2)

Fig.1. TheFAOlandcoverclassificationschemeencompassingLevels1to3andbeyond.

neededforpracticalconservationandmanagement.Therefore,the knowledgeofbothpartiesneedstobetappedinordertooptimize mapsandmaximizebenefitforpracticalapplications(Lucasetal., 2006,2011;Blondaetal.,2013).Afurtherobstacleisthattherehas beennosystematicapproachtotheclassificationofhabitatsfrom EOdatathatisapplicabletoallsitesandavailableasastandard. Indeed,manyareasaremappedandmonitoredusingarangeof differentdatasources,typesandclassificationschemes. Further-more,theschemesusedhaveoftengenerated classesoflimited valueforconservationpurposes.

Toaddresstheseissues,theFP7-fundedBIOSOSprojectsought todeveloptheEarthObservationDataforHabitatMonitoring (EOD-HAM)system,withthisprovidingastandardizedframeworkfor consistentlandcoverandhabitatmappingandmonitoringinside and around protected areas with particular focus onEuropean Natura2000sitesandtheirsurroundings.Akeycomponentofthe systemistheinclusionofdecisionruleswithinahierarchical clas-sificationstructurewiththesegeneratedfromexpertknowledge frombothecologistsandremotesensingscientists.Thispaper con-veystheframeworkoftheEODHaMsystemandprovidesexamples ofelementsasappliedtoselectedsites.

TheEODHaMsystemoverview Overallstructure

TheEODHaMsystemadoptstheFoodandAgriculture Organi-zation’s(FAO)LandCoverClassificationSystem(LCCS)(diGregorio andJansen,2005;Fig.1),whichshowstheclosestcorrespondence ofanycommonclassificationscheme(Tomasellietal.,2013)to thehabitattaxonomyofGeneralHabitatCategories(GHCs)(Bunce et al.,2008).This hasbeentested previously in the context of habitatandbiodiversitymonitoring(Bunceetal.,2013a)and pro-videsausefulframeworkforEOandinsitudataintegrationfor AnnexImapping.ByusingGHCsincombinationwithinformation onenvironmentalvariables(e.g.,biogeographicalregions,surface moisture)andondominantorindicatorspecies,AnnexIcategories (Bunceetal.,2013b)canbedelineatedalthoughend-user interac-tionisoftenarequirementatthisstage.

TheEOcomponentoftheEODHaMsystem(Fig.2)isbasedon geographicobject-basedimageanalysis(GEOBIA;HayandCastilla, 2008;Blaschkeand Strobl,2001)and alsoincorporatesa pixel-basedanalysis.Thesystemiscomprisedof(a)datainputinvolving preparation and pre-processing (orthorectification, radiometric, atmosphericand/ortopographiccorrection),(b) spectralfeature extraction, segmentationand classification toLCCSLevel2 (1st stage),(c)classificationtoLevel3andbeyond(2ndstage),withthis

involvingexpertknowledge,and(d)translationoftheseclassesto GHCsandAnnexIClasses(3rdstage)ofconservationimportance (EUHabitatsDirective).Anadditionalmodulefocusesonchange detectionandvalidationofoutputs,whichincludemapsofland cover,habitatsandchangesinthese.Theoutputproductsfeed sub-sequentlyintomodulesthatperformecologicalmodelingatthe landscapelevel,biodiversityindicatorsextraction,andbiodiversity indicatorschangedetection.

The processing within the EODHaM is automated, withthe exception of threshold value determination, and is undertaken primarilyusingtheRemoteSensingandGISLibrary(RSGISLib) soft-ware(Buntingetal.,2014),theGeospatialDataAbstractionLibrary (GDAL),andtheORFEOToolbox(Ingladaand Christophe,2009), withXMLand PYTHONscripting. Theclassificationsystemalso makesuseoftheKEAimagefileformat(BuntingandGillingham, 2013),whichallowsforprocessingwithinarasterattributetable (RAT).WithintheRAT,whichhasbeendevelopedsuchthatlarge datasetscanbeefficientlyanalyzed(Clewleyetal.,2014),allpixels ofthesameobjectsharethesameID.Thistableisfirstpopulated withimagedataandderivedproducts(e.g.,vegetationindices)and classcodesareaddedprogressivelyastheclassificationproceeds, withthefinalattributionbeingtheLCCS,GHCsandAnnexIclasses fordifferentperiodsintime.Thisallowschangestobedetected. Allattributescanbereadilyqueriedtofinetuneanystepinthe classificationprocess.

EOdatarequirements

TheEODHaMsystemwasdevelopedforusewithveryhigh res-olution(VHR)optical(includinghyperspectral)data,buthasthe benefit ofbeingable toingestdatafrom anysensor (including radarandLIDAR)andatanyspatialscaleprovidedthatinformation extracted(e.g.,onplantleafphenologyortypeorwaterinundation extent)isrelevanttotheclassificationprocessandaccuratewithin acceptablelimits.AtVHR,theWorldview-2iscurrentlythesensor ofchoicebecausetheeightbandsofspectraldataallowcalculation ofawiderrangeofspectralindicesandimagesacquisitionscan betargetedtoperiodsthatarephenologicallyoptimalforthe dis-criminationoflandcoverclassesandthedetectionofchange.When usingopticaldata,thestandardprocessingprovidesdataexpressed inunitsoftopofatmosphere(TOA)reflectancebutthepreferenceis toremovetheeffectoftheatmospheresodataareprocessedto sur-facereflectance(e.g.,usingthe6Scode;Vermoteetal.,2003)and correctedfortopographicand/orbidirectionaleffects(e.g.,using thealgorithmofShepherdandDymond(2003).

Thesystemhastheadvantageofbeingabletobringin knowl-edge fromthe users (e.g.,whether water bodies are persistent

(3)

Fig.2. OverviewoftheEOcomponentswithintheEODHaMsystem.ThesystemishierarchicalandtopdownandcommenceswiththeclassificationofLevels1and2,with thisbasedonspectralprocessingalone,andcontinuestoLCCSLevel3andbeyond.ThefinalLCCScategoriesarethentranslatedtoGHCsandsubsequentlytoAnnexI.Change analysesarethenperformed.

orotherwise)andalsofromotherdatasources,includingdigital terrainmodels(DTMs),canopyheightmodels(CHMs),estimates ofthenumberofvegetationstrata,andoutputsfromhydrological models(e.g.,inundationextent).Thematicinformationrelatingto thedistributionofurbaninfrastructure,productionagricultureand forestry,andwaterbodies(e.g.,reservoirs)canalsobeincluded. Inthelattercase,ahighlevelofgeometriccorrectionaccuracyis essential.

