ContentslistsavailableatScienceDirect
Systematic
and
Applied
Microbiology
j o ur na l h o me pa g e :h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / s y a p m
Characterization
of
Bifidobacterium
species
in
feaces
of
the
Egyptian
fruit
bat:
Description
of
B.
vespertilionis
sp.
nov.
and
B.
rousetti
sp.
nov.
Monica
Modesto
a,1,
Maria
Satti
b,1,
Koichi
Watanabe
c,d,
Edoardo
Puglisi
e,
Lorenzo
Morelli
e,
Chien-Hsun
Huang
d,
Jong-Shian
Liou
d,
Mika
Miyashita
f,
Tomohiko
Tamura
f,
Satomi
Saito
f,
Koji
Mori
f,
Lina
Huang
d,
Piero
Sciavilla
a,
Camillo
Sandri
g,
Caterina
Spiezio
g,
Francesco
Vitali
h,
Duccio
Cavalieri
h,
Giorgia
Perpetuini
i,
Rosanna
Tofalo
i,
Andrea
Bonetti
a,
Masanori
Arita
j,k,
Paola
Mattarelli
a,∗aDepartmentofAgriculturalSciences,UniversityofBologna,VialeFanin44,40127Bologna,Italy
bDepartmentofGenetics,SOKENDAIUniversity(NationalInstituteofGenetics),Yata1111,Mishima,Shizuoka411-8540,Japan cDepartmentofAnimalScienceandTechnology,NationalTaiwanUniversity,Taipei,Taiwan
dBioresourceCollectionandResearchCenter,FoodIndustryResearchandDevelopmentInstitute,Hsinchu,Taiwan
eDepartmentforSustainableFoodProcesses,FacultyofAgricultural,FoodandEnvironmentalSciences,Universita`CattolicadelSacroCuore,ViaEmilia Parmense84,29122Piacenza,Italy
fBiologicalResourceCenter(NBRC),NationalInstituteofTechnologyandEvaluation(NITE),2-5-8,Kazusakamatari,Kisarazu,Chiba292-0818,Japan gDepartmentofAnimalHealthCareandManagement,ParcoNaturaViva—GardaZoologicalPark,Bussolengo,Verona,Italy
hDepartmentofBiology,UniversityofFlorence,Florence,Italy
iFacultyofBioscienceandTechnologyforFood,AgricultureandEnvironment,UniversityofTeramo,Teramo,Italy jRIKENCenterforSustainableResourceScience,1-7-22Suehiro,Tsurumi,Yokohama,Kanagawa230-0045,Japan kBioinformationandDDBJCenter,NationalInstituteofGenetics,Yata1111,Mishima,Shizuoka411-8540,Japan
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received15May2019
Receivedinrevisedform18August2019 Accepted20August2019
Keywords: Newspecies Bifidobacterium
Bifidobacteriumvespertilionissp.nov. Bifidobacteriumrousettisp.nov. Rousettusaegyptiacus
a
b
s
t
r
a
c
t
FifteenbifidobacterialstrainswereobtainedfromfaecesofRousettusaegyptiacus;aftergroupingthem byRAPDPCRonlyeightwereselectedandcharacterized.Analysisof16SrRNAandoffivehousekeeping (hsp60,rpoB,clpC,dnaJ,dnaG)genesrevealedthattheseeightstrainswereclassifiedintofiveclusters: ClusterI(RST8andRST16T),ClusterII(RST9TandRST27),ClusterIII(RST7andRST11),ClusterIV(RST
19),ClusterV(RST17)wereclosesttoBifidobacteriumavesaniiDSM100685T(96.3%),Bifidobacterium
callitrichosDSM23973T(99.2%and99.7%),BifidobacteriumtissieriDSM100201T(99.7and99.2%),
Bifi-dobacteriumreuteriDSM23975T(98.9%)andBifidobacteriummyosotisDSM100196T(99.3%),respectively.
StrainsinClusterIandstrainRST9inClusterIIcouldnotbeplacedwithinanyrecognizedspecieswhile theotheroneswereidentifiedasknownspecies.Theaveragenucleotideidentityvaluesbetweentwo novelstrains,RST16TandRST9Tandtheirclosestrelativeswerelowerthan79%and89%,respectively.
InsilicoDNA–DNAhybridizationvaluesforthoseclosestrelativeswere32.5and42.1%,respectively. Phe-notypicandgenotypictestsdemonstratedthatstrainsinClusterIandRST9TinClusterIIrepresenttwo
novelspeciesforwhichthenamesBifidobacteriumvespertilionissp.nov.(RST16T=BCRC81138T=NBRC
113380T=DSM106025T;RST8=BCRC81135=NBRC113377)andBifidobacteriumrousettisp.nov.(RST
9T=BCRC81136T=NBRC113378T=DSM106027T)areproposed.
