• Non ci sono risultati.

CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): Implications for monitoring of CO2 storage sites

N/A
N/A
Protected

Academic year: 2021

Condividi "CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): Implications for monitoring of CO2 storage sites"

Copied!
14
0
0

Testo completo

(1)

International

Journal

of

Greenhouse

Gas

Control

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / i j g g c

CO

2

and

Rn

degassing

from

the

natural

analog

of

Campo

de

Calatrava

(Spain):

Implications

for

monitoring

of

CO

2

storage

sites

J.

Elío

a,∗

,

M.F.

Ortega

a

,

B.

Nisi

b

,

L.F.

Mazadiego

a

,

O.

Vaselli

c,d

,

J.

Caballero

a

,

F.

Grandia

e

aUniversidadPolitécnicadeMadrid(UPM),Madrid,Spain bCNR-IGGInstituteofGeosciencesandEarthResources,Pisa,Italy cDepartmentofEarthSciences,Florence,Italy

dCNR-IGGInstituteofGeosciencesandEarthResources,Florence,Italy eAMPHOS21,Barcelona,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received8July2014

Receivedinrevisedform17October2014 Accepted23October2014

Availableonline13November2014 Keywords: CO2storage Geochemicalmonitoring CO2leakages Radonisotopes Naturalanalogs Soilgases

a

b

s

t

r

a

c

t

Naturalanalogsofferavaluableopportunitytoinvestigatethelong-termimpactsassociatedwiththe potentialleakageingeologicalstorageofCO2.

DegassingofCO2andradonisotopes(222Rn–220Rn)fromsoil,gasventsandthermalwaterdischarges

wasinvestigatedinthenaturalanalogofCampodeCalatravaVolcanicField(CCVF;CentralSpain)to determinetheCO2–RnrelationshipsandtoassesstheroleofCO2ascarriergasforradon.Furthermore,

radonmeasurementstodiscriminatebetweenshallowanddeepgassourceswereevaluatedunderthe perspectiveoftheirapplicabilityinmonitoringprogramsofcarbonstorageprojects.

CO2fluxashighas5000gm−2d−1and222Rnactivitiesupto430kBqm−3weremeasured;220Rn

activi-tieswereoneorderofmagnitudelowerthanthoseof222Rn.The222Rn/220Rnratioswereusedtoconstrain

thesourceoftheCampodeCalatravasoilgasessinceapositivecorrelationbetweenradonisotopicratios andCO2 fluxeswasobserved.Thus,inagreementwithpreviousstudies,ourresultsindicateadeep

mantle-relatedoriginofCO2forbothfreeandsoilgases,suggestingthatcarbondioxideisanefficient

carrierforRn.Furthermore,itwasascertainedthattheincreaseof222Rninthesoilgaseswaslikely

pro-ducedbytwomainprocesses:(i)directtransportbyacarriergas,i.e.,CO2and(ii)generationatshallow

levelduetothepresenceofrelativelyhighconcentrationsofdissolvedUandRainthethermalaquifer ofCampodeCalatrava.

ThediffuseCO2soilfluxandradonisotopicsurveyscarriedoutintheCampodeCalatravaVolcanic

FieldscanalsobeapplicabletogeochemicalmonitoringprogramsinCCS(CarbonCaptureandStorage) areasastheseparametersareusefulto:(i)constrainCO2leakagesoncedetectedand(ii)monitorboththe

evolutionoftheleakagesandtheeffectivenessofsubsequentremediationactivities.Thesemeasurements canalsoconvenientlybeusedtodetectdiffuseleakages.

©2014ElsevierLtd.Allrightsreserved.

1. Introduction

CarbonCaptureandStorage(CCS)isoneofthemostfeasible techniquestoreduceanthropogenicgreenhousegasemissionsinto theatmosphere,allowingfossilfuelscombustiontobe environ-mentallysustainable(IEA,2008;IPCC,2005).In2011theUnited Nations Framework Convention on Climate Change of Durban (UNFCCC,2011)definedCCSasacleandevelopmentmechanism. However,itscommercialapplicationstillrequiresfurther (theoret-icalandpractical)investigationsinordertomakethistechnology

∗ Correspondingauthor.Tel.:+34913366989;fax:+34913366948. E-mailaddress:javiereliomedina@gmail.com(J.Elío).

economicallyviableandenvironmentallysafe.Moreover,aproper evaluationofthecosts(Kühnetal.,2013;LupionandHerzog,2013; NatalyEchevarriaHuamanandXiuJun,2014;Romanaketal.,2013) isneededsinceCCScanbedifficulttosustainbyprivate compa-nieswithoutfinancialsupportbygovernmentalauthoritiesunless carbonsequestrationwithenhancedgasrecoveryandoil recov-eryisapplied(CSEGRandCSEOR;e.g.,Oldenburg,2003;Solomon etal.,2008).Eventually,asrecentlysuggested,e.g.,Oldenburg,2012 andreferencestherein,anthropogenicCO2canbeusedtoimprove theeconomicviabilitybyincreasingtheuseofthis greenhouse gasfordifferent(e.g.,industrial,agricultural,foodandbeverages, pharmaceutical,chemical,healthcare)purposes.Thus,ithasbeen suggestedtoincludethetermof“utilizationofCO2”intheCCS process,i.e.,carboncapture,utilizationandstorage(CCUS).

http://dx.doi.org/10.1016/j.ijggc.2014.10.014 1750-5836/©2014ElsevierLtd.Allrightsreserved.

(2)

ThestudyofnaturalsystemshostingCO2-richgasreservoirscan helptointerpretthedifferentstagesoftheCO2storageprocesses, whichnormallyrequirelongperiodsoftimeandcanonlypartially bereproducedinthelaboratory(Pearce,2006).Consequently,in therecentyearsalargenumberofstudiesaddressedtothe eval-uationofleakageprocessesfromCO2-richnaturalanalogsandthe implicationsforthegeologicalstorageofCO2hasbeenperformed (e.g.,Galetal.,2012;Hollowayetal.,2007;Jeandeletal.,2010; Lewickietal.,2007;Voltattornietal.,2009).

Surface monitoring methods (e.g., water and dissolved gas chemistryandsoil-gasinvestigations)arerelevantinthe moni-toring,verificationandaccounting(MVA)ofCO2geosequestration toassesstheenvironmentallysafestorage(Klusman,2011),during bothsitecharacterizationandinjectionandpost-injectionphases. Thesemethodshavebeenorientedtodetectandquantify possi-bleCO2 leakagestotheatmosphere and covera largerange of techniques(e.g.,IPPC,2006;NETL,2009).

Measurementsofradonactivity(222Rn–220Rn)insoilgasesare consideredusefulin monitoringprogramsof geologicalstorage fortwomainreasons:(i)CO2 isoftenregardedasthemain car-riergasforradon(e.g.,EtiopeandMartinelli,2002;Etiopeetal., 2005;Voltattornietal.,2009),andthenCO2 leakagesfromdeep sourcesmayproducesignificantanomaliesinradonactivity,and (ii)radon,similarlytoCO2,canbeusedtodetectfracture/fault sys-temssincetheyrepresentthepreferentialpathwaysforgasleakage (e.g.,Ioannidesetal.,2003;Waliaetal.,2010).Radon measure-mentsatthesoil-atmosphereinterfaceforleakagedetectionwere appliedinsomeprojectsofCO2geologicalstorage,suchastheIEA GHGWeyburnCO2 Monitoringand StorageProject (Riding and

Rochelle,2005;Struttetal.,2003;WilsonandMonea,2004)and theFrioBrinePilotProject(Nanceetal.,2005).

Thedetectionofradonemissionisalsosignificantintermsof itseffectonhumanhealth.USEPAhasestimatedthatradonisthe secondcauseoflungcanceraftersmoking(e.g.,EPA,2003;Field etal.,2000;RosarioandWichmann,2006).Thus,recognizing posi-tivecorrelationsbetweenRnandCO2anddefiningRnabundances frompermeablezonesarecriticalandwouldallowthedefinition ofpotentialhazardareastobetakenintoconsiderationintherisk assessmentofgeologicalstorage.

Thisresearcharticledescribesanddiscussestheresultsobtained onfree-andsoil-gasesfromtheCampodeCalatravaVolcanicField (CCVF)naturalanalog,whichislocatedintheNeogeneGranátula –MoraldeCalatravaBasin(centralSpain).Themaingoalsofthis studywereto(i)determinetherelationshipsbetweenCO2fluxes andactivityofradonisotopes(222Rnand220Rn)inthesoilgasand (ii)toassessthepossibleuseofradonmeasurementsasmonitoring toolinCCSprojects.

1.1. Radonphysical-chemicalbackground

Radonhasfourmainisotopes,218Rn,219Rn,220Rnand222Rn, whicharedecayproductsof218At,223Ra,224Raand226Ra, respec-tively,allbelongingtotheUandThdecayseries.Radonisotopes arecharacterizedbyrelativelyshorthalf-livesbeing222Rn(t

1/2=3.8 days)and220Rn(t

1/2=55seconds)withthelongesthalf-lives(e.g.,

Fleischer,1997).Thedecayproductsof220Rn(commonlynamed thoron)and222Rnaretheradioactiveisotopesofpolonium, bis-muth,leadandthallium.While220Rnhasnolong-livedprogeny, 222Rnhas214Pb,214Biand214Po(e.g.,RamachandanandSathish,

2011).

Radon(222Rn–220Rn)activityhasextensivelybeenusedinthe earthsciencesastracerofUdeposits(e.g.,SuttonandSoonwala, 1975),precursorofseismicandvolcanicactivity(e.g.,Cox,1980; Due ˜nasandFernández,1987;FleischerandMogro-Campero,1978; Nielson,1978),tracerofsubsurfacefracturesystems(Waliaetal., 2010),oil/gasreservoirs(KlusmanandVoorhees,1983;Morseetal.,

1982; Mazadiego, 1994) and subsurface hydrocarbon pollution (Davis etal.,2003;García-Gonzálezet al.,2008;Schubertetal., 2001).Recently,radonisotopeshavebeenappliedtodistinguish CO2 emission fromdeepand shallow(biogenic)sources(Etiope

etal.,2005;EtiopeandMartinelli,2002;Giammancoetal.,2007; Michel-LePierresetal.,2010;Voltattornietal.,2009).