Fordetailedclassification,informationontheseasonal pheno-logicalbehaviorofvegetation(Fisheretal.,2006;Bhandarietal., 2012;ZhuandWoodcock,2012)isapre-requisitetodistinguish manyoftherequiredlandcoverandhabitattypes.However, phen-ologydiffersdependingontheenvironmentbeingconsidered.For example,inthehumidtropics(e.g.,BrazilianAmazonia),onlyone imageisgenerallyneededbecauseofthegenerallylowvariation inspectralreflectanceovertime.However,forotherareas,what istermedasa‘pre’ora‘post’flushanda‘peak’flushimageare requiredwiththeserelatingtotheperiodsoflowestandhighest productivityofvegetation,respectively. InnorthernEurope,the preandpeakflushimageswouldbeacquiredintheearlyspring andmidsummerrespectively,whereasintheMediterranean,the periodsofacquisitionwouldbeassociatedwiththespring(peak flush)andsummer(postflush).Thiswouldalsobethecasein sea-sonalforests(e.g.,inIndia)wherethereisadistinctdry(preor postflush)seasonandawetseason(peakflush).Insomeregions (e.g.,southern Italy, Wales, India)with seasonalenvironments, moreacquisitionswouldbeneededtodefinethedifferentland cover categoriesand associatedhabitats withtheseacquiredin whatis termedhereas‘transition’periods.Theseoftenpresent thebestopportunitiesfordiscriminatingspecifichabitats, partic-ularlywheretheseareonlydistinguishablespectrallyforavery shortperiodoftime.Multi-dateimageryisalsorequiredtocapture hydrologicalcyclesandparticularlytheperiodicityofinundation, ortodealwiththeseasonalmanagementofsomelanduseclasses (e.g.,ploughingandotherpracticesofannualfarmingcycles).In theLCCSclassification,forexample,waterseasonalityand persis-tenceareconsidered.Waterseasonalityisdefinedonthebasisof sitesbeinginundatedfor2–4monthsormorethan4monthsand waterloggedareas arealsodistinguished.For naturaland artifi-cialwaterbodies,waterpersistenceisdefinedonthebasisofthese beingnon-perennial(1–3months,4–6monthsand7–9months) orperennial(>9months).Tidalareas(withdiurnalvariations)and inundationwithincultivated areasare furtherconsidered.Such informationcanbeobtainedfromtemporalimagery,byreferencing hydrologicalmodelsorfromlocalknowledge.

TheEODHaM1ststage

The EODHaM 1st stage uses only spectral information for extracting objects,segmenting theimagery, and classifyingthe landscapetoLCCSLevel2(Fig.2).Thethreeessentialstepsinthe

EODHaM1ststageare(a)initialextractionofdistinctand identi-fiablefeaturesofvaryingsizeanddimensionwithinthelandscape followedby(b)segmentationoftheremainingareastodividethe landscapeintospectrallyhomogeneousunitsand,oncecompleted, (c)aclassificationofobjectswithintheimagedscene.

Objectextraction

Whilst many studies have focused on segmentingan entire image(e.g.,Lucasetal.,2006),alimitationisthatthealgorithms usedperformwellindelineatingsomelandscapeobjectsbutrarely allobjectsof interest. Indeed,many segmentation methodsare notadaptedtodetectthevarietyofgeographicalentities compris-ingacomplexscene(Marceauetal.,1994).BlaschkeandStrobl (2001)alsoconsiderthatsegmentsinanimagewillnever repre-sentmeaningfulobjectsatallscalesandaddressallapplications, andrecommendamulti-scalesegmentationapproach.

Forthisreason,theEODHaMsystemfirstautomaticallyextracts recognizableobjectsfromtheimagepriortosegmentationthrough an extractionprocedure that utilizesspecific spectral bands or derivedindices(Ariasetal.,2013).Theseobjects,observedinVHR data,includeindividualtrees,hedgerows,roadsandponds.Their detectionistypicallyvalidatedthroughreferencetoexisting the-matic layers(e.g.,buildingsextentorground observations;e.g., oftreecrowns).For example,inWales,over76%ofmobileand staticcaravansweredetectedusingthisapproach.However,the successinextractiondependsuponfactorssuchastheground sur-facetopographyandsolarilluminationaswellasthecontrastofthe featureswithothersinthescene.Thereliabilityofextractionwill alsodecreaseforcompositeobjects(e.g.,farmyards).Asthe resolu-tiondecreases,mostoftheseobjectsbecomelessdistinct(Marceau etal.,1994).Hence,thenumberofobjectsofdifferenttypethatcan beextractedfrom,forexample,10mSPOTHRGor30mLandsat sensordatadecreasewiththespatialresolution.

Within the EODHaM system, and prior to segmentation of VHRimagery,algorithmsforautomaticallyextractingobjects cor-responding to individual tree crowns and clusters of crowns, buildings(including caravans)andhedgerowshavebeen devel-oped within the ORFEO Toolbox. These utilize individual or combinationsofbands,derivedindices(e.g.,entropy)or context-sensitive features such as geometric (e.g. area, compactness, elongatedness), morphological, topological(e.g., adjacency) and non-topological(e.g.,distancebetweenobjects)attributes(Arias et al.,2013).For extracting hedgerows,for example,thresholds ofHaralicktexturemeasuresandbinarymorphologicaloperators (e.g.,dilation,erosionandclosure)areused;connectionsarethen madebetweensegmentssuchthathedgerowsareformed.These thresholdshavebeendefinedwithreferencetoVHRimageryfrom arangeofEuropeansitesbutcanbevariedbytheuser.An exam-pleofdelineatedtreecrownsandclustersofcrownswithinbotha naturalandmanagedsettingisprovidedinFig.3.Dependingupon

(4)

Fig.3.Treecrownsandclustersoftreecrownsdelineated(usingfeatureextractionbasedonapixel-basedanalysis)in(a)olivegrovesneartheKalamasDeltainGreeceand (b)anaturalsettingnearRemondesinPortugal.

theirspectraluniformity,largerfieldunitscanalsobedelineated. However,thisiscompromisedwhereboundariesareindistinctora largenumberofobjectswithahighspectraldiversityoccurwithin eachunit.

Segmentation

Followingautomatedextractionoflandscapeobjects,two algo-rithmsareavailablewithintheEODHaM1ststageforsegmenting theremainingareas,withthesebasedprimarilyonspectral infor-mation.However,LIDARdatacanbeintegratedasthisoftenleads toimprovementsinthesegmentationofforestareas.Within RSG-ISLib,andforimagesegmentation,aclusteringandsmallobject eliminationalgorithmisappliedwhilsttheORFEOToolboxuses thealgorithmofComaniciuandMeer(2002).