©2019ElsevierGmbH.Allrightsreserved.
Ofalllivingmammals,batsareextraordinaryanduniquegiven theirpeculiaradaptations[28].Theyaretheonlymammalsthat
∗ Correspondingauthorat:DepartmentofAgriculturalSciences,Universityof Bologna,VialeFanin44,40127Bologna,Italy.
E-mailaddress:[email protected](P.Mattarelli). 1 Theseauthorscontributedequally.
canperformrealactiveflight,whichisessentialfortheirbiology [14]andthischaracteristicgavethebatorderitsscientificname —Chiroptera,orhand-winginGreek[11,8].Theyhaveevolvedto thriveindiverseecologicalnichesacrosstheglobe[28]andcanfeed oninsects,smallmammals,fish,blood,nectar,fruit,andpollen[27].
https://doi.org/10.1016/j.syapm.2019.126017 0723-2020/©2019ElsevierGmbH.Allrightsreserved.
[1,28].Bats areabletomigrateover longdistances,creating opportunitiesfordiverseexposureandwidespreaddissemination ofmicrobes[29].
The Egyptian fruit-bat Rousettus aegyptiacus (body mass: 140–160g)iswidelydistributedintropicalandsubtropicalregions ofAfrica,andAsia.Itsnorthernmostdistributionreachessouthern Turkey.Thisbatconsumesavarietyofwildandcultivatedfruits suchasFicusretusaandF.sycomorus(fig),Meliaazedarach (chin-aberry),Phoenixdactylifera(date),mangoandbananaandtherefore isapotentialseeddisperser[13,5].
Fromtheanatomicalstandpoint,Rousettusaegyptiacushasa rel-ativelyshortintestine,notdifferentiatedintosmallandlargeparts andwithnoobservedcecumorappendix;consequently,the dura-tionoftheintestinalpassisapproximately40min[11,12].
Studiesonthemicrobialecologyofgutmicrobiotainbatsare limitedandsuchinformationisnecessaryindeterminingthe eco-logicalsignificanceofthesehosts[11].
Therearerelatively fewerstudiesinvestigating thebacterial microbiotainbatswithrespecttodietaryhabitsofbats.Except a few [11,12],majority of the studieshave used culture based approachtostudythebacterialcommunitiesassociatedwiththe batintestinaltract.Thesehaveledtotheidentificationof differ-entbacteriasuchasSalmonella,Shigella,Enterobacter,Yersiniaand manyotherentericpathogensfromthebatdigestivetract. Differ-entsourcesusedforbacterialisolationandidentificationincludes urine,guanoandintestinalcontentorintestine[1,7,11].
Atthetimeofwriting,thereisnostudyinvestigatingthe pres-enceandthedistributionofBifidobacteriumspeciesinfruitbats. Severalstudieshave suggested theimportanceof isolating and identifyingnovelstrainsofthegenusBifidobacteriumfrom vari-ousanimals,includinghumans,inordertounderstandhowthey are mostly distributed [17,19] and, especially, which are their phenotypicandgenotypiccharacteristics,thusallowingthe recon-structionofamorerobustbifidobacterialphylogeny.
Therefore,theobjectiveofthisstudywasthecharacterization ofbifidobacterialisolatesderivedfromthefaecesofEgyptianfruit bat(Rousettusaegyptiacus).
InMarch2017,freshguanosfromthecaptivecolonyofthe Egyp-tianfruitbathousedundersemi-naturalconditionsinParcoNatura Viva-GardaZoologicalPark(Bussolengo,Verona,Italy),were col-lectedfromthegroundusingasterilespoonbytheanimal-care staffs(keepers)duringtheirroutinecleaningoftheenclosure,put intoasterileplastictubeandstoredunderanaerobicconditionsin ananaerobicjar(Merck)at4◦C,andweretakenpromptlytothe laboratory(within2h).Theanaerobicatmospherewasobtained usingtheGasPakEZAnaerobicPouchsystem(BD).
Animalswerefreefromintestinalinfectionsanddidnotreceive antibioticsorprobioticsfortwomonthsbeforesampleswere col-lected.Theirdietconsistedmostlyoffruit.
For isolation and enumeration of bifidobacteria, aliquots of approximately 1–2g of faecal sample were serially 10-fold dilutedwithPeptoneWater(Merck)supplementedwithl-cysteine hydrochloride(0.5g/L).Aliquotsof1mlfromeachdilution(from 10−1downto10-9)wereinoculatedontoMRS(Difco)agar supple-mentedwithl-cysteinehydrochloride(0.5g/L),aceticacid(1ml/L) (Merck)andmupirocin(100mg/L)(Applichem)[21].Plateswere incubatedinanaerobicconditions,at37◦Cfor48–72h.The anaer-obic atmosphere was obtained using the GasPak EZ Anaerobic Pouchsystem.Afterincubation, resultsshowedthepresence of bifidobacteria,withacolonycountnumberof4.6log10CFUg−1 fae-ces.Therefore,morphologicallydifferentcolonieswererandomly pickedandre-streakedforseveralgenerationsinordertoisolate purifiedindividualbacterialstrains.