Aschematiccycleof220Rnand222Rnisotopesisreportedin

Fig.1.Themobilityofradonisotopeparents,includinguraniumand radium,islimited.Uranium(anelementwithlong-livedisotopes) is foundin minerals and chemical alterationfavors itstransfer tosurfaceandgroundwaters(e.g.,BonottoandAndrews,1999; Mazadiego,1994).Aqueousdissolutionofuraniumminerals(e.g., uraninite)canberepresentedbythefollowingreaction:

UO2(s)+2H++O2→UO22+(aq)+H2O

Additionally,ifwatercontainsHCO3−andCO32−themobilityof uraniumtendstoincreaseduetotheformationofcarbonate com-plexes(Casasetal.,1998;Gorman-Lewisetal.,2008;Majumdar etal.,2003).Underoxidizingconditions,uranium insolutionis preferentiallypresentasuranylion(UO22+),whereasU4+prevails inreducingconditionsandUO2canprecipitate(e.g.,Bonottoand

Andrews,1999;García-Gonzálezetal.,2008).

The uranyl ion may also be trapped in clay minerals and ironoxy-hydroxidesbyadsorption/absorptionprocesses(e.g.,Hsi andLangmuir,1985;Langmuir,1978).Conversely,radium(with shorter-livedisotopesthanuranium)isexclusivelypresentin solu-tionasRa2+(LangmuirandRiese,1985)andisratherrecalcitrantto formsaltsunderreducingandoxidizingenvironments.Thus,in sur-faceandgroundwatersradiumismaintainedinsolution.Neutral oranionic(e.g.,SO4)complexesareformedforpHapproaching10 (LangmuirandRiese,1985).Nevertheless,accordingtoLangmuir andMelchoir(1985)andMartinandAkber(1999),Ra2+can co-precipitate withbarite(BaSO4), witherite (BaCO3)and celestite (SrSO4).Consequently,springwatersandrelatedsaltsmay repre-sentasourceofradon(222Rn–220Rn),whosevaluescanbehigher thanthoseofthebackgroundsignals.

Inthevadosezone,Rnmayalsohaveadeeporiginalthough,due toitsrelativelyfastdecay,radonisexpectedtohavesmallmobility fromitssourcebydiffusionprocesses(CothernandSmith,1987; Martinelli,1998;Roseetal.,1979).Thus,undergroundlong migra-tionofradonfromdeepersourcestothesurfacerequiresadvective transportdrivenbymajorgasessuchasCO2andCH4(the“geogas” theory,EtiopeandMartinelli,2002).

AsRnmigrates, theradonisotopic ratioschangedue to sig-nificantdifferencesinthe222Rn and220Rn half-lives.Thelatter is thus preferentially foundclose to the parentisotope source (Huxoletal.,2012,2013).The222Rn/220Rnratioscanbeusedto definethe depthatwhich free- and soil-gases retrieved atthe surfacewereformed(e.g.,Giammancoetal.,2007).The relation-shipbetween222Rnand220Rninsoilgasesisclearlydependent ontheconcentrationoftheirparentsinthesubstrate(238Uand 232Th,respectively).Thus,leakingofdeep-seatedgasesatthe sur-faceisexpectedtoresultinreduced220Rnconcentrations,while the222Rn/220Rnratiosincrease.Relativelylow222Rn/220Rnratios aregenerallyassociatedwiththeproductionofradoninshallow environments(e.g.,Giammancoetal.,2007).

Radonconcentrationsinsoilgasesareaffectedbyanumberof factors,suchasmeteorological,geologicaland pedological(e.g., De Jong et al., 1994; Vaupotic et al., 2007) and major seismic events(e.g.,KingandMinissale,1994;ToutainandBaubron,1999; VirkandWalia,2001).AccordingtoTanner(1980),radoncanbe releasedfromsoilsandrocksbymoleculardiffusion,directrecoil andmoleculardiffusionafterindirectrecoil.Molecularand convec-tionprocessesinfluencesoilradonactivityconcentrations,which

(3)

Fig.1.Sketchofradontransportinliquidandgasphase.

increasewithdepthuntilwhen anequilibriumconcentrationis achieved(NazaroffandNero,1988;Szabóetal.,2013).

Radon (222Rn) concentration (C

Rn in [Bqm−3]) in soil gases dependson226Raconcentration(C

Ra[Bqkg−1]),emanation coef-ficient(ε;adimensional),soildensity ([kgm−3]) andeffective porosity(n;adimensional)(GuerraandLombardi,2001;Schubert etal.,2001),asfollows:

CRn=CRa·ε··n−1 (1)

Soilwater(saturationinporespace,0≤SF≤1)increasesradon concentrationinsoilgas(Schubertetal.,2001).Suchanincrease isdefinedbyEq.(2)(Kw/air=0.25,radonpartitioningcoefficients betweenwaterandair)andplottedinFig.2.Itcanbeseenthatthe 222Rnconcentrationcanincreaseupto300%(S

F=1)withrespect toradonequilibriumindrysoil(SF=0).

1

1−SF+SF·Kw/air (2)

2. Geologicaloutlines

The Campo de Calatrava Volcanic Field(CCVF) is located in the province of Ciudad Real (central Spain) (Ancochea, 1983; Hernández-Pacheco,1932;Fig.3a).Thestudyareaconsistsof a

Hercynian basement covered by late Cenozoic sediments. This basementis unconformablyoverlainbyupper Mioceneto Qua-ternaryfluvialandlacustrinesedimentsdepositedwithinaseries offault-boundedTertiary-Quaternarysedimentarybasinsofupto 200km2.Acomplexfracturepattern(E–WtoENE–WSW,NW–SE andNE–SW)controlsthebasinsgeometries(Crespo,1992).Atleast threedifferentNeogenetectonicepisodeswererecognizedinthe CCVF(IGME,1988).AfirstextensionalphaseoflateMioceneage, whichresultedintheinitialopeningofthesedimentarybasins,was followedintimebytwoPliocenetectonicepisodes:theopening oftheso-calledLaManchabasinandafinalregional-scaleweak compressionalphase. TheMiocene-Quaternary CCVFconsistsof volcanicdepositsofalkalinecomposition(e.g.,Cebriáetal.,2009; CebriáandLópez-Ruiz,1995;López-Ruizetal.,2002).Theareais characterizedby severalgasand water discharges(e.g.,Melero Caba ˜nas,2007; Piedrabuena,1992; Vasellietal.,2013)thatare distributed almostthroughout thewholeCCVF. Itis interesting topointoutthatthegeochemicalandisotopicfeaturesofthegas seepsindicateahighpurityofCO2(upto98.5%byvol.),whilethe heliumisotopicratiosuggestsamantle-relatedsourcefor these gases (Pérez etal., 1996; Vaselli et al., 2013).The CCVF, along withLaSelva-Empordà(NESpain),likelyrepresentsthehighest CO2 dischargeareainthewholecontinentalSpain(Vasellietal.,

(4)

Fig.2. Waterinfluenceintheequilibriumradon(222Rn)concentrationofthesoil-gas.

3. Materialsandmethods

3.1. Areaofstudy

Morethan25CO2 seepages fromCCVF,mainlyassociatedto fracturesystems,wereinvestigatedfromJune 2010toFebruary 2012.Gasleakageswerecommonlyfoundassmall(<1m2) leak-agepoints.ConsideringtheelevatednumberofCO2emissions,this studyfocusedontwoareasthatwereconsideredrepresentative oftheCO2seepageinCCVF,namelyLaSima(drygasvents)and JabalónRiver(degassingpoolsandsprings)(Fig.3a).

LaSimaisaCO2-richgasdischarge(upto2td−1),whichhas asurfaceofafewsquaremeters.Theemissionisrestrictedtoa small(≈5mindiameter)depression,where smalldeadanimals arefrequentlyfound.TheJabalónRiverareaislocated6kmfrom thevillageofGranátuladeCalatrava(Fig.3a).Foursubareaswere considered:(i)Jabalón,(ii)NH-1,(iii)Fontechaand(iv)NH-2.Inthe JabalónRiver,anelevatednumberofCO2-richmanifestations, bub-blingintowarmwater(<30◦C)springs,occur,likelyalignedalonga faultsystemparallel(NW–SE)totheriverbed(12emissionpoints inaprofileofapproximately2km).Thelocationofthestudiedsites whereCO2fluxandradonmeasurementswerecarriedoutisshown inFig.3.

3.2. CO2fluxmeasurements

Carbondioxidesoilfluxesweremeasuredin70stations(Table2, Fig.3)using theaccumulation chambermethod(e.g.,Cardellini etal.,2003;Chiodinietal.,1998),whichisbasedonthe continu-ousmeasurementoftheCO2concentrationswithtimebyusingan invertedchamberplacedontheground.Theaccumulation cham-berdeviceconsistsof:(i)ametalcylindricalchamberwithaninlet netareaandinnervolumeof3.14×10−2m2and3.06×10−3m3, respectively,(ii)anInfra-Red(IR)Spectrophotometer(Licor® Li-820,infra-redsensordetector,measuringrangeof0–20,000ppm, accuracyof4%ofreadings),(iii)ananalog–digital(AD)converter, and(iv)apalmtopcomputer(PC).

3.3. Radonmeasurements

Therecordingoftheradonactivity(70pointsfor222Rnand31 for220Rn,respectively;Table2,Fig.3)wasperformedwithtwo SARAD® RTM-2100devicesand oneionizationchamberRADON V.O.S.,modelRM-2.Soilgaseswerecollectedwithastainless-steel hollowprobe,whichwashammeredintothesoil,downtoadepth of0.75–1.00minordertominimizetheinfluenceofatmospheric factors(e.g.,KingandMinissale,1994).AtLaSima,theprobewas

insertedatthedepthof0.15–0.20mduetothethinsoillayer,which coveredthebedrock.Theradonmonitorwasfittedwithacanister filledwithdrierite(97%CaSO4+3%CoCl2)andahydrophobicTeflon filtertominimizethehumiditycontentwithintheinstrumentand preventingfineparticlesenteringtheionizationchamber( García-Gonzálezetal.,2008).Inthebubblingsites,radonmeasurements werecarriedoutdirectlyintheairflow,withacollectorintowhich thebubblinggaswastrapped.