At this stage, the concept of ‘small’ and ‘large’ objects is introduced.‘Small’objectsaretypicallythosethatcanbediscerned within theimagery and include (in the case of the VHR data) previously extracted objects (e.g.,buildings, trees, hedgerows). These‘smallobjects’areextractedusingtheproceduresoutlined intheobjectextractionsection.However,smallobjectscanalso beobtainedfromwithintheremainderoftheimageby parame-terizingthesegmentationalgorithmssuchthattheobjectsizeis commensuratewithmanyof thefinerbutoftenless distinctor recognizableelementsofthelandscape(e.g.,patchesofshrubor marshygrasslandsinotherwisedryfields).Existingthematic lay-ers(e.g.,representingbuildingsor fieldboundaries)canalsobe integratedwithinthesegmentationprocess,whichoftenresults in splitting of objects. However,the benefit is that the result-ingobjectsalignwithunits(e.g.,roads) thathave alreadybeen mapped.Aseparatesegmentationisthenperformedfortheentire imagetogenerate‘large’ objects,which canbeassociatedwith well-definedlandscapeandmanagement units,includingfields, forestryplantations,urbaninfrastructure (e.g.,airport runways, largeindustrialbuildings)andreservoirs.Theselargerobjectsare generated through parameterization of the segmentation algo-rithm and delineation of specific features (e.g., field or forest boundaries)can often be validated through reference to exist-ingthematiclayers.Thelandscapeobjectsalreadyextracted(e.g., buildings,individualtrees)areignoredinthissegmentation pro-cesssuchthatthese largerunitsarecaptured in theirentirety. However,reference can be made interchangeably betweenthe largeandsmallobjectsthroughtheRATofboththelargeandsmall objectlayers.Thesmallandlargesegmentationgeneratedusingthe RSGISLibcodeisillustratedinFig.4.Inthissegmentation,which

isbasedonanunsupervisedK-meansclusteringoftheimagery, objectsbelowacertainsizeareeliminatedfollowingeachiterations andassociatedpixelsarereassignedtonewclustersinsubsequent iterations.Thenumberofclusters,maximumnumberofiterations anddegreesofspectralchangerequiredbythealgorithmcanbe alteredfromdefaultvaluesascantheminimumsizeofobjectsto beeliminated.Thealgorithmgivesthesameresultwiththesame inputparameters(Clewleyetal.,2014).

Linkingsmallandlargeobjects

Largeobjectscontainsmallerobjects,whichareoftenrelatively homogeneous(spectrally)andspatiallyrelated(Couclelis,2010). Forexample,olivegroves(thelargeobjects)containolivetrees, witheachindividualshowingdifferentcharacteristics(e.g.,crown dimensions,height,speciestype)orsharingattributeswithother similarindividuals (e.g.,orientation,distanceto).Insomecases, however,thelargerobjectmaynotcaptureallofthecomponents ofacompositefeature(e.g.,anairportorcaravanpark)ina land-scapeasitisnotsufficientlywelldelineated.Thisisparticularlythe casewherethecompositefeatureiscomprisedofalargenumberof smallerobjectswithdifferingspectralcharacteristics.Inthiscase, alargeobjectcanbeconstructedfromthesmallersimplerobjects (e.g.,treesofdifferentspeciestypeorbuildings)(Couclelis,2010). Asanexample,acaravanparkmightconsistofindividualcaravans butalsoroadsandgrassvergesandlawns.Hence,byfirst classi-fyingandthencombiningtheseobjects(iftheycanbeextracted) basedon,forexample,proximitybyobjecttypeandconnectivity,a largerobjectcanbeformedanddescribed.Anotherexamplewould beanairportwithrunways,grass areas,terminalbuildingsand roadinfrastructure.Throughthesetwoapproaches,largeobjects aredefinedanddescribed.

ClassificationintheEODHaM1ststage

TheEODHaM1ststageinvolvesclassificationatthepixeland smallobject leveland, in itscurrent implementation, utilizesa sequenceofdecisionrules,withtheseminimizedtoincludeonlya narrowrangeofspectralindicesthatallowdiscriminationofLCCS Level1andLevel2categories(i.e.vegetatedandnotvegetated ter-restrialandaquatic).Whilstthesequenceofrulesanddatalayers usedisset,thethresholdsappliedaresubjecttochangedepending upontheusers’aprioriknowledgeandinterpretationofthescene althoughtheyaregenerallysimilarwithinandoftenbetween envi-ronments(e.g.,TemperateorMediterranean).Atthepixellevel,

(5)

Fig.4. ThemeanWorldview-2reflectance(nearinfrared2,redandblueinRGB)associatedwith(a)smalland(b)largeobjectsforamixedforestandagriculturallandscape innorthernPortugal.Featuresextractedpriortosegmentationarealsoindicatedwithtreesdepictedasgreenandurbanareasasblack.

simplebinarymasksrepresenting,forexample,theextentof veg-etationcoveraregenerated. However,atthesmallobjectlevel, therasterattributetable(RAT)associatedwiththeKEAformatis accessedforclassification(BuntingandGillingham,2013).Within theRAT,eachsmallobjecthasauniqueIDwithallpixels associ-atedwitheachobjecthavingthesamecharacteristics.Eachobject withintheRATis thenprogressivelyattributedwiththemeans ofreflectancedataandderived indicescalculatedfromthe pix-elscontained,binarymaskinformation(e.g.,water,notwater)and ultimatelytheclassassigned(e.g.,vegetated,non-vegetated).The largeobjectlayerusedlateralsousestheRAT.

Pixellevel

Classificationatthepixellevelisundertakentogeneratebinary masksoftheextentofdifferentvegetativestates(Table1)andopen water,basedonindicessuchastheNormalizedDifference Veg-etationIndex(NDVI),Plant SenescenceReflectanceIndex(PSRI) andtheWaterBandIndex(WBI)(SimsandGamon,2002;Fig.5). Theseareusedtodiscriminategreen(photosynthetic)andbrown (non-photosynthetic;deadorsenescent)vegetationbutoptions arealsoavailableformappingtheextentofotherstates,including non-submerged,submerged(e.g.,algae)orburnt.Oncemapped, all vegetated states are merged into a vegetated category and remainingpixelsassociatedwithanon-vegetatedcategory.Within thevegetationcategory,woodyvegetationisdifferentiatedusing theratiooftheblueand greenreflectanceortheLIDARcanopy heightmodel(CHM),inpreparationforsubsequentclassification atLevel4.Wheredualormulti-seasonimagesareavailable,the

pixel-levelclassificationofthedifferentvegetativestatesateach timestepisusedtodeterminetheextentofevergreen,deciduous andalsolowproductivityvegetation(e.g.,inaquaticenvironments) andhenceindicatephenology,whichisacomponentoftheLCCS classification.

