• Non ci sono risultati.

Proteomic analysis identifies differentially expressed proteins in AML1/ETO acute myeloid leukemia cells treated with DNMT inhibitors azacitidine and decitabine.

N/A
N/A
Protected

Academic year: 2021

Condividi "Proteomic analysis identifies differentially expressed proteins in AML1/ETO acute myeloid leukemia cells treated with DNMT inhibitors azacitidine and decitabine."

Copied!
12
0
0

Testo completo

(1)

LeukemiaResearch36 (2012) 607–618

ContentslistsavailableatSciVerseScienceDirect

Leukemia

Research

j ou rn a l h o m e pa g e : w w w . e l s e v i e r . c o m / l o c a t e / l e u k r e s

Proteomic

analysis

identifies

differentially

expressed

proteins

in

AML1/ETO

acute

myeloid

leukemia

cells

treated

with

DNMT

inhibitors

azacitidine

and

decitabine

Francesca

Buchi,

Elena

Spinelli,

Erico

Masala,

Antonella

Gozzini,

Alessandro

Sanna,

Alberto

Bosi,

Germano

Ferrari,

Valeria

Santini

FunctionalUnitofHematology,UniversityofFlorence,Florence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5August2011

Receivedinrevisedform28October2011 Accepted29November2011

Available online 9 January 2012

Keywords: AML Proteomics Azacitidine Decitabine

a

b

s

t

r

a

c

t

AzacitidineanddecitabineareDNAmethyltransferaseinhibitorsusedtotreatmyelodysplastic

syn-dromesandacutemyeloidleukemias.Tofurthercharacterizedifferentmechanismsbetweenthesetwo

agents,cellularextractsfromleukemiccellsuntreatedortreatedwitheitherdrugwereanalyzedusing

2Delectrophoresis.Numerousdifferentiallyexpressedproteinswereidentifiedwith

MALDI-TOF/TOF-MS.CyclophilinA,Catalase,NucleophosminandPCNAweredecreasedexclusivelybyazacitidine,TCP1

andhnRNPA2/B1bybothdrugs;alpha-EnolaseandPeroxiredoxin-1bydecitabine.Interestingly,the

expressionoftheproinflammatoryproteinCyclophilinA,alsosuggestedasmarkerofcellnecrosis,was

stimulatedbydecitabine.Finally,acomprehensivepathwayanalysisofdatahighlightedarelationship

betweentheidentifiedproteinsandpotentialeffectors.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

5-Azacitidineand 5-aza-deoxycytidine–decitabinearering analogsofcytosineanddeoxy-cytosine,differingfromthe natu-ralnucleosidebecauseofnitrogeninlieuofcarboninposition5of thepyrimidine.Theefficacyofazacitidineanddecitabineas anti-neoplasticagents, widelyusedfor treatmentofmyelodysplastic syndromes(MDS)andacutemyeloidleukemia(AML)oftheelderly, isattributedtotwodistinctmechanisms:cytotoxicityand induc-tion of DNA hypomethylation [1,2]. Azacitidine is transformed intotheactivenucleotide,5-aza-2-deoxycytidine-5-triphosphate, through ATP-dependent phosphorylation by uridine-cytidine kinaseandsubsequentactivityofribonucleotidereductase. Previ-ousandrecentincorporationstudiesinleukemiccellshaveshown thatthedistributionofAZA innucleicacidsis65:35,RNA:DNA [3,4].Decitabine,quitedifferently,incorporatesprimarilyintoDNA after deoxycytidine kinase mediated phosphorylation. Regional hypomethylationisthoughttobetheprincipalandshared respon-siblefor theclinicalefficacyof DNA methyltransferase(DNMT) inhibitors. In fact, once incorporated into DNA, by covalently trapping DNMT, both these drugs deplete the treated cells of functionallyactiveDNMT1,resultinginreversiblebutprofound

∗ Correspondingauthorat:FunctionalUnitofHematology,UniversityofFlorence, AOUCareggi,LargoBrambilla3,50141Florence,Italy.Tel.:+390557947296; fax:+390557947343.

E-mailaddress:santini@unifi.it(V.Santini).

hypomethylation and re-expression of silenced oncosuppressor genes.

Therearefewdirectcomparisonsofthetwoagentsinvivoor invitro,buttheirdifferenceinmetabolismand DNA incorpora-tionsuggestspossiblediversemechanismsofactionandbiological effects[3,5,6].

WeandothershavepreviouslydemonstratedthatAML1/ETO positive leukemiccells arepreferentiallysensitivetoepigenetic drugs [7,8]and specificallytoDNMTinhibitors[9–11]. We uti-lized a two-dimensional electrophoresis system, followed by MALDI-TOF/MStoanalyzetheregulationofproteinexpressionin AML1/ETOpositivecells,tofurtherdefinethemechanismofaction ofazacitidineanddecitabine,aswellaspossibledifferencesintheir biologicalactivityinthisparticularlysuitablecellularmodel. 2. Materialsandmethods

2.1. Cellsandcultureconditions

Kasumi-1cells(ahumanAML1/ETO-positivecelllinederivedfromanacute myeloblasticleukemia)wereplatedat3×105cell/mlinRPMI1640medium

sup-plementedwith10%FetalBovineSerum(FBS)(Gibco),4mMglutamine,50units/ml penicillinand50␮g/mlstreptomycinat37◦Cinahumidifiedatmosphere

contain-ing5%CO2.Cellsfromhumanbonemarrowaspirateswereobtainedafterinformed

consent(previouslyapprovedbythelocalEthicalCommittee),providedby2AML patientswitht(8;21),undergoingroutinediagnosticandinvestigationalprocedures. Inalltheexperiments,mononuclearcellsisolatedbydensitygradient centrifuga-tionwithLympholyte(CEDERLANE-Canada),andKasumi-1cellswereincubatedin thepresenceorabsenceoffreshlyprepared5-azacitidine(Sigma–Aldrich)1.0␮M anddecitabine(Sigma–Aldrich)0.5␮Mfor24h.Equipotentconcentrationsofdrugs werechosenonthebasisoftheirhypomethylatingactivityaspreviouslypublished

[3,12].

0145-2126/$–seefrontmatter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.leukres.2011.11.024

(2)

608 F.Buchietal./LeukemiaResearch36 (2012) 607–618

2.2. Proteinextractionand2Delectrophoresis

Cellsafter24hincubationwerewashedtwiceincoldPBSplus100␮Msodium orthovanadateandProteaseInhibitorCocktail(Sigma).About20×106cellswere

lysed,andafterultracentrifugation(100,000×g,1h,4◦C),proteinconcentration

determinedbyBradfordassay(Roche).Two-dimensional(2D)electrophoresiswas performedaspreviouslydescribed[13].