Theradon(222Rn–220Rn)measurementswereperformedwith a SARAD® RTM-2100byanalyzing theradondaughter isotopes (218Po/214Poand216Po).Thesubsequentradioactivedecayofthese isotopeswasrecordedwithamultichannelanalyzer(alpha spec-trometry).Soilgasesweredrivenintotheionizationchamberby aninternal pump atthe rateof 3Lmin−1. Measurementswere carriedoutwiththeinstrumentin“thoron”modeandwith inte-grationtimeof1min.222Rnactivitywasassignedtothevalueof “radon”after15minandthose ofthoronafter5min.Aftereach seriesofmeasurements,theinternalpumpwassetathighflow (3Lmin−1)for20–30mintocleantheionizationchamberbefore starting anewmeasurement. Thedetection limitof the instru-mentwas1kBqm−3,and thestatisticalerrorat1 wasdefined as100%/√N,whereNisthenumberofregisteredcountsofthe relevantnuclides(218Po/214Poand216Po)withinthetimeinterval. ForanEquivalentRadonConcentrationof1kBqm−3orhigherthe statisticalerrorwasbelow10%.

TheRM-2systemwasdesignedforthedeterminationofsoil gasradon(222Rn)concentrations.Thedetectionprincipleconsists inanionizationchamberwhereapotentialdifferencebetweena positivelychargedmetaloutershellandanelectrodelocatedalong thelongitudinalaxis(0V)wasapplied.Whenradonemitsalpha particles,ionsweredetectedbytheelectrode.Theioncurrentwas thenmeasuredandconvertedtoRnconcentration,expressedas Bqm−3. Thesoil gaswascollectedwitha 150mLsyringe, con-nectedtothetopofastainless-steelhollowprobeandtransferred intoapre-evacuatedionizationchamber(250mL).Pressureinside the chamber was equalized to the ambient atmospheric pres-surebyopeningthevalve.Measurementswerecarriedoutafter 15min.Thedelayof15minensuredthattheactivityof220Rnwas practicallynegligibleduetoitsshorthalf-life.Thedetectionlimit was5kBqm−3.Theuncertaintyofradonconcentration(1␴)was 0.33(Crn)0.5,whereCrn is theradonconcentration(Crn±).The RM-2erroroftheradonconcentrationwasbelow15%.

Radonconcentrations(222Rn[Bqm−3])obtainedwiththetwo instrumentation(SARAD® RTM-2100and RM-2)didnot signifi-cantly differ(relative standard deviation –RSD – around 10%). Thus,the222Rnconcentrationswereanalyzedindependentlyofthe instrument,andwillnotbediscussedfurther.

(5)

Fig.3.Samplingzones:(a)CCVFarea,(b)LaSima,(c)Jabalón,(d)NH-1,(e)Fontechaand(f)NH-2.

3.4. Soilsampling

Eightsoilsamples(Table3;Fig.3)werecollectedtomeasure theconcentrationoftheradonparentradionuclides(U–Ra) and toassesswhetherradonwasoriginatedbythesoilcoverorwas transferredfromdeepsourcesbyadvectivecirculation.Sampling wascarriedoutwithanEdelmanaugeratthesamedepthwhere thesoil-gasesweremeasured:twoatLaSimagasvent(insideand outsidethedegassingsite)andsixattheJabalónRiverarea(2close totheCO2seepage,i.e.,whereCO2 wasbubblinginwater,and4 atadistanceof10–30m).Sampleswereanalyzedbygamma-ray spectrometry(Quindósetal.,2006)attheDepartmentof Medi-calPhysics,FacultyofMedicine(UniversityofCantabria,Spain). The226Raconcentrationsinsoilsprovided thetheoretical222Rn concentrations,whichwereestimatedaccordingtoEq.(1).

Since ε, and nwerenot measured, thedistributionof the theoreticalconcentrationof222RnwasestimatedbyMonteCarlo simulation,assumingthatε, andnwerenormallydistributed withthetypicalvaluesofgravel,sandandclay(Table1;Yuetal., 1993).Thetheoreticalconcentrationwasinterpretedasa geochem-icalthreshold.Hence,inthecasethatthesoilwastheonlysource

Table1

Typicalε,andnvaluesinsoil.

Parameter Minimum Mean Maximum

ε 0.18 0.29 0.40

(kgm−3) 1200 1350 1500

n 0.01 0.30 0.50

(6)

of222Rn,whichwasrelatedtothepresenceof226Ra,themeasured activitywasexpectedtobesimilartothecalculatedcontent.If 222Rnactivitywashigherthanthisthresholdradonwasinterpreted tobedeep-sourced.

4. Results

Toavoidpossibleinterpretationerrorsoriginatedbythe influ-ence of water to the activity of radon in the soil-gas, the geochemicalanalysesweredividedintotwotypesofemissions: (i)LaSima (drygasvent)and (ii)Jabalón River(CO2-richgases bubblinginwater).

4.1. LaSima

ThesoilCO2fluxrangedfrom0.20to5379gm−2d−1,although insidethemorphologicaldepressionofLaSimatheCO2fluxwas notmeasuredastheIRdetectorsaturatedinafewseconds(i.e., >20,000ppms−1 ofCO2).The222Rn activityinsoilalsoshowed a relatively wide range, between 0.64 and 138kBqm−3. The 220Rncontentsweremoreconstantandrangedbetween7.6and 51.7kBqm−3(Table2).

Five out of the 23 CO2 flux measurements at La Sima (Table 2, Fig. 3b) were considered anomalous [higher than Q3+1.5×(Q3−Q1),beingQ1 andQ3thefirstandthethird quar-tile,respectively],i.e.,#13(45gm−2d−1),#12(196gm−2d−1),#8 (566gm−2d−1), #24 (3322gm−2d−1) and #1 (5379gm−2d−1). TheseanomalouspointswerelocatedinsidethedepressionofLa Sima(#1,8and24)orveryclose(#12)toit,suggestingthatthe CO2 seepagewaswellrestrictedtoverysmallarea(redzonein

Fig.3b).

Radium activity (226Ra) was similar inside and outside the emissionsite,withanaveragevalueclusteringaround40Bqkg−3 (Table 3). From Eq. (1), the theoretical concentration of radon (222Rn),inside and outside theCO

2 emission, wasestimatedto be55kBqm−3 (Table4),with95%ofthedatabelow82kBqm−3 (Table4).

4.2. JabalónRiver

Allstudied subareasalong theJabalónRiverwere relatedto spring water discharges(T<30◦C) where a CO2-rich gasphase wasgently-to-vigorouslybubbling.TheCO2fluxeswerefrom<0.2 (<D.L.)to1×106gm−2d−1.InsomecasestheCO2 fluxwasnot measuredastheIRdetectorinstantlysaturated.Occasionally,high CO2 fluxes (up to 1tm−2d−1 or even higher) were measured, althoughatashortdistance,evenatthescaleoffewdecimeters, adramaticdecreasewasrecorded,andtheCO2fluxes,typicalof biologicrespiration(0.02–18gm−2d−1;Elíoetal.,2013and ref-erencetherein;Fig.4), weredetermined.Thelowest activityof 222Rnwas2.3kBqm−3 whilstthehighestone was428kBqm−3. The concentrations of 220Rn ranged from 9.0 to 44.5kBqm−3 (Table2).

Theresultsbygamma-rayspectrometry(Table3)showedthat therewasadifferenceinthe226Raconcentrationbetweenthesites closetotheleakingpoints(#41and#45)and awayfromthem (#30,#42,#Aand#B).WhilenearthemainCO2-richsourcesthe 226Raconcentrationwasapproximately70Bqkg−1,in thedistal zonesitscontentabruptlydecreaseddownto30Bqkg−1.The dif-ferenceinradiumconcentrationproducedtwotheoretical222Rn activitiesforthesoilgasduetothepresenceof226RaintheJabalón Riverarea.The222Rnactivityforthosesoilgaslocatedfarfromthe waterspringswasaround40kBqm−3,with95%ofthedatabelow 60kBqm−3.Thisvalueincreasedupto95kBqm−3,with95%ofthe databelow140kBqm−3,nearthewatersprings(Table4).

Fig.4.ExampleofveryhighCO2flowthroughverysmallspots.Totheleft,theIR

detectorsaturatedinafewseconds;afewcentimeterstotheright,theCO2soil

fluxshowedvalues,whichcanberelatedtoabackgroundemission,i.e.,biological activity.

5. Discussion 5.1. LaSima

5.1.1. Theoretical222Rnconcentrationinsoil-gas

AtLaSima,most222Rnmeasurementswerebetween0.6and 37.2kBqm−3,i.e.,slightly lowerthan thetheoreticalestimation (approximately55kBqm−3;Table4).Aspreviouslymentioned,the lackofadevelopedsoilcoverpartlypreventedtheradon measure-ment,whichwasmadeatthedepthof0.15–0.20cm,wherethe influenceoftheatmosphericparameterscansignificantlyaffectthe radonconcentrations.However,despitethediscrepancybetween thetheoreticalandmeasuredvaluesand theuncertaintyofthe fieldmeasurements(below10–15%)and thetheoretical estima-tions,itisreasonabletoassumethatthethresholdinthiszonewas of45–60kBqm−3.Suchhighconcentrationscannotbeexplained withthepresenceof226Rainthesoiland consequently,adeep Rn source is required. This value was exceeded in four points (#12:63kBqm−3; #1: 117kBqm−3; #8:118kBqm−3 and #24: 138kBqm−3).