Smallobjectlevel

Atthesmallobjectlevel,non-vegetated areasareassociated with(a)openwaterandurbaninfrastructure,(extractedfromthe image eithera priori (e.g.,buildings; seeobject extraction sec-tion) or classified using the indices given in Table 2), and (b) remainingobjectsnot classifiedasvegetationusing theindices giveninTable1.Thislattercaseavoidsseparateclassificationof the wide range of non-vegetated surfacesthat are common to manyscenes.Asecondcomponentthenidentifiesaquaticsurfaces, withtheseincludingtheopenwater areasusedforthe classifi-cationofnon-vegetationbutalsosubmergedandnon-submerged aquatic vegetation.Theselatter categories are oftendifficult to differentiatebecauseofenvironmentalvariability(e.g.,extentof inundation,type(water,iceorsnow)andturbidity)andmay war-rant theuse of more specific spectral indices, digital elevation modelsorancillaryinformation(e.g.,theoutputfromhydrological models).Oncedefinedasaquatic,allremainingobjectsareassigned asterrestrialusinganinverserule.TheclassificationatLCCSLevel 2(i.e.,vegetatedornon-vegetatedterrestrialoraquatic)isthen achievedthroughcrosstabulationoftheareasofvegetationand non-vegetationwiththosethatareaquaticandterrestrial.

Table1

Indicesusedintherule-basedimplementationoftheEODHaMSystemforidentifyingvegetatedstates.

Greenvegetation Formula Othervegetativestates Formula Woodyvegetation Formula NDVI NIR1−R NIR1+R PSRI a RE−G NIR1 BG B G Greennessc G R REPrel b  RE−(NIR2−R) CHM d HEIGHT FDIe  NIR1−(RE+C) aNon-photosynthetic/senescent(brown)vegetation. bNon-submergedaquaticvegetation.

c Submergedaquaticvegetation(usedincombinationwiththeWBI;seeTable2). d CanopyHeightModel(e.g.,derivedfromLIDARdata).

(6)

Fig.5. (a)theNDVIand(b)thePSRIrepresentingareasofgreenandbrownvegetationrespectivelyand(c)theWBI,LeCesine,Italy.Thescalebarindicatesvaluesranging fromlow(black)tohigh(white).

TheEODHaM2ndstage

TheEODHaM 2ndstage hastwo maincomponents focusing onclassification toLCCS Level3 and, subsequently, Level 4. In

itscurrentimplementation,theclassificationutilizesuser-defined thresholdsofreflectancedataor derivedindices butotherdata can beincorporated includingDigital Elevation Models (DEMs) andderived measures(such asDTMsandCHMsobtainedfrom,

Table2

Indicesusedintherule-basedimplementationoftheEODHaMsystemforidentifyingnon-vegetatedareas.

Water Formula Soil Formula Urban Formula

NDWI C−NIR2 C+NIR2 NDSI G−Y G+Y NHFD RE−C RE+C WBI B NIR1 Brightness B+G+R+NIR1 4 DSMa Height

(7)

A11 A12 A23 A24 B15 B16 B27 B28 Primarydescriptors 1 Lifeform1,2,3    2 Cover1,2   3 Height1,2,3   4 Spatialdistribution1,2,3  5 Leaftype1   6 Phenology1   7 Lifecycle1  8 Stratification2   9 Spatialaspects1,2,3   10 Cropcombination1,3  

11 Cover-relatedculturalpractices  

12 Waterseasonality1,3   13 Surfaceaspect1,2   14 Macropattern1,2   15 Physicalstatus1,3   16 Persistence1,3   17 Depth1,2   18 SedimentLoad1  

Additionalenvironmentaldescriptors

20 Landform1,2       21 Climate       22 Altitude2,3       23 Lithology/Soils       24 Erosion1,2       25 Cropcover/density1   26 Waterquality1  27 Surfaceaspect1,2  28 Vegetation1,2    29 Croptype1,3   30 Floristicaspect1   31 Builtupobjects1,2,3  32 Salinity3  

LCCScomponentsarederivedfrom1opticaland/or2LIDARdata.Somecodescanbeallocatedusing3polarimetricorinterferometricradardata,eithersingularlyorin

combinationwithopticalorLIDARdata.Allinformationcanbeobtainedoraugmentedbygroundsurveysorinsitudata/knowledge.Notalllayersrequirepopulationfora classificationtobegenerated.

forexample,LIDAR),andthematicinformation(e.g.,presenceof

buildings).SuchinformationisintegratedintotheRAT.Thematic

informationmaybeincludedasanumericvalue(e.g.,indicating

overlaporotherwise)orastring.Thisprovidesawide rangeof

informationthatcanbeexploitedbytheusersforlandcoverand

subsequentlyhabitatdescriptionthroughtheEODHaMprocess.For

theclassificationatLevel3andparticularlyLevel4,expert

knowl-edgeoftheinformationcontentofremotesensingdatainrelation

tothelandcoversbeingconsideredcanbeincorporatedintothe

rules(e.g.,indefiningthresholdbandsandvalues;Adamoetal.,

2014).

ClassificationtoLevel3

TheLCCSLevel3classificationrequiresthatthelandscapebe differentiated according to elements that are cultivated, man-agedorartificialornatural orsemi-natural.Thesystemfocuses onclassifyingthelandscapethrough referencetotheextracted context-sensitiveobjects(e.g.,largeobjectscontainingindividual treesinrows)orexistingthematic(e.g.,cadastral,infrastructure) layers.

Initially,objectsinthesmallobjectlayerareassociatedwith theclasstheyrepresentusing thethematiclabelappliedwhen thesewereextracted(e.g.,trees,buildings).IntheRATforthelarge objectlayer,theproportionofthearearepresentedbythesesmall objectsiscalculated,withthispotentiallyexpandabletoinclude thenumberofobjects,theirorientationandsoon.Somemeasures arecalculatedtoallowfordescriptionofobjectsordisambiguation. Forexample,roundnessisameasureofhowdifferentashapeis

fromacircleandthismeasurecanbeusedtoidentifyanddescribe treecrowns(e.g.,olivetrees).Suchinformationcanthenbeusedto classifyforestplantations(basedontheproportionofpixels repre-sentingwoodyvegetation),orchards(basedonthesizeanddensity oftrees)andurbanareas(basedonthenumber,sizeanddensity ofbuildings)andhencemanagedandcultivatedareas.Eachlarge objectisalsoassociatedwithafieldsizeclassastheLCCS differen-tiatesbetweensmall(≤8ha),medium(≥8haand≤20ha)andlarge (>20ha)areas.Akeycriterionhereistoensureappropriate delin-eationofthelargerenclosingobjects,whichcanbeproblematic (e.g.,whendealingwitholivegroves)andmaynecessitatetheuse ofexistingancillaryinformation(e.g.,relatingtofieldboundaries). Onceareasareassociatedwiththeselabels(i.e.,‘terrestrial’or ‘aquatic’, ‘vegetated’or ‘not vegetated’, ‘cultivated, managedor artificial’,or‘naturalorsemi-natural’),thesearecross-tabulated togenerateaclassificationof Level3categories (e.g.,terrestrial vegetated cultivated/managed; see Fig.1).The accuracy in the classificationofthesecategoriesneedstobehighasseparate clas-sificationsofeachareperformedsubsequentlywhen classifying beyondLevel3.