A total of 15 strains were obtained, namely: RST 1, RST 2, RST 3, RST 4, RST 5, RST 7, RST 8, RST 9, RST 11, RST 12, RST 16, RST 17, RST 19, RST 26 and RST 27. For discrimina-tionof the isolates, RAPD-PCRfingerprintings werecarried out by using BOXA1R primer (5 -CTACGGCAAGGCGACGCTGACG-3), ERIC1 (5-ATGTAAGCTCCTGGGGATTCAC-3) and ERIC2 (5-AAGTAAGTGACTGGGGTGAGCG-3) primers, as previously described [18,19]. Based on the resulting BOX-PCR and ERIC bandingprofiles, theisolates werecategorized into sixgroups: GroupI(RST1,RST2,RST3,RST4,RST5,RST8,RST12,RST16and RST26),GroupII(RST9T),GroupIII(RST7andRST11),GroupIV (RST19),GroupV(RST17)andGroupVI(RST27)(Supplementary Figs. S1 and S2). One or wherever possible two representative strainsforeach groupwereselectedandatotal ofeightstrains werechosen(RST8andRST16TforGroupI,RST9TforGroupII, RST7andRST11forGroupIII, RST19 forGroupIV,RST17for GroupVandRST27forGroupVI)for16SrRNAgenesequencing asdescribedbyMichelinietal.[16].
The16SrRNAgenesequences(1400bp)ofstrainsandoftheir closestrelativesretrievedfromtheDDBJ/GenBank/EMBLdatabases werealigned using CLUSTAL Omega ina CLCSequence Viewer (1328nt).Aphylogenetictreebasedona totalof81partial16S rRNAgenesequences,includingthoseofmembersofthegenus Bifidobacteriumwasreconstructedwiththemaximum-likelihood method [3] and theevolutionary distances were computed by nucleotide model of GTR CAT.The treewas constructed using RaxMLversion8.2.7[25]androotedwithScardoviainopinataJCM 12537T.Thestatisticalreliabilityofthetreewasevaluatedbythe bootstrap analysis of 1000 replicateswith thealgorithm Boot-straprapidhillclimbingalgorithm.Thetreewasvisualizedusing FigTree[22].
Comparativeanalysisofthe16SrRNAgenesequencerevealed thattheseeightstrainswereclassifiedintofiveclusters:Cluster I(RST8,RST16T),ClusterII(RST9TandRST27),ClusterIII(RST 7,RST11),ClusterIV(RST19),ClusterV(RST17).Strainsin Clus-terI(RST8,RST16T)weretheclosesttoBifidobacteriumavesanii (96.30%similarity),strainsinClusterII(RST9TandRST27)were closesttoBifidobacteriumcallitrichosDSM23973T(99.2%and99.7%, respectively),strainsinClusterIII(RST7andRST11)wereclosest toBifidobacteriumtissieriDSM100201T(99.7%and99.2%),strain inClusterIV(RST19)wasclosesttoBifidobacteriumreuteriDSM 23975T (98.9%),straininClusterV(RST17)wasclosestto Bifi-dobacteriummyosotisDSM100196T(99.3%)(Fig.1).
In order to assess the genetic diversity of the eight strains as compared to the other currently recognized Bifidobacterium species,multilocussequenceanalysis(MLSA)basedonthe con-catenatedfivehousekeepinggenes(hsp60,rpoB,clpC,dnaJ,dnaG) wascarriedout.Thus,thephylogeneticlocationofthenovelstrains wasverifiedby theanalysisof geneswhich haveproven tobe discriminativefor theclassificationof thegenusBifidobacterium [10,30].
Forthispurpose,aphylogenetictreefor79bifidobacterialtype strainswasconstructedbyjoiningthefivecodingsequencesinthe followingorder:hsp60(662bp),rpoB(500bp),clpC(720bp),dnaJ (477bp)anddnaG(992bp).Theresultingin-frameconcatenated genesequences(3154bp)werealignedwiththeMAFFTprogram atCBRC(http://mafft.cbrc.jp/alignment/software/)[9].The evolu-tionarydistanceswerecomputedbynucleotidemodelGTRCAT, andthephylogenetictreewasconstructedbyRaxML(version8.2.7, maximum-likelihoodmethod)[25]withScardoviainopinataJCM 12537Tasanoutgroup.Thestatisticalreliabilityofthetreewas evaluatedbybootstrapanalysis(rapidhillclimbing)of1000 repli-cates.ThevisualizationwasperformedwithFigTree.