5.1.2. CorrelationbetweenCO2fluxandradon(222Rn–220Rn) activityinsoil-gas

Settingaside#13,whichhadaCO2fluxvalueof45gm−2d−1, four anomalous data were measured at La Sima, #12 (196gm−2d−1), #8 (566gm−2d−1), #24 (3322gm−2d−1) and #1 (5379gm−2d−1), likely associated with the occurrence of a deep-seated flow that affects the soil degassing in this area. Whencomparing theCO2 flux and the 222Rn activitydata, we observedthatthehighertheCO2fluxthehighertheRnactivities (#1,#24,#8and#12;Fig.5a).Thesesitesarethosewhose222Rn concentrations cannot be explained without invoking a deep radonsource.Conversely,wherelowCO2 fluxesweremeasured the222Rnvaluescanbeassociatedwiththepresenceof226Rain thesoil.

The220RnconcentrationsareinverselycorrelatedwiththeCO 2 fluxvalues(Fig.5b).Therelativelyhigh222Rn/220Rnratios(upto 20;Fig.5c)arelikelyassociatedwithadeeporiginofradon.This isalsosupportedbythe␦13C–CO

2 and 3He/4Heisotopicvalues, whichsuggestadeep(mantle)rootfortheCCVFgasdischarges (Pérezetal.,1996;Vasellietal.,2013).

TherelationshipbetweenthehighestCO2fluxesand222Rn con-centrations is wellillustrated when plotting the W–E oriented

(7)

Site Data Sample Est North CO2flux(gm d ) Rn(kBqm ) Rn(kBqm ) Observation

LaSima June10 1 434,419 4,297,245 5379 116.8 7.6 Soil-gas

LaSima June10 2 434,413 4,297,238 0.4 0.64 Soil-gas

LaSima June10 3 434,408 4,297,236 0.3 1.2 Soil-gas

LaSima June10 4 434,428 4,297,243 4.3 1.7 Soil-gas

LaSima June10 5 434,434 4,297,234 2.1 6.6 Soil-gas

LaSima June10 6 434,411 4,297,252 1.3 9.7 Soil-gas

LaSima June10 7 434,408 4,297,263 1.5 5.7 Soil-gas

LaSima August10 8 434,418 4,297,242 567 118.4 13.3 Soil-gas

LaSima August10 9 434,423 4,297,242 5.4 3.1 31.1 Soil-gas

LaSima August10 10 434,443 4,297,242 0.2 11.1 34.0 Soil-gas

LaSima August10 11 434,453 4,297,242 0.6 6.6 26.7 Soil-gas

LaSima August10 12 434,415 4,297,242 196 63.2 10.4 Soil-gas

LaSima August10 13 434,404 4,297,243 45 10.5 Soil-gas

LaSima August10 14 434,394 4,297,243 7.1 10.2 23.0 Soil-gas

LaSima August10 15 434,385 4,297,245 0.2 13.0 32.7 Soil-gas

LaSima August10 16 434,375 4,297,243 0.5 11.5 51.7 Soil-gas

Fontecha May11 17 428,709 4,295,194 7.3 58.0 Soil-gas

Fontecha May11 18 428,701 4,295,186 192 428.0 Soil-gas

Fontecha May11 19 428,691 4,295,174 12.3 3.0 Soil-gas

Fontecha May11 20 428,687 4,295,192 17.9 39.7 Soil-gas

Fontecha May11 21 428,715 4,295,175 15.8 2.3 Soil-gas

LaSima May11 22 434,440 4,297,260 7.6 9.8 Soil-gas

LaSima May11 23 434,440 4,297,240 4.2 3.0 Soil-gas

LaSima May11 24 434,420 4,297,240 3322 138.0 Soil-gas

LaSima May11 25 434,400 4,297,240 5.5 37.2 Soil-gas

LaSima May11 26 434,410 4,297,230 5.7 16.7 Soil-gas

LaSima May11 27 434,403 4,297,222 18.0 34.0 Soil-gas

LaSima May11 28 434,409 4,297,249 3.1 11.5 Soil-gas

Jabalón September11 29 429,130 4,294,625 1.4 32.4 Soil-gas

Jabalón September11 30 429,170 4,294,625 44 83.1 27.0 Soil-gas

Jabalón September11 31 429,130 4,294,605 5.3 29.1 9.0 Soil-gas

Jabalón September11 32 429,190 4,294,605 21.9 28.2 Soil-gas

Jabalón September11 33 429,210 4,294,605 12.3 24.5 28.5 Soil-gas

Jabalón September11 34 429,110 4,294,585 <0.2 25.6 15.5 Soil-gas

Jabalón September11 35 429,150 4,294,585 5.1 12.2 17.8 Soil-gas

Jabalón September11 36 429,170 4,294,585 11.6 47.0 10.5 Soil-gas

Jabalón September11 37 429,210 4,294,585 9.6 49.7 Soil-gas

Jabalón September11 38 429,090 4,294,565 <0.2 18.6 11.2 Soil-gas

Jabalón September11 39 429,130 4,294,565 2.9 22.7 12.3 Soil-gas

Jabalón September11 40 429,150 4,294,565 25.7 34.2 30.8 Soil-gas

Jabalón September11 41 429,170 4,294,565 45 182.5 35.2 Soil-gas

Jabalón September11 42 429,190 4,294,565 102 91.1 31.6 Soil-gas

Jabalón September11 43 429,090 4,294,545 <0.2 24.2 19.4 Soil-gas

Jabalón September11 44 429,150 4,294,545 5.7 13.2 24.0 Soil-gas

Jabalón September11 45 429,170 4,294,545 141 183.5 18.4 Soil-gas

Jabalón September11 46 429,150 4,294,525 5.2 7.8 Soil-gas

Jabalón September11 47 429,170 4,294,525 0.5 17.3 13.9 Soil-gas

NH-1 February12 48.5 429,137.5 4,294,759 913,887 118.0 Bubblingpool

NH-1 February12 48 429,137 4,294,759 523,140 130.0 Bubblingpool

NH-1 February12 49 429,140 4,294,759 4.6 171.0 11.5 Soil-gas NH-1 February12 50 429,143 4,294,758 7.1 56.1 Soil-gas NH-1 February12 51 429,146 4,294,758 8.9 37.8 Soil-gas NH-1 February12 52 429,140 4,294,767 0.3 39.7 44.5 Soil-gas NH-1 February12 53 429,140 4,294,763 1.6 60.6 23.5 Soil-gas NH-1 February12 54 429,140 4,294,755 0.9 55.6 39.5 Soil-gas NH-1 February12 55 429,140 4,294,751 7.4 42.2 38.2 Soil-gas

Fontecha February12 56 429,184 4,294,614 3.2 23.2 Soil-gas

Fontecha February12 57 429,184 4,294,606 9.0 8.9 Soil-gas

Fontecha February12 58 429,184 4,294,602 1.4 59.0 Soil-gas

Fontecha February12 59 429,184 4,294,594 241 15.6 10.8 Soil-gas

Fontecha February12 60 428,700 4,295,187 1.2 75.1 Soil-gas

Fontecha February12 61 428,698 4,295,183 8.6 82.6 Soil-gas

Fontecha February12 62 428,701 4,295,180 6.6 421.9 27.9 Soil-gas

Fontecha February12 63 428,704 4,295,184 8.1 154.0 Soil-gas

Fontecha February12 64 428,700 4,295,184 7.1 218.0 Soil-gas

Fontecha February12 65 428,703 4,295,184 918,290 129.0 Bubblingpool

Fontecha February12 66 428,703 4,295,185 548,485 92.4 Bubblingpool

Fontecha February12 67 428,717 4,295,171 35,821 54.1 Bubblingpool

NH-2 February12 68 427,578 4,295,993 684 13.5 Bubblingpool

(8)

Table3

Resultsofgamma-rayspectrometryinsoilsamples.

Site Sample 238U(234Th) 226Ra(214Bi) 232Th(228Ac) 40K 137Cs

LaSima Outside 79.0±10.8 40.2±1.5 70.4±4.5 775.5±32.2 <D.L.(1.2) Inside 86.3±11.5 40.9±1.6 117.3±7.2 694.8±29.9 31.6±1.0 JabalónRiver 30 26.2±3.9 34.0±1.4 64.5±4.4 984.9±40.2 <D.L.(1.4) A <D.L.(25.4) 23.0±1.2 79.2±5.0 776.3±33.0 <D.L.(1.7) 42 39.5±8.5 26.5±1.3 71.1±4.9 871.8±35.6 <D.L.(1.8) 41 137.8±14.9 76.0±2.2 72.9±4.9 962.3±39.7 <D.L.(1.8) 45 <D.L.(27.6) 69.5±2.1 71.0±4.7 935.4±39.2 <D.L.(1.8) B <D.L.(24.9) 35.4±1.4 57.6±3.9 742.6±30.9 <D.L.(1.6)

ConcentrationsareinBqkg−1.PointsAandBnotshowninFig.3.

Table4

Theoreticalconcentrationsof222Rn(inBqm−3)insoilgasascalculatedby226Radecayinthesoil.

Site 226Ra(Bqkg−1) 222Rn(kBqm−3)

Min. Q1 Median Mean Q3 95thpercentile Max.

LaSima 40 23 44 51 54 61 82 452

JabalónRiver(awaybubbling) 30 17 33 38 41 46 61 339

JabalónRiver(nearbubbling) 70 40 77 90 95 107 143 791

profile(Fig.6)asafunctionofthedistancefromLaSimagasvent.

Anotherrelevantresultwasthatat#8(distance0m)thehighest concentrationof222Rnwasrecordedwhilethatof220Rnwasamong thelowestmeasuredvalues.Thismightbeexplainedwiththe dilu-tionofa220Rn-freedeepgasasitrisestothesurface.Furthermore, theamountof220Rngeneratedatthesurfacewaspromptlyreleased

onceproducedbecauseoftheelevatedCO2-richgasfluxand, conse-quently,therecordeddataweresmallerthanthosereallyproduced. Thehighest222Rn/220Rnratioswereat#8(LaSima)and#12, sug-gesting a predominanceofthehighest half-life isotope(222Rn). TheseresultsdemonstratethatCO2actsasacarriergasforradon inaregimeofadvectivetransport.