2.3. Imageanalysisand2Dgelcomparison

Two-dimensionalgelimageswereacquiredbyamodifiedUMAXUtah.1100 ImageScanner(AmershamBiosciences,Uppsala,Sweden),at1200dpiof resolu-tion.GelswereanalyzedandcomparedusingthesoftwareImageMasterPlatinum Ed.(Version5.0,AmershamBiosciences,Uppsala,Sweden).Proteinabundancewas evaluatedbycomparingtheSpotStainingVolumeascalculatedbyImageMaster Platinumed.Gelswereruninduplicateforeachsampleandscatterplotv/vforthe matchingspotpoolswereobtainedtoverifythedegreeofreproducibilityamong tworeplicatesofeachsample.

2.4. Ingeldigestionandmassspectrometry

Spotstobeidentifiedwereexcisedfromthegels,de-stainedandsubjectedto trypticin-geldigestionwithSequencingGradeModifiedTrypsin(Promega,WI) at37◦Cfor2h.TheresultingpeptidesweretreatedbyZip-TipC18(Millipore),

directlyelutedby2␮lofMatrixsolution(5g/l2,5-dihydroxybenzoicacidin50% ACN,0.1%TFA),on384position-400(m∅AnchorChipTarget(BrukerDaltonics, Bre-men,Germany).MassspectraforPeptideMassFingerprinting(PMF)wereacquired inreflectronpositive ionmodeonUltraflexMALDI-TOF/TOFMass Spectrome-ter(matrixassistedlaserdesorption/ionizationtime-of-flight,BrukerDaltonics, Bremen,Germany),withanaverageof100lasershots/spectrum.Spectrawere externallycalibratedusingacombinationoffourstandardpeptides:angiotensinII (1046.54Da),substanceP(1347.74Da),bombesin(1619.82Da)andACTH18-39Clip human(2465.20Da),spottedontopositionsadjacenttothesamples.Experimental PeptideMassFingerprintingintherangeof600–3500DawascomparedwithNCBI proteindatabasebythesoftwareMASCOT(www.matrixscience.org).Confirmatory fragmentationanalyses(MS/MS)wereperformedwhenneeded.

2.5. Westernblotting

Kasumi-1andhumanprimaryt(8;21)AMLcellswerewashedincoldPBS plus100␮MsodiumorthovanadateandProteaseInhibitorsCocktail(Sigma)and lysedbyincubatingat95◦CinLaemmlibuffer(62.5mMTris/HClpH6.8,10% glyc-erol,0.005%bluebromophenoland2%SDS).Proteinconcentrationwasdetermined byBCAassay(Pierce),30␮galiquotofeachsamplewasseparatedbySDS-PAGE (9,12.5or15%polyacrylamidegels)andthentransferredontoPVDFmembranes (Hybond-ECL;AmershamBiosciences)byelectroblotting.Membraneswere incu-batedwithprimaryantibodies(anti-calreticulin,anti-alpha-Enolase,anti-hnRNP A2/B1,anti-HSP60,anti-HSP70,anti-HSP90␣/␤,antiPRXI,antiTCP1␤,bySantaCruz Biotechnology;anti-cyclophilinA,anti-GAPDH,anti-PCNA,anti-␣-tubulin,byCell SignalingTechnology,anti-␤-tubulinbyUpstate,1:100016–18hat4◦CinPBS

con-taining0.1%Tween20and5%BSA(T-PBS/5%BSA).Toverifyequalloadingofsample perlane,membraneswereincubatedinstrippingbuffer(62.5mMTris–HClpH6.7, 2%SDS,100mM2-mercaptoethanol;30minat50◦C)andextensivelywashedwith

T-PBS;thenthesamemembraneswereincubatedina1:1000dilutionofanti-p38 (CellSignalingTechnology)inT-PBS/%5BSA(16–18hat4◦C).Horseradish perox-idaseconjugatesecondaryantibodiesanti-rabbitIgG(Sigma)(1:5000inT-PBS/2% BSA;45minatroomtemperature)wereemployed.Immunoblotwerewashedin T-PBSandantibodycoatedproteinbandswerevisualizedbyECLchemiluminescence detection(AmershamBiosciences).

2.6. Dataanalysis

ScannedimageswereanalyzedbyImageMasterPlatinumEd.Version5.0 (AmershamBiosciences).Inordertoanalyzereproducibility,gelsimilaritiesor experimentalvariations,ScatterplotsanalysiswasperformedbysoftwareImage MasterPlatinumEd.whichcalculatesthelineardependencebetweenspotvaluesof onegelincomparisontoanothergel.Foreachproteinwecalculatedratiobetween spotvolumeinCTRLgelandspotvolumeintreatedgel.Aftermassspectrometry analysisandidentificationbysoftwareMASCOT(www.matrixscience.org),proteins wereclassifiedbyExPASyProteomicServer(http://expasy.org/)withUniProtKB database(http://www.uniprot.org).Functionalcategorieswereperformedusing DavidBioinformaticsResources6.7database(http://david.abcc.ncifcrf.gov/)and cutoffcriteriausedwereap-valueoflessthan0.001usingBenjamini–Hochberg correction.

Proteinnetworkanalyses– TheproteinsidentifiedbyMSwereincludedina pathwayanalysisusingtheMetaCoreTMnetworkbuilding(toolGeneGoInc.,St.

Joseph,MI–http://www.genego.com/training.php).MetaCoreTMisformedbyan

annotateddatabaseofproteininteractionsandmetabolicreactions.Genenamesof theallidentifiedproteinsandthecorrespondingmeanfold-changevaluesofsuch proteinswereimportedintoMetaCoreTMandprocessedusingthenetworkanalysis

algorithm.Likethat,somenetworkswerebuilt.Pathwaysanddirectandindirect

associationsamongproteinswerealsoinvestigatedusingStringdatabases(Version 8.3,http://string-db.org/).

3. Results

3.1. ProteomiccomparisonaftertreatmentwithDNMTinhibitors Protein gels were reproducible, as verified by scatter plot v/v among the replicates of each condition of culture (Fig. S1, a and b – Supplementary data). Changes of protein expressionafter24hazacitidine anddecitabinetreatmentwere consideredsignificantwhentheirquantitydecreasedorincreased byatleast1.3-fold.