Fig.1.PhylogenetictreeoftheBifidobacteriumgenusbasedon16SrRNAgenesequences,showingtherelationshipbetweenstrainsisolatedfromEgyptianfruitbatsand othermembersoftheBifidobacteriumgenus.The16SrRNAgene-basedtreewasconstructedbythemaximumlikelihoodmethod;thecorrespondingsequenceofScardovia inopinataJCM12537Twasusedasoutgroup.Bootstrappercentagesabove70areshownatnodepoints,basedon1000replicatesofthephylogenetictree.
TheMLSAanalysisconfirmedtheclosephylogeneticrelatedness withthenearestneighboursofallthestrains(Fig.2).
Furthermore,thelevelofsimilarityforthepartial housekeep-ing gene sequences of strains in relation to the type strains of their closest phylogenetic relatives was calculated using EMBOSSWaterweb-basedprogram(https://www.ebi.ac.uk/Tools/
psa/embosswater/nucleotide.html):thevaluesofsimilarityforthe hsp60,rpoB,clpC,dnaJanddnaGgenesequenceswerecalculated andreportedinSupplementaryTableS1.
Thegenomeofall8strainswasdecodedthroughanext genera-tionsequencing(NGS)approach,usingaMiSeqplatform(Illumina) atBioFabResearch(Roma,Italy).Thegenerateddataweredepleted
Fig.2. Phylogeneticthreebasedontheconcatenationofproteinssequencesdeducedfromthehousekeepinggeneshsp60,rpoB,clpC,dnaJanddnaG,showingthephylogenetic relationshipsbetweenstrainsisolatedfromEgyptianfruitbatsandmembersoftheBifidobacteriumgenus.Thehousekeepinggene-basedtreewasconstructedbythemaximum likelihoodmethod,withcorrespondingsequencesofScardoviainopinataJCM12537Tbeingusedasoutgroup.Bootstrappercentagesabove70areshownatnodepoints, basedon1000replicatesofthephylogenetictree.
of low quality reads using FASTQ/A Trimmer in FASTX-toolkit (http://hannonlab.cshl.edu/fastxtoolkit/), assembled by SPADES version3.13.0[29]andannotatedthroughDFASTprogram[26].
ThedraftgenomesizeofstrainsRST8andRST16T(ClusterI), RST9TandRST27(ClusterII),RST7andRST11(ClusterIII),RST 19(ClusterIV)andRST17(ClusterV)rangedbetween2.80 and 3.28MbpasindicatedinTable1togetherwiththeirothergenomic features.Insilicoanalysisofallthesequencedgenomesallowed theestimationoftheirG+Ccontents,whichrangedfrom60.39to 64.55mol%,fallingintherangeindicatedforthegenus Bifidobac-terium,i.e.,52–67mol%.Theprojectoutlinehasbeensubmittedto theBioProjectPRJNA415181andtheGenBankaccessionnumbers werereportedinTable1.
Inordertoreconfirmtheabovephylogeneticanalysis,wealso constructedthephylogenetic treebased onthecoregenomeof Bifidobacteriumspp.Total76typestrainsofBifidobacteriumwere annotatedwiththeDFASTprogram[26],and355orthologousgenes
wereidentifiedasthecoreretainedinallgenomes.Theaminoacid sequencesofcoregenesfromeachgenomewereconcatenatedand alignedusingtheMAFFTprogram(version7.313)[9].The align-mentsweretrimmedusingtrimAlwith-automated1option[2].
The phylogenomic tree (Fig. 3) based on the core genome (355genes)confirmedthepositioningoftheeightisolatedstrains withinthegenusBifidobacteriumasobservedinthephylogenetic analysesbasedon16SrRNA and housekeepinggenesequences (Figs.1and2).
Inaddition,thegeneticsimilarityatgenomiclevelofRST16T andRST8 (ClusterI),RST9T and RST27(ClusterII),RST 7and RST11 (Cluster III),RST 19 (ClusterIV) andRST 17 (ClusterV) isolateswithrespecttheothercurrentlyrecognized bifidobacte-rialspecieswasevaluatedbasedonaveragenucleotideidentity (ANI)analysisbyusingthewebserverJSpeciesWS(http://jspecies. ribohost.com/jspeciesws/).Thisanalysis(SupplementaryTableS2) showedthatthehighestsequenceidentityvaluebetweenRST16T
Table1
GenomicandphylogeneticfeaturesofnovelbifidobacterialstrainsisolatedfromtheEgyptianbats.