Fig.5. RelationshipbetweenCO2fluxand222Rn/220RnintheLaSimazone(Table2,Fig.3).

Fig.6. Spatialcorrelationbetween222Rn/220RnandCO

2fluxintheLaSimazone(Table2,Fig.3).Horizontalaxisisthedistance(m)fromthesamplepointtothecenterof

(9)

Fig.7.Equilibrium222Rnactivityofthesoil-gasintheareaofJabalónRiverversus226Raactivity.Blackandbluelinesrepresentaradiumactivityof30Bqkg−1and70Bqkg−1,

respectively.Continuouslinesarethemedianoftheoreticalradonconcentrationanddottedlinesarereferredtothefirst(Q1)andthethird(Q3)quantile(Table4).(For

interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

5.2. JabalónRiver

5.2.1. Theoretical222Rnactivityinsoil-gas

Theincreaseof226Raactivitybetweenthesiteslocatedaway from thethermal waters (30Bqkg−1) and those close to them (70Bqkg−1)couldbeproduced byaprocessoftransportof dis-solvedUandRaandtheirprecipitationatthespring.Thus,two theoretical222Rnconcentrationswerecarriedout,althoughinthis casetheinfluenceofsoilwatersaturation(SF;Eq.(2))aretobe takenintoaccountfortheinterpretationofthegas222Rnorigin.The radonactivityequilibriumofthesoilgasisplottedinFig.7.Inorder toevaluatetheinfluenceontheradonmeasurementsproducedby thewatercontainedinthesoil,adistinctionbetweentheRa con-centrationswasmade.Inthosepointslocatedfarfromthewater springs,thesoilisexpectedtoberelativelydryorslightlymoist (SF≈0.1–0.5). Thiswould implythattheincreaseof222Rnfrom thewatercontainedinthesoilshouldnotexceedmorethan50% ofthetheoreticalconcentrationfordrysoil(≈70kBqm−3;black linesinFig.7).Thus,theconcentrationofRainthesoildoesnot accountforthe222Rnconcentrationsinsoilgaseswhentheyare muchhigherthan40–70kBqm−3.Closetothewatersprings,where soilsareexpectedtoberelativelymoist(SF≈0.5–0.8),theradon concentrationcanincreaseof50–150%withrespecttodry condi-tions;thereforethetheoreticalactivityof222Rncouldbearound 120kBqm−3 (blacklinesinFig.7).Ifthetransport ofradiumis drivenbygroundwater,the222Rncontentisexpectedtoincrease upto270kBqm−3(bluelinesinFig.7).

Intheseareas,thepointslocatedatadistancefromthewater springswerecommonlycharacterizedbyradonactivityvaluesless than70kBqm−3,whichare inagreementwiththose calculated withthepresenceof226Raintherelativelydrysoil,e.g.,#17,#20, #32and#35(Table2;Fig.3).However,thisthresholdwasexceeded attwopoints:#30(83kBqm−3)and#42(91kBqm−3),whichare unlikelyvaluesfordry/moderatelymoistsoils.Thiswouldimplya moreefficientadvectivetransportand/oradeepgassource.

In proximity to thewater springs (#18, #41, #45, #49–55, #60–64;Table2 andFig.3),the222Rnactivitywasbetween38 (#51)and428(#18)kBqm−3.Aspreviouslydescribed,theradon activitycanincreaseto120kBqm−3duetopresenceofwaterin thesoil.Actually,somehigh222Rnvalues(from56to83kBqm−3,

e.g.,#50,#53,#60and#61)couldberelatedtotheincreasein watersaturation.Nevertheless,veryhighvalueswerealso mea-suredat#63(154kBqm−3)#49(171kBqm−3),#41(182kBqm−3), #45(183kBqm−3),#64(218kBqm−3),#62(421kBqm−3)and#18 (428kBqm−3).Radonactivityat#63,#49,#41,#45and#64can beattributedtosoilmoisturewhentheradiumcontentareupto 70Bqkg−1 (bluelineinFig.7).However,radonactivitieshigher than270kBqm−3areunlikelywhenincreasesinradiumcontent andsoilmoistureareconsidered.Consequently,alsointhiscase, thecontributionbyadeepsourcecanbeinvoked(e.g.,#62and #18).Wemayspeculatethatinadditiontotheincreaseofradon concentrationbywatersaturationinthesoil,anexcessof222Rn islikelyoccurringandfavoredbythepresenceofparent radionu-clides(UandRa)dissolvedinthegroundwatersystem.

5.2.2. CorrelationbetweenCO2fluxandradon(222Rn–220Rn) activityinsoil-gas

AtJabalónRiverthehighestactivitiesof222RnandCO 2fluxes arenotapparentlycloselycorrelated(Fig.8a).Nevertheless,222Rn contentshigherthanthoseestimatedbythepresenceof226Rain thesoilweredetectedinsitesclosetothethermalsprings(e.g.,#18 and#62)andawayfromthem(e.g.,#30and#42),suggestingthe presenceofadeep222Rnsource.However,222Rnactivitynearthe springwaters(blue-colorednumbersinFig.8a)wasalwayshigher thanthosemeasuredinthedistalpoints(black-colorednumbersin Fig.8a),althoughCO2fluxeswererelativelylow(e.g.,#62and#64 versus#30,#42or#59).Aninversecorrelationbetween220Rnand CO2wasnotobserved(Fig.8b).Ontheotherhand,220Rnhadasmall increase(Fig.9),whichcouldbeinterpretedintermsofshallow originofradon,atleastmoresuperficialthanthatofLaSima.This couldlikelybeaccountedforthetransportandprecipitationofU andRa.Inrelationtothe222Rn/220Rnratio(Fig.8c)therewasnota clearincreasewiththeCO2fluxincontrasttowhatobservedatLa Sima.Despitetherelativelyhighisotopicratio(e.g.,#49,#62,#45), nocorrelationwiththeCO2fluxwashighlightedsinceinsomecases the222Rn/220Rnratiodecreased(e.g.,#59vs#36or#49).Similar featurescanbeproducedbyeitherdeeporshalloworiginforradon andbythesoilwatersaturation.

Theseresultssuggestthattheincreaseofradonactivityinthe JabalónRiverwithrespecttothebackgroundislikelyrelatedtotwo

(10)

Fig.8.RelationshipbetweenCO2fluxand222Rn/220RnratiosintheJabalónRiver(bluetextsinAindicatethepointsnearwaterspring,Table2,Fig.3).(Forinterpretationof

thereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

contributions:(i)adeep-seatedsourcecarriedbyCO2,supported bythehigherconcentrationsof222Rnwithrespecttothose theo-reticallyestimatedby226Rainsoil,and(ii)asourcerelatedtothe decayofparentradionuclides(U–Ra),dissolvedandtransportedby groundwatersystemassupportedbythehighestradiumactivities whenapproachingthespringwaterdischarges.

TheprofilesoftheCO2fluxasafunctionofthedistancewith respecttotheCO2-richgasemissionsitesandthoseoftheRn iso-topicconcentrationand222Rn/220RnratiosfortheJabalónRiverare plottedinFigs.9and10.InFig.9aandb(profileN–SforJabalon, Fig.3c,Table2),thehighestvalueofCO2flux(#45,141gm−2d−1)is

coupledwiththatof222Rn(184kBqm−3),althoughat#41theCO2 fluxsharplydecreasesdownto45gm−2d−1whiletheRnactivity wasfoundtobeconstant(182kBqm−3).Movingtothenorthof theCO2-bearingspring(#36)bothactivityof222RnandCO2flux (47kBqm−3 and 12gm−2d−1, respectively) decrease.Then, the 222Rnactivityachievesasecondarypeak(#30:83kBqm−3),which isnotrelatedtoanyincreaseof226Rainthesoil(Table3),whilethe CO2 fluxincreases(44gm−2d−1).Incontrast,intheE–Wprofile (Fig.9candd)thehighestrecordedCO2flux(#42;102gm−2d−1) doesnotmatchwiththatofthe222Rnactivity(#41;182kBqm−3). Theactivityof220Rninbothprofilesshowsanincreaseassociated

Fig.9.Spatialcorrelationbetween222Rn/220RnandCO

2fluxalongtheJabalónRiver(Table2,Fig.3;NF:noflow,soil-gascouldnotbesampledduetotheextremelylow

(11)

Fig.10.Spatialcorrelationbetween222Rn/220RnandCO

2fluxalongtheJabalónRiver(Table2,Fig.3).Horizontalaxisisthedistance(m)fromthesamplepointtothecenter

oftheCO2leak.

withtheCO2flux,althoughthehighest220Rnconcentration(#41) doesnotcompletelymatchwithrespecttothesitewherethe high-estCO2flux(#45inprofileN–Sand#42inprofileE–WinFig.9a andb)isfound.

InFig.10,thelackofcorrelationbetweenthehighestvaluesof 222RnconcentrationandCO

2fluxforthesamespotismoreevident. Nevertheless,despitethefactthatalinearcorrelationbetweenCO2 and222Rnisnotdetected,thereisadirectinfluenceinradon(222Rn) activityassociatedwiththeCO2leakage.Thisissupportedbythe presenceof 222Rnconcentrations neartheseepage zonesmuch higherthanthosecalculatedbyconsideringtheRaconcentrations inthesoilortheincreaserelatedtosoilwatersaturation.

InthespringswithbubblingCO2 (#48, #65to#68;Table2,

Fig.11)the222Rnactivityislowerwithrespecttothatmeasured inthesurroundingsites.Thisdiscrepancycanlikelybeduetothe differentsamplingmethodssinceinthesespotsradon measure-mentswerecarriedoutdirectlyintheairflow,withacollectoron thebubblinggasphaseduetothepresenceofwater.Consequently, thesemeasurementscanberelatedtotheamountof222Rncarried byCO2andnottothecontentofUandRainthethermalwaters orthepresenceofsoilwatersaturation(SF).Nevertheless,inthe soil-gasnearthedegassingsitesalleffectscouldbedetectedand thereforetheradonconcentrationinthegasishigher.Thepositive linearcorrelationbetweentheCO2fluxandconcentrationof222Rn inthegasventissupportingthishypothesis(Fig.11).