3.2. Treatmentwith5-azacitidine

Accordingtoimageanalysis,620spotswereconstantlydetected incontrolgeland486spotsintreatedcellgelandwerequantified, normalized,intergelmatched,yielding400pairsofproteins. Sixty-fourprotein spots had significantvolume differences occurring betweenuntreatedcontrolandazacitidinetreated,andweexcised 51proteinspotsfromcontrolgeland13spotsfromtreated-cellgel. MassspectrometryanalysisbyMALDI-TOFallowedusto success-fullyidentify43proteinspotswhoselevelschanged(Fig.1A,aand b)correspondingto30characteristicproteins,classifiedin func-tionalcategoriesbyDavidBioinformaticsdatabase.Resultswere reportedin Table1: Spot numberobtainedfrom ImageMaster correlatestocorrespondingspotsinFig.2A.

As shown in Fig. 1B, nine proteins (30%) identified by MS included molecules functionally classified as Heat Shock Pro-teins/Chaperons,nineproteins(30%)wereenzymes,mostofwhich metabolic,oneproteinwasinvolvedinstress/redoxhomeostasis, five(17%) werestructuralproteinsand sixproteins(20%)were involvedinsignaltransduction(Table1andSupplementarydata). Themajorityofthedetectedproteinsdecreasedafterazacitidine treatment,asshowedbytheratioofthevolumeofspotsintreated anduntreatedcells(Table1)and,afterStringanalysis,weobserved thatallproteinswerelinkedbydifferentcharacteristics,andwere involvedin severalneoplasticdiseases(Fig.S2,a– Supplemen-tarydata).

Differential expression of PCNA, TCP1, hnRNP A2/B1 and CyclophilinAwasconfirmedbywesternblot(Fig.1C, aandb). CyclophilinA,inparticular,wasidentifiedbymorethanonespotin 2Dmaps,becauseofitsdifferentisoformswhichcouldbepresents, anditsglobalexpressioninazacitidinetreatedcellswaslowerthan that inuntreated cells. Regardingbiological variation ofhnRNP A2/B1,westernblotanalysisshowedaninhibitionofexpression ofribonucleoproteinB1andanincreaseofA2,butglobalprotein expressiondecreased(ratioofdensitometryCTRL/AZA:1.3,respect toloadingcontrol)(Fig.1C,aandb).

We observed in 2D gels different spots of alpha-Tubulin, beta-Tubulin,alpha-Enolase,ACTB,HSP90,HSP70andCalreticulin (Table1–markedwithanasterisk),duetothepresenceofseveral isoforms.Forthisreason,globalexpressionoftheseproteinswas unmodifiedafterazacitidine(Fig.1C,c).Isoformsoftheseproteins, wellseparatedby2Delectrophoresis,in1Dwesternblotclustered inthesameband,precludingthevalidationofdifferencein expres-sion.

ThedecreaseofCyclophilinA,PCNAandTCP1betawas con-firmedbywesternblotwithspecificantibodiesalsoinprimary culturesof2AMLt(8;21)casesafterexposureofleukemiccells toazacitidine(Fig.1D,aandb).

3.3. Treatmentwithdecitabine

Afterimageanalysis,576spotsweredetectedincontrolcells and596spotsintreatedcells;twogelswerematchedand416pairs

(3)

F. Buchi et al. / Leukemia Research 36 (2012) 607– 618 609 Table1

Differentiallyexpressedproteinsidentifiedbymassspectrometryafterazacitidinetreatment.

SpotCTRL SpotAZA Accession numbera

HeatShockProteins/Chaperons MWb pIc SCOREd Vol.C/Vol.Ae Inducedor

overexpressedbyAZA

Inhibitedor reducedbyAZA

C98 A69 P14625 Endoplasmin* 92,637 4.73 155 1.2 X

C96 A61 P14625 Endoplasmin* 90,351 4.73 32 0.4 X

C9 P07900 Heatshockprotein90kDaalpha,classBmember1* 83,638 4.94 75 CTRL X

C121 A82 P07900 Heatshockprotein90kDaalpha,classBmember1* 83,638 4.94 173 2.1 X

C139 A94 P07900 Heatshockprotein90kDaalpha,classBmember1* 83,638 4.94 69 0.5 X

C113 A83 P07900 Heatshockprotein90kDaalpha(cytosolic),classBmember1* 83,638 4.94 46 0.5 X

C181 A125 P11142 Heatshock70kDaprotein8* 71,138 5.37 186 2.5 X

C178 A123 P11142 Heatshock70kDaprotein8* 71,138 5.37 49 0.8 X

C216 A151 P10809 Heatshockprotein60 61,388 5.24 219 1.0

C249 A184 P78371 ChaperonincontainingTCP1,subunit2(beta) 57,878 6.02 153 1.8 X

C173 A119 P38646 Heatshock70kDaprotein9 74,089 5.97 117 1.2 X

C862 A528 P62937 Cypa(CyclophilinA)* 18,154 7.82 146 0.8 X

C710 A524 P62937 Cypa(CyclophilinA)* 18,154 7.82 98 1.4 X

C705 A523 P62937 Cypa(CyclophilinA)* 18,154 7.82 103 1.2 X

C263 A173 P27797 Calreticulin* 48,325 4.28 75 2.2 X

A306 P27797 Calreticulin* 48,325 4.28 46 AZA X

C235 P30101 Protien-disulfideisomeraseA3 56,761 5.61 83 CTRL X

Enzymes

C295 A208 P06733 Alpha-Enolase* 47,538 6.99 61 0.4 X

C292 A213 P06733 Alpha-Enolase* 47,538 6.99 94 1.5 X

C268 A199 P07237 Prolyl4-hydroxylasebeta-subunit 57,578 4.69 211 1.4 X

C236 A163 P12268 Inosinemonophosphatedehydrogenase2 56,338 6.44 115 1.5 X

C470 A355 P04406 Glyceraldehyde-3-phosphatedehydrogenase 36,244 8.58 91 1.5 X

C546 A415 P60174 ChainB,TriosephosphateIsomerase(Tim) 26,877 6.51 191 1.2 X

C538 A406 P28066 Proteasomesubunit,alphatype,5 26,621 4.74 46 1.4 X

C815 P55072 Valosin-containingprotein 71,660 5.14 49 CTRL X

C665 A487 P15531 Non-metastaticcells1,protein(NM23A)isoforma 19,925 5.84 64 2.7 X