ClassificationbeyondLevel3

Whenclassifying beyondLevel3, thirty-two separatelayers (columnsintheRAT)aregenerated,whicharepopulated subse-quentlywithclasscodesdefinedwithintheLCCS(Table3).These codesarethencombinedwithintheRATtogeneratethefinal classi-ficationlabel.Asanexample,elevencodesareusedforvegetation. In thefirstinstance,woody(A1)and herbaceous(A2)lifeforms

(8)

Fig.6.Classificationsofvegetationasafunctionof(a)heightand(b)coverbasedonLIDARandVHRopticaldatarespectivelyand(c)theresultingLCCSclassificationfor Veluwe,theNetherlands.

andcryptograms(A7)aredifferentiated.Inthewoodycategory, trees(A3)andshrubs(A4)areseparatedwhilstintheherbaceous category,forbs(A5)andgraminoids(A6)aredistinguished. Cryp-togramsaredividedintolichens(A8codeifterrestrialvegetated (A2)andA10ifaquaticvegetated(A24))andmosses(A9ifA12; A11ifA24).Lifeformsarethencategorizedaccordingtotheircover (A12–A20codes,fordifferentpercentagecovers),height(B1–B10, fordifferentvegetationheights),spatialdistribution(continuous

(C1)or fragmented(C2)), leaf type (broad-leaved (D1), needle-leaved(D2)oraphyllous(D3)),seasonality/leafstrategy(evergreen (E1),deciduous(E2),semi-evergreen,E3))and/orlifecycle(annual (E5)orperennial(E6))andstratification(one,twoormorelayers; F1,F2etc.).Theassignedcodesarethencombinedandtranslated toameaningfuldescription;forexample,A12.A3.A11.B5.C1.D1.E1 translatestosemi-naturalopencontinuoushighbroadleaved ever-greenforest.Anexampleof theclassification fortheVeluwein

(9)

Fig.7.Areasofthegrassland(GRA),whichcanbedifferentiatedwheretheseoccur adjacent(withaborder)tourbanbuildings(URB).

theNetherlandsisprovidedinFig.6.Inthiscase, the classifica-tionbenefitsfromtheinclusionofLIDARdataastheLCCSdescribes vegetatedareasonthebasisoftheirheight(withdivisionsat0.03, 0.3,0.5,0.8,3,5,7,14,and30m)andcover(withdivisionsat1, 4,15,40and65%).TheLIDARpointclouddatacanalsobebinned onaperunitareabasistodifferentiatevegetationwithoneortwo ormorelayers,withthisdescribingtheirstratification(Miuraand Jones,2010;Buntingetal.,2013).Watercansimilarlybedescribed inrelationtoitsstate(water,iceorsnow),persistence,depth, sed-imentloadandsalinity.IntheEODHaMSystem,notalllayersneed tobepopulatedtogeneratethefinalclassification.Forexample, informationonleaftype(D1,D2orD3)maybemissingorwoody shrubsareunabletobedistinguishedfromtreesandhenceremain aswoody(A1).Hence,landcovermapscanstillbegeneratedeven thoughsomeLCCScodesarenotavailable.

EODHaM3rdstage:translationtoGHCs

Inthe3rdstageofEODHaM,GHCsandAnnexIhabitatmaps areautomaticallyproducedbasedonatranslationfromtheLCCS classes extracted in theprevious stages. Mapping relationships and discrepancies in definitions between the LCCS and GHCs taxonomiesareoutlinedinKosmidouetal.(2014).Several one-to-manyrelationshipsfromLCCStoGHCsclasseshavebeenobserved. Toresolvesuchambiguities,additionalsite-specificexpertrules, usingancillarydata,morphologicalandtopologicalfeaturesand contextual information (e.g., proximity, adjacency), have been identifiedandreportedbyAdamoetal.(2014),withthese inte-grated within the EODHaM system. For example, herbaceous graminoids(CHE)adjacenttobuildings(URB),regardlessof den-sity,aredescribedasUrban/Herbaceous(GRA;Fig.7),asdiscussed byBunceetal.(2011).LIDARdatacanalsobeusedtodeterminethe GHCsrelatingtolow,medium,tallorforestphanaerophytes(i.e., LPH,MPH,TPHandFPHrespectively;Bunceetal.,2008,2011).In caseLIDARdataarenotavailable,textureanalysismeasures(i.e., localentropy)areusedassurrogatestodiscriminatevegetation heightcategories(Petrouetal.,2012,2014a;Adamoetal.,2014).

Toincrease therobustness and transferability of the frame-worktolandscapesindifferentgeographicallocations,ascheme

Therationaleistohandleuncertaintyintheoutcomeofexpertrules andmissinginformationandcounteractboththepotentialnoise afflictionofthedataandinaccuraterulethresholdsprovidedbythe experts.Usingalinearmembershipfunction,eachpotentialGHC classeventofacertainobjectisgivenabasicprobabilityassignment value.Incaseinadequateinformationisavailabletodiscriminate among certainpotentialGHCclasses,eventsconsistof multiple GHCclasses.Beliefandplausibilityvaluesarethenassignedtoeach event.Thefinaleventisselectedastheonewiththesmallest num-berofclassesundertherequirementofminimumbeliefvalueof 0.75or0.94,foreventswithsingleormultipleclassesrespectively (Petrouetal.,2014b).

TheEODHaMapproachhasbeenextendedtoincludethe extrac-tionofAnnexImaps,withrulesetsdefinedforthetranslationof LCCStoGHCandtoAnnexIclasses(usingGHCqualifiers)(Tomaselli etal.,2013).TheLCCSattributesandGHCqualifiersreferto addi-tionallayersofinformation(e.g.,lithology,moisture,soilaspect, acidity,elevation,climate),whichhelptoresolveambiguitiesinthe classificationtoAnnexI.Wheneversuchdatalayersare unavail-able,multipleAnnexIclassesmayresultwhentranslated from someGHCsclasses.