Anothersignificantobservationwasthatat LaSima theCO2 fluxesintheCO2-richgasemissionsiteswerehigherthanthose recordedalongtheJabalónRiver,withtheexceptionofthe water-degassingpoints,whereasthe222Rnactivitiesshowedanopposite behavior. At La Sima the highest CO2 fluxes were from 3000 to5000gm−2d−1 and the222Rnconcentrationswereclustering

around120kBqm−3(Table1;#1,#8a#24).Conversely,atJabalón RivertheCO2fluxwas200gm−2d−1(e.g.,#18and#59)andthe 222Rnconcentrationwasaround400kBqm−3(e.g.,#18and#62). Thiswouldsupportthehypothesisthat alongtheJabalon River a radon sourcederived from dissolved U and Ra adds to that

Fig.11.CorrelationbetweenCO2fluxand222Rninthedegassingpools(Table2,

(12)

transportedbyCO2.WhileatLaSimatheonlycausethatleadstothe increaseinradonistheCO2flux,intheJabalonRivercontributions fromsoilwater,UandRaandCO2fluxaretobeadded.Thus,this wouldexplainwhyatLaSimawemeasuredhighCO2fluxeswhile the222RnactivitieswererelativelylowerthanthatintheJabalon Riverarea.

5.3. ImplicationformonitoringCO2storagesites

TheCO2-richemissionsatCCVFaremainlyassociatedwith frac-turesystemsandthegasdischargesareregardedaspoint-source seepage,beingoccasionallycharacterizedbyrelativelyhighflow: 1tm−2d−1orevenhigher.Inthevicinityofthesesites,theCO2 fluxesapproachvalues,whicharetypicalofsoilrespiration.Inthe perspectiveofassessinggasleakagesinareasselectedforgeological carbonstorage,theobservationofthepoint-sourceseepagereveals thatthedetectionofleakagesitescanposeseriousdifficultiesgiven thelargeareapotentiallyaffectedbytheleakageofinjectedCO2 (hundredskm2).ItisworthmentioningthattheamountofCO

2 emittedfromthesepointscanbeoftheorderofmagnitudeofthe maximumleakage rateconsideredacceptable(0.1%ofthetotal amountinstorageperyear;VanderZwaanandSmekens,2006) foracommercialstorageproject(i.e.,approximately1Mtyear−1; suchasin Snоhvit:0.73Mtyear−1,Sleipner:0.98Mtyear−1 and InSalah:1.28Mtyear−1;Michaeletal.,2010).Thus,conventional approachesmightnotbeabletodetectsmall-scaleemissions.

Inthis regards,in theframework of CCSprojectssignificant variationsinterms ofsoildiffuseCO2 fluxmaybeoccurringat thescale of few meters or even centimeters and CO2 leakages cannot be detected until clear evidences (e.g., impacts on the vegetation,newlyformedbubblingsites)arevisibleinthefield, evenwhensmallsamplegrids,e.g.,10–20m(e.g.,Elíoetal.,2013 andreferencestherein)areconsidered.Besides,naturalanalogs (e.g.,geothermalorvolcanicareas)havegasfluxes,whichareby farhigherthanthose expectedfora sequestrationproject. Fur-thermore,inthecaseofseepagessmallgeographicchangesand moderateseasonalchangesintheCO2fluxesareexpectedtobe detectedwithrespecttothebackgroundlevels.Thismakesthe reconnaissanceofseepagesrealchallenging.

The application of other cost-effective monitoring/detection techniquesabletocover largerareas, suchasEddy covariance, open-pathlaserandremotesensing,needtobeimprovedand prop-erlyevaluatedfortheirapplicabilitytoCCSprojects(e.g.,Klusman, 2011;Lewickietal.,2009;Ortegaetal.,2014).Long-term continu-oussoilgassurveyscanhelptoidentifyleakages(e.g.,Schlömer et al., 2014), although these might also be undetectable when occurringinverylocalizedandsmallareas.

ConcerningradonmeasurementsintheCCVFareas,anincrease inthe222Rn soil-gasconcentrationwasdetectedandcorrelated totheCO2flux.Theinfluenceofthis222Rnanomalyzone,though small,seemstobeoflargerextentwithrespecttothatofCO2. Consequently,radonisotopescanbeconsideredasgood tracers todiscriminateleakageareas,providingusefulinformationabout the(biologicalordeep-seated)originofCO2.Radonisotope mea-surements canovercome thelimitations of others geochemical methods,whicharecommonlyusedtointerprettheoriginofthe soilgases,e.g.,␦13C–CO

2orheliumisotoperatios.Another advan-tageofradonmeasurementsisthattoavoid“falsepositives”.Radon activityinsoil-gasisindeedrelatedtolithologicalandgeostructural (faultsandfractures)features.Thismeansthatwhenanincrease “deep”CO2fluxeswithrespecttothebackgroundvaluesoccurs, radonactivityis alsoexpectedtoincrement.Conversely,ifCO2 fluxesincreaseinresponseofanenhancedbiologicalactivity,radon activityshouldnotsufferanyparticularvariation.

AtCCFV,the222Rnactivityinthesoilgaswasoccasionallyas highas430kBqm−3,i.e.,much higherthanthethresholdvalue

(>50kBqm−3;CothernandSmith,1987)forwhichacertainsite isconsideredwithahigh-riskpotential.Suchhighconcentrations needtobetakenintoaccountwhenCCSriskassessmentplansareto bedesigned,particularlywhenCO2leakagesmayaffectresidential areasandworkingenvironments.ConsumptionofCO2-richwaters isalsoarisksincetheymaypotentiallycontainhighconcentrations ofdissolved222Rn,andUandRa.

Inthis study,correlations between220Rn concentrationsand CO2fluxeswerenotasclearasobservedforthoseof222RnandCO2. InthedrygasventofLaSima,asignificantreductionofthe220Rn concentrationswasdetectedandlikelyrelatedtoanincreasein theCO2flux.However,intheemissionsitesassociatedwithwater springs222RnandCO

2werenotcorrelatedwhileaslightincrease in220RnconcentrationswiththeCO

2fluxwasrecorded.Thiseffect islikelyduetodifferentsourceof222Rnand220Rnisotopes.

6. Conclusions

TheCampodeCalatravaVolcanicFieldisarelevantnatural ana-logwheregasleakagesintheframeworkofgeologicalCO2storage projectscan beinvestigated.A largenumber ofCO2-rich emis-sions,predominantlyassociatedwithfracture/faultsystemsoccur, althoughtheymainlydischargeaspunctualmanifestations.The resultssuggestadeeporiginofCO2,inagreementwithprevious geochemicalandisotopicanalysesofthegasleaks,whichindicate thatCO2ismantlesourced.

Accordingtoourdata,theincreaseof222Rninthesoilgasesis likelyproducedbytwomechanisms,(i)advectivetransportwhere CO2actsascarriergasand(ii)generationatshallowleveldueto thepresenceofUandRainboththermalwatersandsoils.

GeochemicalsurveysofCO2fluxandradonisotopic measure-mentsare very useful to: (i)define and quantify CO2 leakages oncedetectedand(ii)monitortheevolutionoftheleakagesand theeffectivenessofsubsequentremediationactivities.These tech-niquescanalsobesuccessfullyappliedtodetectdiffuseleakages. Acknowledgements

We wish tothank C. Jenkinsand NunziaVoltattorniand an anonymousreviewerwho greatlyimprovedanearlyversion of themanuscript.ThisworkwasfundedbytheCiudaddelaEnergía Foundation(CIUDEN),throughtheALM-08-006contract,and co-financedbytheEuropeanUnion(EuropeanEnergyProgrammefor Recovery).Thesoleresponsibilityofthispublicationlieswiththe authors.TheEuropeanUnionisnotresponsibleforanyusethat maybemadeoftheinformationcontainedtherein.

References

Ancochea,E.,(Ph.D.thesis)1983.Evoluciónespacialytemporaldelvolcanismo recientedeEspa ˜naCentral.ComplutenseUniversity,Madrid.

Bonotto,D.M.,Andrews,J.N.,1999.Transferofradonandparentnuclides238Uand 234UfromsoilsoftheMendipHillsarea,England,tothewaterphase.J.Geochem.

Explor.66,255–268.

Cardellini,C.,Chiodini,G.,Frondini,F.,2003.Applicationofstochasticsimulationto CO2fluxfromsoil:mappingandquantificationofgasrelease.J.Geophys.Res.

108(B9),2425.

Casas,I.,dePablo,J.,Gimenez,J.,Torrero,M.E.,Bruno,J.,Cera,E.,Finch,R.J.,Ewing, R.C.,1998.Theroleofpe,pH,andcarbonateonthesolubilityofUO2and

urani-niteundernominallyreducingconditions.Geochim.Cosmochim.Acta62(13), 2223–2231.

Cebriá,J.M.,López-Ruiz,J.,Carmona,J.,Doblas,M.,2009.Quantitativepetrogenetic constraintsonthePliocenealkalibasalticvolcanismoftheSESpainVolcanic Province.J.Volcanol.Geoth.Res.185,172–180.

Cebriá,J.M.,López-Ruiz,J.,1995.Alkalibasaltsandleucititesinanextensional intra-continentalplatesetting:theLateCenozoicCalatravaVolcanicProvince(Central Spain).Lithos35,27–46.

Chiodini,G.,Cioni,R.,Guidi,M.,Raco,B.,Marini,L.,1998.SoilCO2fluxmeasurements

involcanicandgeothermalareas.Appl.Geochem.13(5),543–552.

Cothern, R.C., Smith, J.E., 1987. Environmental Radon. Environmental Science Research,vol.35.PlenumPress,NewYork.

(13)

demanganesocobaltíferodelCampodeCalatrava(CiudadReal).UCM,pp.389. Davis,B.M.,Istok,J.D.,Semprini,L.,2003.Staticandpush–pullmethodsusing radon-222tocharacterizedensenonaqueousphaseliquid.Groundwater41, 470–481.