C226 A157 P04040 Catalase 59,947 6.95 93 1.8 X

Cellredoxhomeostasis

C596 A446 P09211 GlutathioneS-transferaseP 23,651 5.44 86 1.4 X

Structuralproteins

C253 A191 P68363 Alphatubulin* 50,972 4.94 149 1.9 X

C260 A194 P68363 Alphatubulin* 50,972 4.94 106 0.5 X

C280 A204 P68363 Alphatubulin* 50,972 4.94 60 0.9

C445 A334 P07437 Betatubulin* 48,233 4.78 182 1.6 X

C421 P07437 Betatubulin* 48,233 4.78 127 CTRL X

C284 P07437 Betatubulin* 48,233 4.78 70 CTRL X

C365 A274 P60709 ACTBprotein(Beta-actin)* 40,620 5.29 142 1.8 X

C330 A251 P60709 ACTBprotein(Beta-actin)* 40,620 5.29 48 0.8 X

C413 A314 P52907 F-actincappingproteinalpha1 33,115 5.45 118 2.7 X

C475 A362 Q8TCG3 Tropomysin,TPMsk3 28,934 4.72 74 0.9

DNAbinding/signaltransduction

C278 A201 Q09028 Retinoblastomabindingprotein4variant 47,910 4.74 67 1.1

C400 A299 P06748 Nucleophosmin 32,653 4.64 76 1.3 X

C463 A350 P12004 Pcna 29,156 4.57 154 2.5 X

C424 A321 P22626 Heterogeneousnuclearribonucleoproteins(hnRNP)A2/B1 37,464 8.97 95 2.2 X

A541 P62158 Calmodulin 17,152 4.09 48 AZA X

aAccessionnumberbyUniProtKB.

b MWtheoreticalmolecularweighobtainedbyExPASyProteomicServer. c pItheoreticalisoelectricpointobtainedbyExPASyProteomicServer. d ScoreindexcalculatedbyMASCOT-significantwhengreaterthan56(p<0.05). eRatiobetweenspotvolumeinCTRLandspotvolumeintreatedgels.

(4)

610 F. Buchi et al. / Leukemia Research 36 (2012) 607– 618 Table2

Differentiallyexpressedproteinsidentifiedbymassspectrometryafterdecitabinetreatment.

SpotCTRL SpotDAC Accession numbera

HeatShockProteins/Chaperons MWb pIc Scored Vol.C/Vol.De Inducedor

overexpressed by DAC

Inhibitedor reduced by DAC

C1591 D43 P07900 Heatshockprotein90kDaalpha(cytosolic),classBmember1* 83,638 4.94 89 1.4 X

C1609 D66 P07900 Heatshockprotein90kDaalpha(cytosolic),classBmember1* 83,638 4.94 85 2.3 X

C1614 D73 P07900 Heat shock protein 90 kDa alpha (cytosolic), class B member 1* 83,638 4.94 93 0.2 X

C1689 D157 P10809 Heatshockprotein60 61,388 5.24 147 1.6 X

C1651 D119 P11142 Heatshock70kDaprotein8* 71,138 5.37 161 1.3 X

C2315 D71 P11142 Heat shock 70 kDa protein 8* 71,138 5.37 101 0.5 X

C1674 D155 P27797 Calreticulin 48,283 4.28 90 4.6 X

C1713 D184 P30101 Protein-disulfideisomeraseA3* 56,747 5.61 82 1.5 X

C1768 D251 P30101 Protein-disulfide isomerase A3* 57,146 5.61 72 2.2 X

C1752 D225 P30101 Protein-disulfide isomerase A3* 57,146 5.61 88 1.2 X

C2007 D660 P30040 EndoplasmicreticulumproteinERp29 29,032 6.08 70 1.8 X

C2119 D565 P23284 Cyclophilin B 22,785 9.25 122 1.3 X

C2178 P62937 Cyclophilin A* 18,229 7.82 61 CTRL X

C2183 D606 P62937 CyclophilinA* 18,229 7.82 75 0.4 X

C2184 D612 P62937 Cyclophilin A* 18,229 7.82 91 1.4 X

C1732 D204 P78371 Chaperonin containing TCP1, subunit 2 (beta) 57,878 6.02 125 1.3 X

Enzymes

C1824 D283 P00558 Phosphoglyceratekinase1 44,985 8.30 100 3.9 X

C1875 D347 P06733 Alpha-Enolase* 47,481 6.99 121 2.4 X

C1778 D237 P06733 Alpha-Enolase* 47,481 6.99 195 2.1 X

D256 P07954 Fumaratehydratase,mitochondrial 54,773 6.99 55 DAC X

C1707 D160 P04040 Catalase 59,947 6.95 62 0.8 X

C1925 D403 Q15181 Inorganic pyrophosphatase 33,095 5.54 120 1.6 X

C1927 D402 Q15181 Inorganicpyrophosphatase 33,095 5.54 108 1.4 X

C1970 D424 P14207 Folatereceptorbeta 30,286 7.47 32 0.6 X

C2142 D593 Q8TAE6 Protein phosphatase 1 regulatory subunit 14 C 17,946 5.09 31 0.8 X

C1900 D363 P04406 Glyceraldehyde-3-phosphatedehydrogenase 36,201 8.58 59 1.5 X

C2037 D489 P60174 ChainB,TriosephosphateIsomerase(Tim) 26,877 6.51 155 1.2

C1693 D137 Q02318 Cytocrome P450 27, mitochondrial 60,595 8.43 27 0.8 X

Cellredoxhomeostasis

C2060 D522 P09211 Glutathione S-transferase P 23,569 5.44 58 1.4 X

C2072 D531 Q06830 Peroxiredoxin-1 22,324 8.27 81 2.3 X

C1848 D331 O76003 Glutaredoxin-3 37,693 5.31 83 2.0 X

Structuralproteins

C2323 D304 P60709 ACTBprotein(Beta-actin) 40,620 5.29 163 1.9 X

C1906 D375 P07437 Beta tubulin* 48,233 4.78 154 1.7 X

C1915 D391 P07437 Betatubulin* 48,233 4.78 58 1.1 X

C2269 D205 P68363 Alphatubulin 50,972 4.94 89 0.3 X

DNAbinding/signaltrasduction

C1995 D459 P35232 Prohibitin 29,843 5.57 142 1.6 X

C1933 D412 P12004 Pcna 29,156 4.57 127 0.8 X

C1888 D345 Q13347 Eukaryotictranslationinitiationfactor3subunitI 36,878 5.38 92 1.8 X

C1926 D394 P22626 Heterogeneous nuclear ribonucleoproteins A2/B1 37,464 8.97 112 1.4 X

C1940 D388 P09651 HeterogeneousnuclearribonucleoproteinA1 38,936 9.17 132 1.4 X

C1834 D307 P29992 Guaninenucleotide-bindingproteinsubunitalpha-11 42,382 5.51 54 2.0 X

C2035 D491 P52565 Rho GDP-dissociation inhibitor 1 23,250 5.03 80 1.4 X

C1862 D336 P06748 Nucleophosmin 32,653 4.64 64 0.9 X

C1841 D320 Q9Y3F4 Serine-threoninekinasereceptor-associatedprotein 38,756 4.98 51 0.6 X

C2160 P62158 Calmodulin 17,152 4.09 49 CTRL X

aAccessionnumberbyUniProtKB.

b MWtheoreticalmolecularweighobtainedbyExPASyProteomicServer. c pItheoreticalisoelectricpointobtainedbyExPASyProteomicServer. d ScoreindexcalculatedbyMASCOT-significantwhengreaterthan56(p<0.05). eRatiobetweenspotvolumeinCTRLandspotvolumeintreatedgels.