Several approaches to asses the accuracy of the land cover and habitatclassificationsare available,withthesebased upon theLCCCclasscomponents,thecombinedLCCSclasscodes, the GHCstranslatedfromtheseand/ortheAnnexIcategories. Accu-racycanbeassessedagainstinsitudataorotherremotesensing data(e.g.,aerialphotography).Asanexample,forthesites con-sidered,usersandproducersaccuracies(Congalton,1991)forthe LCCSclassesweregenerallygreatest(typicallyover97%)for homo-geneous classes(e.g.,coniferous plantations,openwater,active raisedbogintemperateenvironments)butleast(sometimesaslow as∼30%;closetochance)formorecomplexand heterogeneous landcovers(e.g.,naturalaquaticperennialgraminoidsinItalyand mossesonfloodedlandinWales).

Changedetectionmodules

Awiderangeoftechniqueshavebeendevelopedfordetecting changeusingEOdata(Singh,1989;Bovoloetal.,2012).Common amongsttheseareimageandclassdifferencing,changevector anal-ysis,andcrosscorrelationanalysis(KoelnandBissonnette,2000; Blaschke,2010;Chenetal.,2012).WithintheEODHaMsystem,six typesofchangeassessmentareconsidered,withthesebasedon theuseoftheRATmatrixoftheKEAfileformat:changesin(i)LCCS classes(orGHCs),(ii)LCCScomponentcodes,(iii)thenumberof extractedobjectsbelongingtothesamecategory(e.g.,buildings), (iv)objectsizeandgeometry(splittingormerging),(v)EOdata andderivedmetrics(e.g.,LIDAR-derivedheightortheNDVI),and (vi)calculatedlandscapeindicators.Changedetectionispossible, even whensomeinformation onhabitatsor indicatorsis miss-ing.ExamplesofchangesthataredetectedareprovidedinFig.8, wherebyindividualcaravansaretrackedovertime(delineatedtree crownscouldsimilarlybemappedovertimetoquantifylosses)and changesinclassassignment(vegetationtowater)andthePSRIare indicated.

Discussion

UseoftheLCCSandGHCstaxonomies

WhenclassifyinglandcoversfromEOdata,acommonapproach has been to take training areas for pre-defined classes (e.g.,

(10)

Fig.8. Classificationsofchange(circled)inCorsFochno,Wales,showing(a)anincreaseinthenumberofextractedobjects(inthiscase,mobilecaravans),(b)waterinundation (blue)fromfloodingandtides,withthisdeterminedasachangeintheLCCSclasslabelandsub-code,and(c)diebackofstandsofP.australis(whitershades)betweenTime 1andTime2,asindicatedbyanincreaseinthePSRI.ThesechangeobservationsgivelandmanagersevidenceofthechangesoccurringwithinandsurroundingtheNatura 2000site.

broadleaveddeciduousforest)and usethestatistics fromthese toprovideaclassificationresult(e.g.,Muchoneyetal.,2000;Xie etal.,2008).TheEODHaMsystemtakesa differentapproachby classifyingthecomponentsofeachLCCSclass(e.g.,broadleaved, deciduousand forest)basedonarange ofinputdata(airborne, spaceborne, thematic) and then combining these to provide a meaningful description(i.e.,broadleaveddeciduousforest).The mainbenefitisthattheclasses,whichcanbenumerous,are rel-evanttoanylocationworldwide(byvirtueofusingtheLCCSand GHCtaxonomies)andtheclassificationcanbeappliedatanyspatial scaleprovidedthatfeatureswithinthelandscapecanbeadequately resolvedandappropriate spectraldata (intermsof wavelength regions)areavailable.Hence,sensorssuchastheWorldview-2, Quickbirdand/orLandsatdatacanbeusedtoclassifysitesranging insizefromseveraltohundredsofkm2.Whereavailable,LIDAR

datahave alsobeen integrated primarily to classifyvegetation

heightandcover.Whereonlycoarserspatialresolutiondataare available,suchasprovidedbytheLandsatsensors,the classifica-tionofsomeelementsofthelandscape(e.g.,buildings,hedgerows) maynotbeachieved.Ingeneral,thesequence ofrulesusedfor classificationremainsthesamebutthethresholdvaluesmayvary dependingupon theimage dataused,prevailingenvironmental conditionsandlocalknowledge.Thresholdsaregenerally trans-ferabletootherregionswhenusingdatafromthesamesensors, withpreferencegiventoimageryacquiredpriortoandduringthe peakvegetationflushperiod.

Detectionofchange

Mostchangedetectiontechniquestypicallyfocusonjustone elementofthechangeprocess, whetherit bea changeinclass (e.g.,toindicateprocessesofdeforestation)orreflectancevalues

(11)

cessconsidersdifferencesintheLCCSclasscodes(includingtheir components),thenumbers,sizesanddimensionsofobjectsinthe landscape,anddifferencesinimagedatavaluesandderived meas-ures.Assuch,theEODHaM systemprovidesusers witha more completeinsightintothechangesthatareoccurringwithin pro-tectedareasandtheirsurroundsandalsoresultsthatareeasierto interpret.Ratherthanstatingonlythatachangehastakenplace, thechangeitselfisdescribedindetail.

Limitationsofapproach

Thegreatest difficultyinthemapping oftheLCCSclasses is thedifferentiationofaquaticvegetationaswellascultivatedand managedareas.Thiscanbepartlyovercomebydeveloping context-sensitive rules or referring to existing ancillary data layers or hydrologicalmodels.Inthecaseofancillarylayers,cadastral infor-mationcanbeusedtoidentifyvegetationoccurring,forexample,in riceorcottonfields.Whilsttheclassificationiscurrentlyrule-based, outputsfromotherclassificationprocedures(e.g.,supervised, sup-portvectormachines)canbeused.Forexample,componentsof theseclassifications(e.g.,mapsof forestextent,waterorurban areas)canbeusedasdirectinputtotheEODHaMsystem.A fur-therlimitationisthatsubpixelproportions(e.g.,ofplantfunctional types)arenotyetintegratedwithintheclassification.Thesecan, however,bedeterminedaprioribasedon,forexample,spectral end-memberunmixingorfuzzyclassificationandaddedtotheRAT. EachobjectwouldthenbeclassifiedaccordingtotheLCCS taxon-omybasedonthedominantclass(e.g.,woodyshrubs,graminoids, forbs)orbygenusorspecies,withinformationontherelative pro-portionsoftheremaininglifeforms,generaorspeciesoccurring withintheobjectalsoretainedforfurtheranalysis.