Strain RST16T RST8 RST9T RST7 RST11 RST17 RST19 RST27
Accessionnumber RZNZ00000000 RZOA00000000 PEBH00000000 RZUI00000000 RZUJ00000000 RZUH00000000 RZUG00000000 RZJP00000000
GCcontent 64.20% 64.20% 64.55% 60.96% 60.76% 63.16% 60.39% 63.58% Contigs 49 74 37 49 46 60 80 11 Length(bp) 3075992 3067389 3053799 3032244 2986510 3275217 2833112 2797830 No.ofORF 2577 2594 2712 2526 2540 2759 2436 2320 tRNA 57 62 64 61 62 62 59 61 rRNA 5 3 5 2 2 5 3 3 Coverage 118 165 189 107 145 209 140 155
andRST8was78.66%and78.49%whencomparedtothe chromo-somesequenceofBifidobacteriumreuteriDSM23975T,thehighest sequenceidentityvaluebetweenRST9TandRST27when com-paredtoBifidobacteriumcallitrichosDSM23973Twere89.43%and 96.06%respectively,thehighestsequenceidentityvaluebetween RST7andRST11was95.10%and94.78%whencomparedto Bifi-dobacteriumtissieriDSM100201T,thehighestsequenceidentity valuebetweenRST19was96.94%whencomparedto Bifidobac-teriumreuteriDSM23975TandthatofRST17was95.98%when comparedtoBifidobacteriummyosotisDSM100196T.
ANIwithclosestneighbourssupportedanindependent phylo-geneticposition,i.e.ANIvalueof≤95%forstrainsinClustersI(RST 16TandRST8)andinClusterII(RST9T).Therefore,strainRST16T andstrainRST9Twereselectedasthetypestrainsofthetwonovel species.However,RST9TshowedhighsequencesimilaritywithB. callitrichosDSM23973Tfortheir16SrRNAgenesequences.
ToverifytheirlowANIvalues,aninsilicoDDH(isDDH)wasalso carriedoutusingGenome-to-GenomeDistanceCalculator(GGDC) version2.1formula2,themostaccurateknowntoolforcalculating DDH-analogousvalues,developedatDSMZandavailableatwww. ggdc.dsmz.de.Thethresholdvalueof≤70%isgenerallyaccepted forseparatedprokaryotespecies[15].WhencomparingstrainsRST 16TandRST9Twiththeirnereastneighbours,thevaluesachieved were32.5and42.1%,respectively.Theanalysiswasalsoperformed amongthe8isolatedstrainsandobtainedresultswereintherange of65.2–79.5%(SupplementaryTableS3).
EvaluationoftheabovephylogeneticrelationshipsofRST16T andRST8,RST9T,RST7andRST11,RST19,RST17andRST27 isolateswithrespecttoother(sub)speciesclearlyrecognizedtwo putativenovelspecies,namelyRST16TandRST9T.
Furthermore,thisworkdescribethemorphological, biochemi-calandmolecularcharacterizationsoftheremainingstrainsplaced onClustersII,III,IVandVbelongingtotheknownspeciesB. callithri-cos,B.tissieri,B.myosotisandB.reuteri,respectively,allofwhich havebeendescribedasisolatesfromRousettusaegyptiacus.
Theeight strains,selected asrepresentativesfromidentified clusters,showedrod-shapedcells,frequentlyformingfilaments, withirregularcontractionsalongthecellsandbifurcations.They werecultivatedunderanaerobicconditionsandmaintainedinTPY broth[24]pH6.9,at37◦C,unlessindicatedotherwise.
Morphological, cultural and biochemical characterization of thestrainswereperformedat 37◦C unlessotherwise stated,as describedpreviously[18].
The morphology of cells of strains RST 16T and RST 9T, as revealedbyphase-contrastmicroscopy,isshowninFig.4.
Optimalgrowthconditionsofthestrainsweredeterminedin TPYbrothafter24hofincubationat37◦Cinanaerobiccondition. Growthat22,25,30,35,37,40,42,45,48◦Cwastested.Sensitivity tolowpHwasscreenedat3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,and7.5 valuesofpH.Theabilityofthestrainstogrowunderaerobicand microaerophilicconditions(CampyGen;Oxoid)wasalsoverifiedin TPYbrothafter48hofincubationat37◦C.Particularly,forstrains RST16T,RST8andRST9Tbestgrowthconditionswereobtainedin TPYbrothpH7at37◦Candtheywereabletosurviveandgrowin
microaerophilicandinaerobicconditions.Allresultsareshowed inTable2.
Haemolyticactivitywas determinedin Columbiablood agar (Biolife)at37◦Cunderanaerobicconditionsfor48h[27].
Gramstaining,motilityassay,catalaseand oxidaseactivities wereperformedasdescribedpreviously[24].
StrainsRST16TandRST8,RST9T,RST7andRST11,RST19, RST17andRST27andrelatedspeciesB.avesaniiDSM100685T,B. reuteriDSM23975T,B.myosotis100196T,B.tissieriDSM100201T, andB.callitrichosDSM23973Twerealsoinvestigatedforsubstrates utilizationandenzymesproductionwithAPI50CHLandRapidID 32Atestkits(BioM ´erieux).ResultsaresummarizedinTable2.