(5)

F.Buchietal./LeukemiaResearch36 (2012) 607–618 611

Fig.1.Effectofazacitidine24honproteomeofKasumi-1cells.(A)Two-dimensionalgelsbefore(a)andafter(b)treatmentwereanalyzed.Spotswerethenpickedand identifiedbyMSanalysis.(B)Functionaldistributionofidentifiedproteins.(CandD)ConfirmatoryWesternblot;anti-p38isproteinloadingcontrol.CTRL,controluntreated cells;AZA,azacitidine;DAC,decitabine.

werefound;50proteinspotshadsignificantdifferencesbetween untreatedcontrolanddecitabinetreatedcells.Weexcised36 pro-teinspotsfromcontrolgeland14spotsfromtreatedgel;mass spectrometryanalysisMALDI-TOFallowedustoidentify45spots correspondingto35characteristicproteins(Fig.2A,aandb), clas-sifiedinfunctionalcategoriesbyDavidBioinformaticsdatabase.

ResultswerereportedinTable2(spotnumberobtainedfromImage Master,correlatetocorrespondingspotsinFig.2A).

As shown in Fig. 2B, nine proteins (26%) identified by MS included molecules functionally classified as Heat Shock Pro-teins/Chaperons,tenproteins(29%)wereenzymes,mostofwhich metabolic, three proteins (9%) were involved in stress/redox

(6)

612 F.Buchietal./LeukemiaResearch36 (2012) 607–618

Fig.2.Effectofdecitabine24honproteomeofKasumi-1cells.(A)Two-dimensionalgelsbefore(a)andafter(b)treatmentwereanalyzed.Spotswerepickedandidentified byMSanalysis.(B)Functionaldistributionofidentifiedproteins.(C)ConfirmatoryWesternblot;anti-p38isshownasproteinloadingcontrol.CTRL,controluntreatedcells; DAC,decitabine.

homeostasis, three (9%) were structural proteins and ten pro-teins (29%) were involved in signal transduction (Table 1 and Supplementarydata).Afterdecitabinetreatment,themajorityof identifiedproteins(thoseselectedonthebasisofasignificant mod-ulationinexpression)weredown-regulated,althoughproteinspot numberdidnotdecrease(Table2).

String analysisshowedthat the majority ofmodulated pro-teinswerecorrelated(FigS2,b–Supplementarydata).Decrease of hnRNPA2/B1, alpha-Enolase and theincrease of Cyclophilin A,HSP60 (ratioof densitometryCTRL/AZA: 0.4, respectto con-trolloadingp38) and alpha-Tubulinwereconfirmed (Fig.2C, a and b). Several proteins (HSP90, HSP70, PDIA3, Cyclophilin A,

beta-Tubulin, alpha-Enolase) had different migration sites into both2Dgels(Table2–markedwithanasterisk),becauseoftheir isoforms(seeabove),sosomeofthesedidnotchangetheglobal expression(Fig.2C,c).

CyclophilinAexpressionwasincreasedinprimaryt(8;21)AML cellsafter24hexposuretodecitabineinvitro(Fig.1D,b).

3.4. ComparisonbetweenAZAandDACtreatments

We matched gels after treatment with azacitidine and decitabine, in order to identify commonly modulated proteins and toevaluate possibledifferent effects of thetwo agents on

(7)

F.Buchietal./LeukemiaResearch36 (2012) 607–618 613

Fig.3. ComparisonbetweenproteomeofKasumi-1afterazacitidineanddecitabinetreatments.(A)Two-dimensionalComassiestainedgelsafterazacitidine(a)anddecitabine (b)werecomparedandcommonproteinsidentified.(B)Tableofcommonproteins.AZA,azacitidine;DAC,decitabine.

(8)

614 F.Buchietal./LeukemiaResearch36 (2012) 607–618

Fig.4.ProteomenetworksbyMetacoreanalysis.Metacoreanalysiswasperformedtocomparecommonproteinsidentifiedafterazacitidineanddecitabinetreatments.(A) Proteinsequallymodulatedbyeitherdrug:(a)proteinfoldingnetwork,(b)cellcyclenetwork.(B)Proteinsdifferentlymodulatedbytwodrugs:(a)gene-specifictranscription network,(b)responsetostress-network.(C)CyclophilinApathwaynetwork.

(9)

F.Buchietal./LeukemiaResearch36 (2012) 607–618 615

(10)

616 F.Buchietal./LeukemiaResearch36 (2012) 607–618

Fig.4.(continued)

proteinexpression(Fig.3A,a andb).Considering onlyproteins withasignificantMASCOTscore(Tables1and2;score>56),and thoseproteinswhoseglobalexpression(summingisoforms)was modulated,wefound14proteinsidentifiedbothinazacitidineand decitabinetreatedgels(Fig.3B).

3.5. Proteinnetworkanalysis

A pattern analysis was performed using the software MetaCoreTMinordertoevaluatethepossiblecorrelationbetween

the2D-electrophoresis/MSidentifiedmodulatedproteinsand pos-sible cellular pathways affected by azacitidine and decitabine (Table3).Thisanalysisallowedalsotorelatethefunctionofsingle proteinstothecellularcontext.Allproteinsanalyzedwere pro-cessedbythe“networkanalysis”algorithmwithfiftynodes,which generatessub-networksrankedbyp-values.

Firstofall,weinvestigatedthecorrelationbetweenproteins that were equally modulated by either drug, particularlyTCP1 beta,PDIA3,Calreticulin,Glyceraldehyde-3-phosphate dehydroge-nase(GAPDH),GlutathioneS-transferaseP,ACTBandhnRNPA2/B1 (Fig.3B).Theanalysisclusteredproteinsintwonetworks:thefirst, whichincludeTCP1,Calreticulin,ACTB,PDIA3andGSTP1regulates proteinfolding(Fig.4A,a)andthesecond,whichincludesGAPDH, Tcp1andhnRNPA2/B1,modulatescellcycle(Fig.4A,b).