DeJong,E.,Acton,D.F.,Kozak,L.M.,1994.Naturallyoccurringgamma-emitting iso-topes,radonreleaseandpropertiesofparentmaterialsofSaskatchewansoils. Can.J.SoilScience74,47–53.

Due ˜nas,B.C.,Fernández,M.C.,1987.Dependenceofradon-222fluxon concentra-tionsofsoilgasandanálisisoftheeffectsproducedbyseveralatmospheric variables.Ann.Geophys.79,5025–5029.

Elío,J.,Nisi,B.,Ortega,M.F.,Mazadiego,L.F.,Vaselli,O.,Grandía,F.,2013.CO2soil

fluxbaselineattheCO2InjectionpilotPlantofHontomin(Burgos,Spain).Int.J.

Greenh.GasControl18,224–236.

EPA,US,2003.EPAAssessmentofRisksfromRadoninHomes.OfficeofRadiation andIndoorAir,UnitedStatesEnvironmentalProtectionAgency,Washington, DC.

Etiope,G.,Martinelli,G.,2002.Migrationofcarrierandtracegasesinthegeosphere: anoverview.Phys.EarthPlanet.In.129,185–204.

Etiope,G.,Guerra,M.,Raschi,A.,2005.Carbondioxideandradongeohazardsovera gas-bearingfaultintheSienagraben(CentralItaly).Terr.Atmos.OceanSci.16 (4),885–896.

Field,R.W.,Steck,D.J.,Smith,B.J.,Brus,C.P.,Fisher,E.L.,Neuberger,J.S.,Platz,C.E., Robinson,R.A.,Woolson,R.W.,Lynch,F.,2000.Residentialradongasexposure andlungcancer.TheIowaradonlungcancerstudy.Am.J.Epidemiol.151(11), 1091–1102.

Fleischer,R.L.,1997.Radon:overviewofproperties,originandtransport.In:Durrani, S.A.,Ilic,R.(Eds.),RadonMeasurementsbyEtchedTrackDetectors,Applications inRadiationProtection,EarthSciencesandtheEnvironment.WorldScientific, Singapore,pp.1–20.

Fleischer,R.L.,Mogro-Campero,A.,1978.Mappingofintegratedradonemanation fordetectionoflong-distancemigrationofgaseswithintheearth:techniques andprinciples.J.Geophys.Res.83(B7),3539–3549.

Gal,F.,Brach,M.,Braibant,G.,Bény,C.,Michel,K.,2012.Whatcanbelearnedfrom naturalanaloguestudiesinviewofCO2leakageissuesinCarbonCaptureand

Storageapplications?GeochemicalcasestudyofSainte-Margueritearea(French MassifCentral).Int.J.Greenh.GasControl10,470–485.

García-González,J.E.,Ortega,M.F.,Chacón,E.,Mazadiego,L.F.,DeMiguel,E.,2008. Fieldvalidationofradonmonitoringasascreeningmethodologyfor NAPL-contaminatedsites.Appl.Geochem.23,2753–2758.

Giammanco,S.,Sims,K.W.W.,Neri,M.,2007.Measurementsof220Rnand222Rnand

CO2emissionsinsoilandfumarolegasesonMt.Etnavolcano(Italy):

implica-tionsforgastransportandshallowgroundfracture.Geochem.Geophys.Geosyst. 8(10),1–14.

Gorman-Lewis,D.,Burns,P.,Fein,J.B.,2008.Reviewofuranylmineralsolubility measurements.J.Chem.Thermodyn.40,335–352.

Guerra,M.,Lombardi,S.,2001.Soil-gasmethodfortracingneotectonicfaultsinclay basinsthePisticcifield(SouthernItaly).Tectonophysics339,511–522. Hernández-Pacheco,F.,1932.EstudiodelaregiónvolcánicacentraldeEspa ˜na.Mem.

R.Acad.Cienc.ExactasFis.Nat.Madr.,Ser.Cienc.Nat.3,1–235.

Holloway,S.,Pearce,J.M.,Hards,V.L.,Ohsumi,T.,Gale,J.,2007.Naturalemissionsof CO2fromthegeosphereandtheirbearingonthegeologicalstorageofcarbon

dioxide.Energy32,1194–1201.

Hsi,C.K.D.,Langmuir,D.,1985.Adsorptionofuranylontoferricoxyhydroxides: applicationofthesurfacecomplexationsite-bindingmodel.Geochim. Cos-mochim.Acta49,1931–1941.

Huxol,S.,Brennwald,M.S.,Hoehn,E.,Kipfer,R.,2012.Onthefateof220Rninsoil

materialindependenceofwatercontent:implicationsfromfieldandlaboratory experiments.Chem.Geol.298–299,116–122.

Huxol,S.,Brennwald,M.S.,Kipfer,R.,2013.Processescontrolling220Rn

concentra-tionsinthegasandwaterphasesofporousmedia.Chem.Geol.335,87–92. IEA,2008.EnergyTechnologyPerspectives.OECD/IEA,Paris.

IGME,1988.MapaCeológicodeEspa ˜naE:1:50.000.Hojan.◦784,CiudadReal.

I.G.M.E,Madrid.

Ioannides,K., Papachristodoulou,C.,Stamoulis,K., Karamanis,D., Pavlides,S., Chatzipetros,A.,Karakala,E.,2003.Soilgasradon:atoolforexploringactive faultzones.Appl.Radiat.Isot.59,205–213.

IPCC,2005. In:Metz,B.,Davidson,O.,de Coninck,H.C., Loos,M.,Meyer,L.A. (Eds.),IPCCSpecialReportonCarbonDioxideCaptureandStorage.Prepared byWorkingGroupIII oftheIntergovernmentalPanel onClimateChange. CambridgeUniversityPress,Cambridge/UnitedKingdom/NewYork,NY,USA, p.442.

IPCC,2006.In:NationalGreenhouseGasInventoriesProgramme,Eggleston,H.S., Buendia,L.,Miwa,K.,Ngara,T.,Tanabe,K.(Eds.),GuidelinesforNational Green-houseGasInventories.IGES,Japan.

Jeandel,E.,Battani,A.,Sarda,P.,2010.Lessonslearnedfromnaturalandindustrial analoguesforstorageofcarbondioxide.Int.J.Greenh.GasControl4,890–909. King,C.Y.,Minissale,A.,1994.Seasonalvariabilityofsoil-gasradonconcentrationin

centralCalifornia.Radiat.Meas.23,683–692.

Klusman,R.,Voorhees,K.J.,1983.Anewdevelopmentinpetroleumexploration technology.MinesMag.73,121–149.

Klusman,R.W.,2011.Comparisonofsurfaceandnear-surfacegeochemical meth-odsfordetectionofgasmicroseepagefromcarbondioxidesequestration.Int.J. Greenh.GasControl5,1369–1392.

Langmuir, D.,1978. Uraniumsolution-mineral equilibriaat lowtemperatures withapplicationstosedimentaryoredeposits.Geochim.Cosmochim.Acta42, 547–569.

Langmuir,D.,Melchoir,D.,1985.ThegeochemistryofCa,Sr,BaandRasulfatesin somedeepbrinesfromthePaloDuroBasin,Texas.Geochim.Cosmochim.Acta 49,2423–2432.

Langmuir,D.,Riese,A.C.,1985.Thethermodynamicpropertiesofradium.Geochim. Cosmochim.Acta49,1593–1601.

Lewicki,J.,Hilley,G.,Fischer,M.,Pan,L.,Curtis,O.,Dobeck,L.,Spangler,L.,2009. DetectionofCO2leakagebyeddycovarianceduringtheZERTproject’sCO2

releaseexperiments.EnergyProcedia1,2301–2306.

Lewicki,J.,Birkholzer,J.,Tsang,C.F.,2007.Naturalandindustrialanaloguesfor leakageofCO2fromstoragereservoirs:identificationoffeatures,events,and

processesandlessonslearned.Environ.Geol.52(3),457–467.

López-Ruiz,J.,Cebriá,J.M.,Doblas,M.,2002.CenozoicvolcanismI:theIberian Penin-sula.In:Gibbons,W.,Moreno,T.(Eds.),TheGeologyofSpain.GeologicalSociety, London,pp.417–438.

Lupion,M.,Herzog,H.J.,2013.NER300:lessonslearntinattemptingtosecureCCS projectsinEurope.Int.J.Greenh.GasControl19,19–25.

Majumdar,D.,Roszak,S.,Balasubramanian,K.,Nitsche,H.,2003.Theoreticalstudyof aqueousuranylcarbonate(UO2CO3)anditshydratedcomplexes:UO2CO3·nH2O

(n=1−3).Chem.Phys.Lett.372,232–241.

Martin,P.,Akber,R.A.,1999.Radiumisotopesasindicatorsofadsorption–desorption interactionsandbariteformationingroundwater.J. Environ.Radioact.46, 271–286.

Martinelli,G.,1998.Gasgeochemistryand222Rnmigrationprocesses.Radiat.Prot.

Dosim.78(1),77–82.

Mazadiego,L.F.,(Ph.D.thesis)1994.Desarrollodeunametodologíaparala prospec-cióngeoquímicaensuperfíciedecombustiblesfósiles.PolytechnicUniversityof Madrid.

MeleroCaba ˜nas,D.,2007.CiudadReal:tierradehervideros,fuentesyba ˜nosdeaguas minero-medicinales.ImprentaProvincial,CiudadReal,pp.254.

Michael,K.,Golab,A.,Shulakova,V.,Ennis-King,J.,Allinson,G.,Sharma,S.,Aiken,T., 2010.GeologicalstorageofCO2insalineaquifers—areviewoftheexperience

fromexistingstorageoperations.Int.J.Greenh.GasControl4,659–667. Michel-LePierres,K.,Gal,F.,Brach,M.,Guignat,S.,2010.Radon,heliumandCO2

mea-surementsinsoilsoverlyingaformerexploitedoilfield,Pechelbronndistrict, Bas-Rhin,France.J.Environ.Radioact.10,835–846.

Morse,J.G.,Rana,M.H.,Morse,L.,1982.Radonmappingasindicatorsofsubsurface oilandgas.OilGasJ.80,227–246.