Summaryandconclusions

TheEODHaMsystem(whichisoutlinedinFig.2)iscomprised of softwarethat allows for classification withinthe framework oftheFAOLCCSandsubsequenttranslationoftheLCCSclasses (Level3andbeyond)toGHCsand AnnexIhabitats(takinginto accountambiguities).Thesetaxonomiesarerecognizedfortheir globalapplication.TheEODHaMsystemwasdevelopedusingVHR databutdatafrommoderateresolutionopticalsensorscanalso beusedasthesameLCCStaxonomyisapplied.However,thereis ascaledependencyonthenumberandtypesofclassesthatcan bediscriminated.Classificationscanalsobeundertakenbasedon knowledgeoftheuserwithouttheneedforextensivegroundtruth datasets.Changedetectionmodulesareavailablewiththesebased onchanges inLCCScodes andclasses,spectral dataand indices andcountsofextractedobjects(e.g.,trees,buildings).Thesystem islargelyautomated,withuserinteractionrequiredprimarilyto fine-tunethethresholdsusedintherule-basedsystem.Thesystem benefitsfrominteractionsbytheendusersinrefiningtherulesused forclassificationandselectingancillarydata(e.g.,tidallevels) rele-vanttothediscriminationoflandcovertypes.Overall,theEODHaM systemprovidesaframeworkandpotentiallyoperationalapproach tothemonitoringofprotectedareasandtheirsurroundsfromEO data.

BasedonEOdataavailability,themethodshavebeen success-fullyappliedtoNatura2000sitesandtheirsurroundsinWales,the NetherlandsandItalyandhavebeenevaluatedatotherlocations inGreece,Portugaland India,thereby coveringarangeof envi-ronmentalandbiogeographiccontexts.Ineachcase,aconsistent

source software and uses a diversity of EO and also ancillary datasets.Thesystemcanbereadilyadoptedbymanagersof pro-tectedsitesandtheirsurroundsforconsistentlandcover,habitat andultimatelybiodiversitymonitoringwithinandbetweensites andimprovingtheeffectivenessofpolicyandmanagementwhilst copingwithnationalandinternationalreportingobligations.

References

Adamo,M.,Tarantino,C.,Tomaselli,V.,Kosmidou,V.,Petrou,Z.I.,Manakos,M., Lucas,R.M.,Mücher,C.A.,Veronico,G.,Marangi,C.,DePasquale,V.,Blonda, P., 2014. Expert knowledge for translating land cover/use maps to gen-eralhabitatcategories(GHC).Landsc.Ecol.29,1045–1067,http://dx.doi.org/ 10.1007/s10980-014-0028-9.

Arias,M.,Inglada,J.,Lucas,R.M.,Blonda,P.,2013.HedgerowsegmentationonVHR opticalsatelliteimagesforhabitatmonitoring.In:Proceedings,Geoscienceand RemoteSensingSymposium(IGARSS),pp.3301–3304.

Bhandari,S.,Phinn,S.R.,Gill,T.,2012.PreparingLandsatimagetimeseries(LITS)for monitoringchangesinvegetationphenologyinQueensland,Australia.Remote Sens.4,1856–1886.

Blaschke,T.,2010.Objectbasedimageanalysisforremotesensing.ISPRSJ. Pho-togram.Rem.Sens.65,2–16.

Blaschke,T.,Strobl,J.,2001.What’swrongwithpixels?Somerecent develop-mentsinterfacingremotesensingandGIS.InterfacingRemoteSens.GIS6, 12–17.

Blonda,P.,Lucas,R.,Honrado,J.P.,2013.FromSpacetospecies:Solutionsfor biodi-versitymonitoring.In:WindowonCOPERNICUS,SpecialIssueonDiscoverwhat CopernicuscandoforEuropeanregionsandcities.SuccessStories.,pp.66–73, http://copernicus4regions.eu/dirpublication.

Bovolo,F.,Marchesi,S.,Bruzzone,L.,2012.Aframeworkforautomaticand unsuper-viseddetectionofmultiplechangesinmultitemporalimages.IEEETrans.Geosci. RemoteSens.50(6),2196–2212.

Bunce,R.H.G.,Metzger,M.J.,Jongman,R.H.G.,Brandt,J.,deBlust,G.,ElenaRossello, R.,Groom,G.B.,Halada,L.,Hofer,G.,Howard,D.C.,Kováˇr,P.,Mücher,C.A., Padoa-Schioppa,E.,Paelinx,D.,Palo,A.,Perez-Soba,M.,Ramos,I.L.,Roche,P.,Skånes, H.,Wrbka,T.,2008.Astandardizedprocedureforsurveillanceandmonitoring Europeanhabitatsandprovisionofspatialdata.Landsc.Ecol.23,11–25. Bunce, R.G.H., Bogers, M.M.B., Roche, P., Walczak, M., Geijzendorffer, I.R.,

Jongman, R.H.G., 2011. Manual for Habitat Surveillance and Monitoring and Vegetationin Temperate,Mediterranean and DesertBiomes. Alterra-EBONEHandbookv20110131.http://wageningenur.nl/ebone

Bunce,R.G.H.,Bogers,M.M.B.,Evans,D.,Halada,L.,Jongman,R.H.G.,Mucher,C.A., Bauch,B.,deBlust,G.,Parr,T.W.,Olsvig-Whittaker,L.,2013a.Thesignificance ofhabitatsasindicatorsofbiodiversityandtheirlinkstospecies.Ecol.Indic.33, 19–25.

Bunce,R.G.H.,Bogers,M.M.B.,Evans,D.,Jongman,R.H.G.,2013b.Fieldidentification ofhabitatsdirectiveAnnexIhabitatsasamajorEuropeanbiodiversityindicator. Ecol.Indic.33,105–110.

Bunting,P.,Clewley,D.,Lucas,R.M.,Gillingham,S.,2014.Theremotesensingand GISsoftwarelibrary(RSGISLib).Comp.Geosci.62,216–226.

Bunting,P.,Gillingham,S.,2013.TheKEAimagefileformat.Comp.Geosci.57,54–58. Bunting,P.,Armston,J.,Lucas,R.M.,Clewley,D.,2013.SortedPulseData(SPD) Library.PartI:agenericfileformatforLIDARdatafrompulselasersystems interrestrialenvironments.Comp.Geosci.56,197–206.

Chen,G.,Hay,G.J.,Carvalho,L.M.T.,Wulder,M.A.,2012.Object-basedchange detec-tion.Int.J.RemoteSens.33(No.14),4434–4457.

Congalton,R.G.,1991.Areviewofassessingtheaccuracyofclassificationsofremote sensingdata.RemoteSens.Environ.37,35–46.

Comaniciu,D.,Meer,P.,2002.Meanshift:arobustapproachtowardsfeaturespace analysis.IEEETrans.PatternsAnal.Mach.Intell.24(5),603–619.