Amongproteinsthathaddifferentmodulationaftertwodrugs treatments,wefocusedouranalysisonproteinsdecreased only

byazacitidine(Fig.3B),particularlyCyclophilinA,Catalase, Nucle-ophosminandPCNA.Thisanalysisleadtoclusterproteinsinthree network:two,includingPCNA,NucleophosminandCyclophilinA, areinvolvedingene-specifictranscriptionandinresponsetostress (Fig.4B,aandb),thethirdoneisidentifiedviaCatalasepresence, involvedintriglyceridemetabolism.

SinceCyclophilinAshowedadecreaseofexpressionafter azac-itidineandanincreaseafterdecitabine,weanalyzeditspathway networkasaninterestingdifferencebetweenthetwo agents.It seemsparticularlyrelevantthatCyclophilinAisinvolvedinAML proliferationandmaintenance(Fig.4C–linksmarkedinblue). 4. Discussion

AzacitidineanddecitabineareusedfortreatmentofMDSand AML.Althoughthesetwoagentsshareasimilarchemical struc-ture and are often considered equivalent,they exertdivergent biologicaleffectsandhavesomedifferentclinicalactivity,asonly azacitidine hasbeen showntosignificantly improvesurvival in MDS[14]whiledecitabineseemstohavepreferentialactivityon CMML[15]andAML[11].Partofthedifferencesmaybedueto prevalentincorporationintoRNAofazacitidineandintoDNAof decitabine,but itappearsthatothereffects,beside hypomethy-lation,mayexplaintheirclinicalactivity[16].Characterizationof azacitidineanddecitabineeffects onproteinexpression,protein networksandpathwaysmayhelpinunderstandingtheirmolecular Table3

SummaryofproteomemodificationsafterazacitidineanddecitabinetreatmentofAML1/ETOpositiveleukemiccells.

Drug Numberofproteinspots Proteinsmodulated

AZA Decrease ↓5involvedinproteinfolding ↓3involvedingene-specifictranscription

↓3involvedincellcycle ↓3involvedinresponsetostress ↓Catalase

DAC Nochange ↓5involvedinproteinfolding ↑CyclophilinA ↓alpha-Enolase

(11)

F.Buchietal./LeukemiaResearch36 (2012) 607–618 617

mechanisms,whosediscrepancieshavestartedtobehighlighted inscientificliterature[3,5,6].AML1/ETOpositiveleukemiashave a particular good prognosisand are sensitive tochemotherapy [7–10].Mostinterestingly,theAML1/ETOcomplexbindingDNMTs andHDACformsaputativeidealtargetforepigeneticdrugs[7–10]. Weemployedasensitive,2D-electrophoresisapproachfollowed byMALDI-TOF/MStoinvestigateproteinsmodificationsaftershort terminvitrotreatmentwithazacitidineanddecitabine.This pro-teomic approach is increasingly used to implement studies of mechanismsofactionofdrugs[17,18].

We could demonstrate distinct expression pattern between proteinextractsfromuntreatedleukemiccellsandextractsfrom azacitidineanddecitabinetreatedcells.Specificproteinswere sig-nificantlydown-regulated,althoughnotcompletely,bybothdrugs. Wefocusedourattentionbothonthecommonlyrepressed pro-teins,andonthosedecreasedexclusivelybyoneagent,toverify whetherthis differencecouldjustifythediverseclinical effects of thetwo DNMTinhibitors. Quite differentlyfrom azacitidine, decitabinedidnotdecreasetheglobalnumberofproteinspots, respecttountreatedsamples.Thisisconsistentwiththelackof inhibitionof proteinsynthesisbydecitabine,observedbyother authorswithdifferentanalyticalmethods[3].

Thetwopublishedreportsongeneexpressionmodificationby DNMTinhibitors[5,6]donotidentifythesamesetofgenes,and thereisnosignificantoverlapwithourproteinfindingseither.

Althoughthetwoagentsaresupposedtoactandbeefficient inclinicsviahypomethylationofCpGislandsofgenepromoters, themajorityofmodulatedproteinsbyinvitroDNMTinhibitors treatment were repressed, similarly to what observed in gene expressionstudies[6].Moreover,wecouldnotdetectsignificant increase of tumor suppressorgenes, indicating, again similarly to what already observed by other authors, that although the genes of these proteins may be up regulated via hypomethy-lationto levelsdetectableby PCR-based methods,theyare not partofthegeneraldominantexpressionpatterninducedbythese drugs,andproteomicmethodsarenotsensitiveenoughtodetect them[5].

Inordertobetterunderstandtherelationshipsamongthe pro-teinsidentified,weusedStringdatabase,aswellasMetaCoreTM.

Mostoftheproteinswhose expressionwasmodifiedby DNMT inhibitorswereinter-relatedinthepathwaymap,confirmingthe biologicalreliability ofouranalysis.Inaddition,themajorityof modulatedproteinswereknowntobeinvolvedinneoplastic pro-gression,sothattheirdecreasedexpressionbyDNMTinhibitors mayhelptounderstandthemechanismsbywhichtheseagents exerttheiranticanceractivity.

IntheMetaCoreTM producednetwork,theidentifiedproteins

clusteredin twonetworks, onemodulating proteinfolding and polymerization(TCP1,PBAF,Calreticulin,PDIA3,GSTP1)andthe secondinvolvedinregulationofcellcycleandmitosisandRNA transport(hnRNPA2,BAF,G3P2,TCP1).

The Chaperonin Containing TCP1 in the eukaryotic cytosol ensuresthecorrectfoldingandassemblyofavarietyofproteins. Neoplastic cells show an overexpression of TCP1 beta [19]. In ourmodel,azacitidineanddecitabineprovokeddecreaseinTCP1 expression,andalsoadecreaseinitsbest-characterizedsubstrate beta-actin.Wecouldindeedconfirmthisfindingalsoinprimary AMLcells.Calreticulinisincreasedinseveralneoplasticdiseases [20],anditsexpressiondecreasedafterbothDNMTitreatments. The same inhibition is observed for Glutathione S-transferases (GSTs),whichareafamilyofenzymesthatcatalyzethe conjuga-tionofglutathione(GSH)tovariousxenobioticsandparticipatein cellularprotectionagainstoxidativestressorresistancetodrugs. Theseproteinsexhibitgeneticpolymorphismsintheirpopulation distribution,andthesevariantsarefrequentlyexpressedinAML patientandmayinfluencetheirprognosis[21,22].