Bifidobacteriaandmembersofrelatedgenerapossess fructose-6-phosphate phosphoketolase (F6PPK), the enzyme degrading hexoseviatheF6PPKpathway,whichisconsideredataxonomic markerforidentificationofBifidobacteriumandrelatedgenera[15]. DetectionofF6PPKactivitywascarriedoutaccordingtothemethod describedbyOrban&Patterson[26].Allstudiedstrainspossessed theF6PPKactivity.
For analysis of amino acid composition, the cell-wall pep-tidoglycan of strains RST 16T and RST 9T was prepared and hydrolysedasdescribedpreviously[6].Cell-wallaminoacidswere analysed by HPLC (model LC-20AB; Shimadzu) equipped with a Wakopak wakosil-PTC column (200×4.0mm i.d.; Wako Pure Chemical Industries),as theirphenylisothiocyanatederivatives (Wako). Amino acid isomers in the cell-wall hydrolysate were analysed asdescribed previouslyusingaliquid chromatograph-massspectrometer(modelLCMS-2020andLC-20AB;Shimadzu) equipped witha Shim-Pack FC-ODS column(150×2.0mm i.d.; Shimadzu)[20].ThepeptidoglycanofstrainRST16Tcontained glu-tamic acid(Glu),serine (Ser), alanine(Ala)and ornithine (Orn) in a molarratio of4:1:2:1. Enantiomericanalysis ofthe pepti-doglycan amino acids revealed thepresence of l-Orn-l-Glu3-d -Ser-Glu3.
The peptidoglycan of strain RST 9T contained glutamic acid (Glu),alanine(Ala)ornithine(Orn)andlysine(Lys)inamolarratio of2:2:1:1.Enantiomericanalysisofthepeptidoglycanaminoacids revealedthepresenceofl-Orn(l-Lys)-d-Glu.
Whole-cellfattyacidswereanalysedasfattyacidmethylesters (FAMEs)withSherlockphospholipidfattyacidsoftware(midi).The culturesofallstudiedstrainswereincubatedonMRSagaradded with0.05%cysteineplatesat37◦Cfor48hunderanaerobic condi-tions.FAMEswereextractedandpreparedasdescribedpreviously [23].ResultsareshowninTable3.
Onthebasisofthephenotypicandchemotaxonomic charac-terizationaswellasthemolecular-basedmethodsphylogenetic analysisbasedonthe16SrRNAgenesequences,MLSAbasedonthe concatenatedfivehousekeepinggenesequences,andthe whole-genome-basedsequencecomparisonsinsilico,strainsRST16Tand RST9Tweregeneticallyandphenotypicallydiscerniblefromthe currentlyrecognizedspeciesofbifidobacteria;thus,accordingto MinimalStandardguidelines[16],theyrepresenttwonoveltaxa forwhichthenameBifidobacteriumvespertilionissp.nov.and Bifi-dobacteriumrousettisp.nov.areproposed.
M. Modesto et al. / Systematic and Applied Microbiology 42 (2019) 126017 Glycerol – – – – – – – – + – – – – d-Arabinose – – – – – – – w – – – – – l-Arabinose + + + + + + + + + + + – + Ribose w + + – – w w w – – – – – d-Xylose – w + + + + + + + + + + + l-Xylose – – – – – – – – – – – – + Methyl-ˇ-d-xylopyranoside – – – – – w – – – w – – – Galactose + + + + w + + + + w + – w Fructose + w + + + + + + + w + + + Mannose + + + w w – + + + w + – + Sorbose – – – – – w – w – – – – – Rhamnose – w w – – – – w + – – – – Inositol – – – – – – – + – – – – – Mannitol + + + w + – + + w w + – – Sorbitol + – – – – – + + – – + – – Methyl-˛-d-mannopyranoside – – – – – – – + – – – – – Methyl-˛-d-glucopyranoside – + + w w + + + + – w – – N-Acetylglucosamine – w w – – – – + w – w – – Amygdalin – + + – – + + w – w – w – Arbutin – + + – – + + + – – + w – Aesculin + + + – – + + + + + + – – Salicin – + + – – + + + + + + + – Cellobiose – + + – – w w + + + + w – Maltose W W + + + + + + + + + + – Lactose W + + + + + + + + + + + – Melebiose + + + + + + + + – + + + – Sucrose – + + + + + + + + + + + + Trehalose – + + – – – + + + + + w – Inulin – – – – – – w – – – – – – Melezitose – + + – – – + – w w + w – Raffinose + + + + + + + + + – + + + Starch W w w w w + w w – – – + – Glycogen – – – – – – – – – – – + – Xylitol – – – – – – w w – – – – – Gentiobiose – + + – – + + + – w w + – Turanose + + + + + + + + – w w w – Lyxose – – – – – – – w – – + – – l-Fucose – – – – – – – + – – + – – Gluconate + – – + + + + + – – w w – 2-keto-gluconate – + + – – w – – + – – – w 5-keto-gluconate w + + w w w w w – – – – – Enzymaticactivity Urease + + + + + – – + + + + – – l-argininedihydrolase w + – w w + + + + + – – ˛-Glucosidase + + + + + + + + – w + + + ß-Glucosidase w + + w w + + + – w + + – ˛-Arabinosidase + – + w + + + – – – + – ß-Glucuronidase + – + – + – – + – – w – w N-Acetyl-ß-glucosaminidase – – – – + – – – – – – – – Glutamicacid decarboxylase + w w – – – + – – – + – –
M. Modesto et al. / Systematic and Applied Microbiology 42 (2019) 126017 7 Argininearylamidase + + + + + + + + – – + + +
Leucylglycinearylamidase – – – – + + + + + + w w +
Phenylalaninearylamidase + + + + + + + + + + + w + Leucinearylamidase + w + + + + + + + + + + + Pyroglutamicacid arylamidase – – – + + – – – – – – – + Tyrosinearylamidase + w + + + + – + + + + + + AlanineaArylamidase + – – – + + + + + + w – + Glycinearylamidase + + + w + + + + + + w – + Histidinearylamidase + + + + + + + + + + + + +
Glutamylglutamicacid arylamidase
– – – – W – – – – – – – w
Serinearylamidase + + + + + + + + – + w – +
Temperaturerangefor growth
22–48◦C 22–48◦C 22–48◦C 22–48◦C 22–48◦C 22–48◦C 22–48◦C 22–48◦C 20–44◦C 20–48◦C 26–42◦C 35–37◦C 25–50◦C
Optimumtemperature 37◦C 37◦C 37◦C 37◦C 37◦C 37◦C 37◦C 37◦C 35◦C 42◦C 37◦C 37◦C 40◦C
pHrangeforgrowth 3.5–7.5 3.5–7.5 3.5–7.5 3.5–7.5 3.5–7.5 3.5–7.5 3.5–7.5 3.5–7.5 5.5–7.5 4–7.5 5.0–8.0 5.0–7.0 4.0–7.5
OptimumpH 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 7.0 7.0 7.0 6.0
DNAGCcontent(mol%) 64.5a 60.96a 60.76a 64.20a 64.20a 63.16a 60.39a 63.58a 63.7a 65.1a 64.3a 61.3b 65.9c
Peptidoglycantype
l-Orn(l-Lys)-d-Glu l-Glu-l-Ala-l-Lys l-Glu-l-Ala-l-Lys l-Orn-l-Glu3-d-Ser l-Orn-l-Glu3-d-Ser l-Glu-l-Ala-l-Lys l-Lys-Gly l-Lys(l-Orn)-d-Asp l-Glu-l-Ala-l-Lys l-Glu-l-Ala-l-Lys l-Lys(l-Orn)-d-Asp l-Lys-Gly l-Orn(Lys)-d-Ser-d-Glu. +,positive;−,negative;w,weaklypositive.Allstrainsfermentglucose.Nostrainsfermenterytrol,l-xylose,d-adonitol,dulcitol,glycogen,tagatose,d-fucose,dandl-arabitol.Nostrainsshowˇ-galactosidase-6-phophatase, ˛-fucosidase,noreductionofnitratesorindoleproduction.
aDataarefromthisstudy. b DataarefromEndoetal.[4]. c dataarefromMichelinietal.[16].
Fig.3.PhylogenetictreeoftheBifidobacteriumgenusbasedontheconcatenatedaminoacidsequencesof355coregenesofstrainsisolatedfromEgyptianfruitbatsand membersoftheBifidobacteriumgenus.Thecoregenes-basedtreeshowsthesubdivisionofthesevenphylogeneticgroupsoftheBifidobacteriumgenusrepresentedwith differentcolors.ThephylogenetictreewasbuiltbythemaximumlikelihoodmethodwithcorrespondingsequencesofScardoviainopinataJCM12537Tbeingusedasoutgroup. Bootstrappercentagesabove70areshownatnodepoints,basedon1000replicatesofthephylogenetictree.
DescriptionofBifidobacteriumvespertilionissp.nov
Bifidobacteriumvespertilionis(ve.sper.ti.lio’nis.L.gen.n. vesper-tilionisofabat).