Couclelis,H.,2010.Ontologiesofgeographicinformation.Int.J.Geogr.Inform.Sci. 24(12),1785–1809.

Clewley,D.,Bunting,P.,Shepherd,J.,Gillingham,S.,Flood,N.,Dymond,J.,Lucas,R., Armston,J.,Moghaddam,M.,2014.Apython-basedopensourcesystemfor geo-graphicobjectbasedimageanalysis(GEOBIA)utilizingrasterattributetables. RemoteSens.6,6111–6135.

diGregorio,A.,Jansen,L.J.M.,2005.LandCoverClassificationSystem(LCCS): Classi-ficationConceptsandUserManualforSoftware.Version2.TechnicalReport8. FAOEnvironmentandNaturalResourcesServiceSeries,Rome.

EuropeanCommission,2011.OurLifeinsurance,ourcapital:anEUbiodiversity strategyto2020.COM(2011)244final.LuxemburgPublicationOfficeofthe EuropeanUnion,pp.28,http://biodiversity.europa.eu/

Fisher,J.I.,Mustard,J.F.,Vadeboncoeur,M.A.,2006.GreenleafphenologyatLandsat resolution:scalingfromthefieldtothemountain.RemoteSens.Environ.100, 265–279.

Hay,G.J.,Castilla,G.,2008.Geographicobject-basedimageanalysisGEOBIA):anew nameforanewdiscipline.In:Blaschke,T.,Lang,S.,Hay,G.J.(Eds.),Object-Based ImageAnalysis,LectureNotesinGeoinformationandCartography.Springer, Berlin,Heidelberg,pp.75–89.

(12)

Marceau,D.J.,Howarth,P.J.,Gratton,D.J.,1994.Remotesensingandthe measure-mentofgeographicalentitiesinaforestedenvironment.1.Thescaleandspatial aggregationproblem.RemoteSens.Environ.49,93–104.

Miura,N.,Jones,S.D.,2010.Characterisingforestecologicalstructureusingpulse typesandheights ofairbornelaser scanning.Remote Sens. Environ.114, 1069–1076.

Muchoney,D.,Borak,J.,Chi,H.,Friedl,M.,Gopal,S.,HodgesMorrow,N.,Strahler, A.,2000.ApplicationoftheMODISglobalsupervisedclassificationmodelto vegetationandlandcovermappingofCentralAmerica.Int.J.RemoteSens.21 (6–7),1115–1138.

Mücher,C.A.,(Ph.D.thesis)2009.Geo-spatialModellingandMonitoringofEuropean LandscapesandHabitatsUsingRemoteSensingandFieldSurveys. Wagenin-gen University, Wageningen, The Netherlands, ISBN 978-90-8585-453-1, pp.269.

Mücher,C.A.,Gerard,F.,Olschofsky,K.,Hazeu,G.W.,Luque,S.,Pino,J.,Gregor, M.,Wachowicz,M.,Halada,L.,Tompo,E.,Kohler,R.,Petit,S.,Smith,G.,Kolar, J.,2006. Spatialimpactofconservationsites(Natura2000)onlandcover changes.In:ProceedingsoftheSecondWorkshopoftheEARSeLSIGonRemote

stages.RemoteSens.Environ.81,337–354.

Tomaselli,V.,Dimopoulos,P.,Marangi,C.,Kallimanis,A.S.,Adamo,M.,Tarantino,C., Panitsa,M.,Terzi,M.,Veronico,G.,Lovergine,F.,Nagendra,H.,Lucas,R.,Mairota, P.,Mücher,S.,Blonda,P.,2013.Translatinglandcover/landuseclassifications tohabitattaxonomiesforlandscapemonitoring:aMediterraneanassessment. Landsc.Ecol.28(5),905–930.

Vermote,E.F.,Tanre,D.,Deuze,J.L.,Herman,M.,Morcrette,J.J.,2003.Second Simula-tionofthesatellitesignalinthesolarspectrum(6S).IEEETrans.Geosci.Remote Sens.35(3),675–686.

Vicente,J.R.,Fernandes,R.F.,Randin,C.F.,Broennimann,O.,Gonc¸alves,J.,Marcos,B., Pôcas,I.,Alves,P.,Guisan,A.,Honrado,J.P.,2013.Willclimatechangedrivealien invasivespeciesintoareasofhighconservationvalue?Animproved model-basedregionalassessmenttoprioritizethemanagementofinvasions.J.Environ. Manage.131,185–195.

Xie,Y.,Sha,Z.,Yu,M.,2008.Remotesensingimageryinvegetationmapping:a review.J.PlantEcol.1(1),9–23.

Zhu,Z.,Woodcock,C.,2012.Continuousmonitoringofforestdisturbanceusingall availableLandsatimagery.RemoteSens.Environ.144,152–171.

Figura

Fig. 1. The FAO land cover classification scheme encompassing Levels 1 to 3 and beyond.
Fig. 2. Overview of the EO components within the EODHaM system. The system is hierarchical and top down and commences with the classification of Levels 1 and 2, with this based on spectral processing alone, and continues to LCCS Level 3 and beyond
Fig. 3. Tree crowns and clusters of tree crowns delineated (using feature extraction based on a pixel-based analysis) in (a) olive groves near the Kalamas Delta in Greece and (b) a natural setting near Remondes in Portugal.
Fig. 4. The mean Worldview-2 reflectance (near infrared 2, red and blue in RGB) associated with (a) small and (b) large objects for a mixed forest and agricultural landscape in northern Portugal
+4

Riferimenti

Documenti correlati

We also present the first results of the temperature and humidity system commissioned in a Beam Test at DESY in April 2016 and the preliminary results of the radiation

Syntax Systems in IoT-LySa are pools of nodes (things), each hosting a shared store for internal communication, sensors and actuators, and a finite number of control processes

Aim of this work was to analyse the phenolic composition of grape berries from Cabernet Cortis, Johanniter, Solaris, Regent and Phoenix cultivars grown in Italy and Regent and Phoenix

(a cura di), Rotte e porti del Mediterraneo dopo la caduta dell'Impero romano d'Occidente: continuità e innovazioni tecnologiche e funzionali: atti del IV

Concerning the patients without life-threatening hypertensive crises, the current Guidelines for the management of high blood pressure provide clear indications, suggesting the need

Referring to hot water installations, according to the Regulation of the Minister of Infrastructure with regard to technical conditions which buildings and their location should

Renewable energy sources used in the project should ensure the sufficient electricity volume for a family of four in the annual balance, but the stochastic nature of the energy

- using the simulation model as a tool replacing the constant monitoring of runoff in storm water drains requires the maintenance of rain gauge monitoring with a density enabling the