Heterogeneousribonucleoproteins(hnRNPs)arecomplexesof RNA and protein present in thecell nucleus during gene tran-scriptionandsubsequentpost-transcriptionalmodificationofthe newlysynthesizedRNA(pre-mRNA).Theyareinvolvedinsplicing ofpre-mRNAandinitstransportoutofthenucleus.Overexpression ofhnRNPA2/B1iscorrelatedtocancerprogression[23], particu-larlyhnRNPB1isover-expressedinMDSandAML-MDS[24]while hnRNPA1isoverexpressedgenerallyinsolid[25]and hemato-logicalmalignances[26].Fromouranalysis,itemergedthatboth agents,inourexperimentalconditions,havethesameinhibiting activityoncellcycle/RNAmetabolismandproteinfolding.Effects ongeneexpressionandmiRNAexpressionhavebeendemonstrated tobetimedependent,butweprivilegedtheanalysisofearly modu-lationbythesetwodrugs,topossiblyexaminenoncytotoxiceffects [5].

Regardingproteinsselectivelymodulatedbyazacitidine,itlooks quite important that one cluster of decreased proteins (PCNA, CyclophilinA,NPM-1)isinvolvedinresponsetostress, suggest-ingaroleofazacitidineinimpairingreactionofleukemiccellsto DNAdamage.Thesameproteinsareregulatinggene-specific tran-scription,and azacitidinecouldinfluenceit, butnot necessarily byCpGislandhypomethylation.Besides,onlyazacitidineinhibits Catalase,which notonly protectscellsfromthetoxic effectsof hydrogenperoxide,butalsopromotesgrowthofmyeloidleukemia cells,thankstoERK-1activation[27].Inconclusions,azacitidine, butnotdecitabine,seeminglyexertsanimportantdownregulation ofanti-stressproteins.

CyclophilinA(CypA)modulationisquitepeculiar,becauseits expressionisreducedbyazacitidine,butincreasedbydecitabine, andtheseresultswereconfirmedalsoinprimaryhumant(8;21) AMLcells.RecentstudiesindicateddifferentpossiblerolesofCypA intumordevelopment,giventhatitsexpressionresultedincreased and inducedby c-Myc and ithasinhibitory activityonp53,as alsoshownbyouranalysiswithMetaCore.Thisdiscrepancyafter drug treatment could be consistent witha reported early and transientinductionof pro-carcinogenicgenesbydecitabine[5]. Althoughaspecificroleinnormalandmalignanthemopoiesishas not beendemonstrated for Cyclophilin A,it is possible thatits effectsoninflammation,neutrophilchemo-attractionand induc-tionofreactiveoxygenspeciesmaybecriticalforleukemiccells [28,29].Anotherinterestingfeatureofouranalysisisthatdecitabine isselectivelyabletodownregulatealpha-Enolase.Itcouldbethat thisoccursbecauseofdecitabinesite-specificDNAincorporation. Certainly,bydecreasingalpha-Enolaseactivity,decitabinecould actreducingleukemicproliferation.Moreover,onlytreatmentwith decitabinedown-regulatesHSP60,which indeedplaysa pivotal roleinleukemogenesis[30].

Differences between the mechanisms of azacitidine and decitabinewereobservedintheiractivitiesoncellviability, pro-teinsynthesis,cellcycle,miRNAandgeneexpression[3,5,6].The hypothesis that AZA and DAC have finely diversebiomolecular mechanismsissupportedbytheobservationthatthesetwoagents have a specific and selectivemodulation of thetarget proteins whichweidentified.Theireffectscouldbecausednotexclusively byDNAhypomethylation.Ourobservationsfurtherindicatethat azacitidineanddecitabinearenotinterchangeableandthattheir alternateorcombineduseinclinicsmaybeconceivable.

Conflictofinterest

Allauthorshavenoconflictofinteresttodeclare. Acknowledgments

Contributions.V.S.designedthestudyandwrotethemanuscript; F.B.performed experiments and wrote theresultssection; G.F.

(12)

618 F.Buchietal./LeukemiaResearch36 (2012) 607–618

performedmassspectrometryanalysis;E.S.and E.M.performed Western blot experiments and A.S., A.G. and A.B. took part in designingthestudyandrevisedthemanuscript.Fundings.Regione Toscana,BandoSalute 2009;EnteCassa diRisparmiodiFirenze (ECR); and Ministero per l’Istruzione, l’Università e la Ricerca (MIUR).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.leukres.2011.11.024.

References

[1] Santini V, Kantarjian HM,Issa JP. Changes in DNA methylation in neo-plasia: pathophysiology and therapeutic implications. Ann Intern Med 2001;134:573–86.

[2] SantiniV.Azacitidine:activityandefficacyasan epigenetictreatmentof myelodysplasticsyndromes.ExpertRevHematol2009;2:121–7.

[3]HollenbachPW,NguyenAN,BradyH,WilliamsM,NingY,RichardN,etal.A comparisonofazacitidineanddecitabineactivitiesinacutemyeloidleukemia celllines.PLoSOne2010;5:e9001.

[4]LiLH,OlinEJ,BuskirkHH,ReinekeLM.Cytotoxicityandmodeofactionof 5-azacytidineonL1210leukemia.CancerRes1970;30:2760–9.

[5]QiuX,HotherC,RalfkiaerUM,SogaardA,LuQ,WorkmanCT,etal.Equitoxic doses of 5-azacytidine and 5-aza-2deoxycytidine induce diverse imme-diate and overlappingheritable changesin the transcriptome. PLoS One 2010;5:e12994.

[6]FlothoC,ClausR,BatzC,SchneiderM,SandrockI,IhdeS,etal.TheDNA methyl-transferaseinhibitorsazacitidine,decitabineandzebularineexertdifferential effectsoncancergeneexpressioninacutemyeloidleukemiacells.Leukemia 2009;23:1019–28.

[7]GozziniA,RovidaE,DelloSbarbaP,GalimbertiS,SantiniV.Butyrates,asa singledrug,inducehistoneacetylationandgranulocyticmaturation:possible selectivityoncorebindingfactor-acutemyeloidleukemiablasts.CancerRes 2003;63:8955–61.

[8]BarbettiV,GozziniA,RovidaE,MorandiA,SpinelliE,FossatiG,etal.Selective anti-leukaemicactivityoflow-dosehistonedeacetylaseinhibitorITF2357on AML1/ETO-positivecells.Oncogene2008;27:1767–78.

[9]SantiniV.AselectiveactivityofDNMTidecitabineonAML1ETOpositivecells? LeukRes2007;31:741–2.