Nance,H.S.,Rauch,H.,Strazisar,B.,Bromhal,G.,Wells,A.,Diehl,R.,Klusman,R., Lewicki,J.,Oldenburg,C.,Kharaka,Y.K.,Kakouros,E.,2005.Surface environ-mentalmonitoringattheFrioCO2sequestrationtestsite,Texas.In:National

EnergyTechnologyLaboratoryFourthAnnualConferenceonCarbonCapture andSequestration,Alexandria,VA,May2–5,GCCCDigitalPublicationSeries #05-04,pp.1–16.

Nazaroff,W.W.,NeroJr.,A.V.,1988.RadonandItsDecayProductsinIndoorAir.John Wiley&Sons,UnitedStatesofAmerica.

NatalyEchevarriaHuaman,R.,XiuJun,T.,2014.EnergyrelatedCO2emissionsand

theprogressonCCSprojects:areview.Renew.Sustain.EnergyRev.31,368–385. NETL,DOE/NETL-311/0815082009.BestPracticesFor:Monitoring,Verification,and AccountingofCO2StoredinDeepGeologicFormations.NationalEnergy

Tech-nologyLaboratory.

Nielson,D.L.,IDO/78-1701.b.1.1.21978.RadonEmanometryasaGeothermal Explo-rationTechnique:TheoryandanExamplefromRooseveltHotSpringsKGRA. UniversityofUtahResearchinstituted,EarthScienceLaboratory,Utah,SaltLake City.

Oldenburg,C.M.,2003.Carbondioxideascushiongasfornaturalgasstorage.Energy Fuels17,240–246.

Oldenburg,C.M.,2012.Whyweneedthe‘and’in‘CO2utilizationandstorage’.

Greenh.GasSci.Technol.2,1–2,http://dx.doi.org/10.1002/ghg.1274. Ortega,M.F.,Rincones,M.,Elío,J.,GutiérrezdelOlmo,J.,Nisi,B.,Mazadiego,L.F.,

Iglesias,L.,Vaselli,O.,Grandia,F.,García,R.,DelaVega,R.,Llamas,B.,2014. GasmonitoringmethodologyandapplicationtoCCSprojectsasdefinedby atmosphericandremotesensingsurveyinthenaturalanalogueofCampode Calatrava.GlobalNESTJ.16(2),269–279.

Pearce,J.M.,2006.Whatcanwelearnfromnaturalanalogues?In:Lombardi,S., Altunina,L.K.,Beaubien,S.E.(Eds.),AdvancesintheGeologicalStorageofCarbon Dioxide.Springer,Netherlands,pp.129–140.

Pérez,N.M.,Nakai,S.,Wakita,H.,Albert-Bertan,J.F.,Redondo,R.,1996.Preliminary resultsonthe3He/4HeisotopicratiosinterrestrialfluidsfromIberianPeninsula:

seismotectonicandneotectonicimplications.Geogaceta20,830–833. Piedrabuena,M.A.P.,1992.Lasúltimamanifestacionesasociadasalvulcanismodel

CampodeCalatrava(CiudadReal):losmanantialestermales.Cuadernosde Sec-ciónHistoria20,187–201.

Quindós,L.S.,Sainz,C.,Fuente,I.,Nicolás,J.,Quindós,L.,Arteche,J.,2006.Correction byself-attenuationingamma-rayspectrometryforenvironmentalsamples.J. Radioanal.Nucl.Chem.270(2),339–343.

Ramachandan,T.V.,Sathish,L.A.,2011.Nationwideindoor222Rnand220Rnmapfor

India:areview.J.Environ.Radioact.102,975–986.

Riding,J.B.,Rochelle,C.A.,2005.TheIEAWeyburnCO2 MonitoringandStorage

Project.FinalReportoftheEuropeanResearchTeam.BritishGeologicalSurvey ResearchReport,RR/05/03.,pp.54.

(14)

Romanak,K.,Harmon,R.,Kharaka,Y.,2013.Editorial:geochemicalaspectsof geo-logiccarbonstorage.Appl.Geochem.30,1–3.

Rosario,A.S.,Wichmann,H.-E.,2006.Environmentalpollutants:radon.In: Encyclo-pediaofRespiratoryMedicine.,pp.120–125.

Rose,A.W.,Hawkes,H.E.,Webb,J.S.,1979.Geochemistryinmineralexploration,2nd ed.AcademicPress.

Schlömer,S.,Möller,I.,Furch,M.,2014.Baselinesoilgasmeasurementsaspartof amonitoringconceptaboveaprojectedCO2injectionformation—acasestudy

fromNorthernGermany.Int.J.Greenh.GasControl20,57–72.

Schubert,M.,Freyer,K.,Treutler,H.C.,Weitb,H.,2001.Usingthesoilgasradonas anindicatorforgroundcontaminationbynon-aqueousphase-liquids.J.Soils Sediments1(4),217–222.

Solomon,S.,Carpenter,M.,Flach,T.A.,2008.Intermediatestorageofcarbondioxide ingeologicalformations:atechnicalperspective.Int.J.Greenh.GasControl2, 502–510.

Strutt,M.H.,Beaubien,S.E.,Beaubron,J.C.,Brach,M.,Cardellini,C.,Granieri,R.,Jones, D.G.,Lombardi,S.,Penner,L.,Quattocchi,F.,Voltatorni,N.,2003.Soilgasasa monitoringtoolofdeepgeologicalsequestrationofcarbondioxide:preliminary resultsfromtheEncanaEORProjectinWeyburn,Saskatcewan(Canada).Greenh. GasControlTechnol.1,391–395.

Sutton,W.,SoonwalaN.,1975.ASoilRadiumMethodforUraniumProspecting. MineralExploration5.

Szabó,K.Z.,Jordan,G.,Horváth,Á.,Szabó,Cs.,2013.Dynamicsofsoilgasradon concentrationinahighlypermeablesoilbasedonalong-termhightemporal resolutionobservationseries.J.Environ.Radioact.124,74–83.

Tanner,A.B.,1980.Radonmigrationintheground:supplementaryreview.In:Gesell, T.F.,Lowder,W.M.(Eds.),Proc.NaturalRadiationEnvironmentIII,Conf.-780422. USDept.ofCommerce,NationalTechnicalInformationService,Springfield,VA, p.5.

Toutain,J.P.,Baubron,J.C.,1999.Gasgeochemistryandseismotectonics:areview. Tectonophysics304,1–27.

UNFCCC,2011.ConferenceofthePartiesServingastheMeetingofthePartiestothe KyotoProtocol.FCCC/KP/CMP/20017L.4.UnitedNationsFrameworkConvention onClimateChange(UNFCCC),Durban.

VanderZwaan,B.,Smekens,K.,2006.CO2captureandstoragewithleakageinan

energy-climatemodel.Environ.Model.Assess.14(2),135–148.

Vaselli,O.,Nisi,B.,Tassi,F.,Giannini,L.,Grandia,F.,Darrah,T.,Capecchiacci,F., PerezdelVillar,L.,2013.WaterandgasgeochemistryoftheCalatravaVolcanic Province(CVP)hydrothermalsystem(CiudadReal,CentralSpain).Geophysical ResearchAbstracts,10thEGUGeneralAssembly,EGU2013-11102.

Vaupotic,J.,Barisic,D.,Kobal,I.,Lulic,S.,2007.Radioactivityandradonpotentialof theterrarossasoil.Radiat.Meas.42,290–297.

Virk,H.S.,Walia,V.,2001.Helium/radonprecursorysignalsofChamoliEarthquake, India.Radiat.Meas.34,379–384.

Voltattorni,N.,Sciarra,A.,Caramanna,G.,Cinti,D.,Pizzino,L.,Quattrocchi,F.,2009. GasgeochemistryofnaturalanaloguesforthestudiesofgeologicalCO2

seques-tration.Appl.Geochem.24,1339–1346.

Walia,V.,Lin,S.J.,Fu,C.C.,Yang,T.F.,Hong,W.,Wen,K.,Chen,C.,2010.Soil-gas monitoring:atoolforfaultdelineationstudiesalongHsinhuaFault(Tainan), SouthernTaiwan.Appl.Geochem.25,602–607.

Wilson,M.,Monea,M.,2004.IEAGHGWeyburnCO2monitoringandstorageproject,

summaryreport2000–2004.In:Proceedingsofthe7thInternational Confer-enceonGreenhouseGasControlTechnologies,PetroleumTechnologyResearch Centre,Vancouver,Canada.

Yu,C.,Loureiro,C.,Cheng,J.-J.,Jones,L.G.,Wang,Y.Y.,Chia,Y.P.,Faillace,E.,1993. DataCollectionHandbooktoSupportModelingImpactsofRadioactiveMaterials inSoil.EnvironmentalAssessmentandInformationSciencesDivision,Argonne NationalLaboratory,Argonne,IL.

Riferimenti

Documenti correlati

20 Dorothy Carr Porter, ‘Medievalists’ Use of Electronic Resources: The Results of a National Survey of Faculty Members in Medieval Studies’ (Phd thesis, UNC- Chapel Hill,

[10,23] and for codes constructed by using an algebraic curve [6] as Goppa codes [24,38] , Hermitian codes [12,25] and Castle codes [27].. In this paper, we provide a bound on

Anche il riuso, le nuove destinazioni che si stanno attribuen- do agli edifici colpiti dal sisma, che è sempre appartenuto alla vitalità degli organismi urbani, rappresentano

Toda, Radii of the inscribed and escribed spheres of a

Tn ogni casella bianca deve essere inserito un numero strettamente superiore al numero delle caselle grigie contenute nel rettangolo 2X3 delinitato dalle linee piu

Males have shorter buccal tube length, are shorter, have smaller body size (mean 2.6 times) and gonad areas (mean 13.6 times) than females (Tabs 1 and 2).. Body areas of the

If the CO gas is detected, the MQ-7 sensor will provide input (insert) to the Arduino output of the microcontroller which has three types of outputs, Namely LCD display

So far not very well studied and developed the following aspects of the problem of geological-geophysical monitoring of processes electrochemical cleaning of soil contami- nated