[10] GozziniA,SantiniV.Butyratesanddecitabinecooperatetoinducehistone acetylationandgranulocyticmaturationoft(8;21)acutemyeloidleukemia blasts.AnnHematol2005;84(Suppl1):54–60.

[11]BergT,GuoY,AbdelkarimM,FliegaufM,LubbertM.Reversalofp15/INK4b hypermethylationinAML1/ETO-positiveand-negativemyeloidleukemiacell lines.LeukRes2007;31:497–506.

[12]StresemannC,BruecknerB,MuschT,StopperH,LykoF.Functionaldiversity ofDNAmethyltransferaseinhibitorsinhumancancercelllines.CancerRes 2006;66:2794–800.

[13]FerrariG,PastorelliR,BuchiF,SpinelliE,GozziniA,BosiA,etal. Compar-ativeproteomicanalysisofchronicmyelogenousleukemiacells:insidethe mechanismofimatinibresistance.JProteomeRes2007;6:367–75.

[14]FenauxP,MuftiGJ,Hellstrom-LindbergE,SantiniV,FinelliC,GiagounidisA, etal.Efficacyofazacitidinecomparedwiththatofconventionalcareregimens inthetreatmentofhigher-riskmyelodysplasticsyndromes:arandomised, open-label,phaseIIIstudy.LancetOncol2009;10:223–32.

[15]WijermansPW,RuterB,BaerMR,SlackJL,SabaHI,LubbertM.Efficacyof decitabineinthetreatmentofpatientswithchronicmyelomonocyticleukemia (CMML).LeukRes2008;32:587–91.

[16] FandyTE,HermanJG,KernsP,JiemjitA,SugarEA,ChoiSH,etal.Earlyepigenetic changesandDNAdamagedonotpredictclinicalresponseinanoverlapping scheduleof5-azacytidineandentinostatinpatientswithmyeloid malignan-cies.Blood2009;114:2764–73.

[17] BianchiL,BruzzeseF,LeoneA,GagliardiA,PugliaM,DiGennaroF,etal. Proteomic analysisidentifiesdifferentially expressedproteinsafter HDAC vorinostatandEGFRinhibitorgefitinibtreatmentsinHep-2cancercells. Pro-teomics2011;11:3725–42.

[18] Buchi F, PastorelliR, FerrariG, Spinelli E, Gozzini A, SassoliniF, et al. Acetylomeandphosphoproteomemodificationsinimatinibresistantchronic myeloid leukaemia cells treated with valproic acid. Leuk Res 2011;35: 921–31.

[19] CoghlinC,CarpenterB,DundasSR,LawrieLC,TelferC,MurrayGI. Characteriza-tionandover-expressionofchaperonint-complexproteinsincolorectalcancer. JPathol2006;210:351–7.

[20]GoldLI,EggletonP,SweetwyneMT,VanDuynLB,GreivesMR,NaylorSM,etal. Calreticulin:non-endoplasmicreticulumfunctionsinphysiologyanddisease. FASEBJ2010;24:665–83.

[21]LeeHS,LeeJH,HurEH,LeeMJ,LeeJH,KimDY,etal.Clinicalsignificanceof GSTM1andGSTT1polymorphismsinyoungerpatientswithacutemyeloid leukemiaofintermediate-riskcytogenetics.LeukRes2009;33:426–33. [22]VosoMT,HohausS,GuidiF,FabianiE,D’AloF,GronerS,etal.Prognostic

roleofglutathioneS-transferasepolymorphismsinacutemyeloidleukemia. Leukemia2008;22:1685–91.

[23] ChenZY,CaiL,ZhuJ,ChenM,ChenJ,LiZH,etal.FynrequiresHnRNPA2B1and Sam68tosynergisticallyregulateapoptosisinpancreaticcancer. Carcinogen-esis2011;32:1419–26.

[24]OhshimaK,KarubeK,ShimazakiK,KammaH,SuzumiyaJ,Hamasaki M, etal. Imbalancebetweenapoptosisandtelomeraseactivityin myelodys-plasticsyndromes:possibleroleinineffectivehemopoiesis.LeukLymphoma 2003;44:1339–46.

[25]Ma YL,PengJY,ZhangP,HuangL,LiuWJ,ShenTY,etal.Heterogeneous nuclearribonucleoproteinA1isidentifiedasapotentialbiomarkerfor colorec-talcancerbasedondifferentialproteomicstechnology.JProteomeRes2009;8: 4525–35.

[26]ShiY,FrostPJ,HoangBQ,BenavidesA,SharmaS,GeraJF,etal.IL-6-induced stimulationofc-myctranslationinmultiplemyelomacellsismediatedbymyc internalribosomeentrysitefunctionandtheRNA-bindingprotein,hnRNPA1. CancerRes2008;68:10215–22.

[27]Hachiya M, Akashi M. Catalase regulates cell growth in HL60 human promyelocyticcells:evidenceforgrowthregulationbyH(2)O(2).RadiatRes 2005;163:271–82.

[28]SatohK,BerkBC,ShimokawaH.Vascular-derivedreactiveoxygenspeciesfor homeostasisanddiseases.NitricOxide2011;25:211–5.

[29] SongF,ZhangX,RenXB,ZhuP,XuJ,WangL,etal.CyclophilinA(CyPA)induces chemotaxisindependentofitspeptidylprolyl cis-transisomerase activity: directbindingbetweenCyPAandtheectodomain ofCD147.JBiolChem 2011;286:8197–203.

[30]SedlackovaL,SpacekM,HollerE,ImryskovaZ,HromadnikovaI.Heat-shock proteinexpressioninleukemia.TumourBiol2011;32:33–44.

Riferimenti

Documenti correlati

mato un viaggio in Germania e all'andata o al ritorno dovrà passare per_ Parigi _ed incontrare i vecchi compagni. NrcorrNr, Arnici e corrispondenti fran-

analizzati i valori dell’impedenza ricavati dai campioni contenenti il gradiente di concentrazione, rappresentante il gradiente elettrico. Su un vetrino porta- oggetto sono

Contrarily to the results emerging from these contributions, where under competition with homogeneous products the efficiency effect univocally favours the persistence of monopoly,

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable

The aim of this study is to propose a technological urban regeneration method by applying innovative techniques of energy conservation to a local stone material

Here, we use PET imaging of striatal dopamine 2/3 receptors and computational modeling of healthy human subjects’ behavior in a go/no-go task to show that dopamine 2/3

Importantly, not only ground states but also the low-energy part of the spectrum of systems described by CFT shows sub-volume (logarithmic) scaling of the entanglement entropy.. We