Cells are Gram-positive-staining, non-motile, asporogenous, non-haemolytic,F6PPK-positive,catalase- andoxidase-negative, indole-negative, and when growing in TPY broth are rods of various shapes forming a branched structure with ‘Y’ at both sides. The well isolated colonies grown on the surface of TPY
agarunderanaerobicconditionsarewhite,opaque,smoothand circularwithentireedges,whiletheembeddedcoloniesare lens-shapedorelliptical.Coloniesreach1.0–2.0mmindiameterafter 3 days of incubation. Cells can grow in the range 22–48◦C. CellsgrowatpH4.0–7.5.Optimalconditionsofgrowthoccurat pH 7 and 37◦C. Using API 50 CHL system acids are produced from d-glucose, l-arabinose, lactose, d-fructose, d-mannitol, d-mannose,maltose,sucrose,raffinose,turanose,d-xylose,gluconic acid,andproducedweaklyfromd-galactose,d-mannose,
Methyl-Fig.4. Phase-contrastphotomicrographsofcellsofB.rousettisp.nov.RST9T(A)andB.vespertilionissp.nov.RST16T(B)growninTPYbrothshowingcellularmorphology. Bar,10m.
Table3
CellularfattyacidprofilesofstrainsisolatedfromtheEgyptianfruitbat.
Fattyacid ClusterI ClusterII ClusterIII ClusterIV ClusterV
RST8 RST16T RST9T RST27 RST7 RST11 RST19 RST17 C16:0 51.15±0.30 39.02±0.20 34.82±1.04 39.89±0.30 56.21±0.67 43.46±0.54 24.29±0.43 37.78±0.27 C14:0 5.80±0.12 16.3±0.47 24.96±1.75 23.07±0.72 10.57±0.39 11.80±0.45 21.68±0.62 19.68±0.17 C18:19c 18.15±0.64 8.14±0.2 8.17±0.71 8.74±0.34 11.13±0.28 15.15±0.62 7.20±0.34 C16:19c 2.45±0.10 6.07±0.56 2.83±0.10 2.15±0.03 1.62±0.31 1.54±0.16 8.18±0.23 3.30±0.10 C18:0 1.99±0.01 1.64±0.04 1.30±0.07 2.04±0.07 9.76±0.29 6.15±0.29 1.64±0.01 C12:0 1.35±0.02 1.85±0.30 1.74±0.12 1.84±0.10 2.84±0.20 1.87±0.09 C13:1at12-13 2.19±0.30 2.03±0.26 1.65±0.14 2.19±0.01 1.10±0.07 2.32±0.05 C19:0isoI 2.37±0.05 1.14±0.04 C20:0 1.91±0.23 C17:19c 1.49±0.09 C10:0 1.26±0.08 Summedfeatures* 1 2.30±0.07 6.85±0.44 6.53±0.39 5.34±0.16 6.68±0.29 3.32±0.22 2.74±0.09 6.86±0.26 4 1.49±0.09 2.41±0.08 1.55±0.10 7 12.53±0.40 13.80±0.90 11.38±1.00 10.05±0.34 13.62±0.10 18.19±0.91 13.70±0.28 8 1.76±0.14 2..34±0.29 3.12±0.11 2.26±0.06 3.27±0.30 2.12±0.03 2.44±0.16
Inboldthemainfattyacidsproduced.
˛-d-glucopyranoside,starch,5-ketogluconatebutnotfromother carbohydrates.Activitywasobservedfor˛-andˇ-galactosidase, ˛-glucosidase,˛-arabinosidase,N-acetyl-ˇ-glucosaminidase, alka-linephosphatase,argininearylamidase,prolinearylamidase,leucyl glycinearylamidase,phenylalaninearylamidase,leucine arylami-dase,pyroglutamicacidarylamidase,tyrosinearylamidase,alanine arylamidase, glycine arylamidase, histidine arylamidase, serine arylamidase. Activity was also observed weakly for arginine dihydrolase,ˇ-glucosidase, glutamyl glutamic acidarylamidase. Aesculine is not hydrolysed. No reduction of nitrates was rec-ognized.Cellsarepositivefor urease.Thepeptidoglycantype is l-Orn-l-Glu3-d-Ser.
ThetypestrainRST16T(=BCRC81138T=NBRC113380T=DSM 106025T)wasisolatedfromthefaecesof theEgyptian fruitbat Rousettusaegyptiacus.TheDNAG+Ccontentofthetypestrainis 64.20mol%.
ThetaxonumberofdigitalprotologueisTA00874.
DescriptionofBifidobacteriumrousettisp.nov
Bifidobacteriumrousetti(rou.set’ti.N.L.gen.n.rousettiof Rouset-tusaegyptiacus,theEgyptianfruitbat).
Cells are Gram-positive-staining, non-motile, asporogenous, non-haemolytic,F6PPK-positive, catalase-and oxidase-negative, indole-negative,andwhengrowinginTPYbrotharerodsofvarious shapesformingabranchedstructurewith‘Y’atbothsides.Thewell isolatedcoloniesgrownonthesurfaceofTPYagarunder anaero-bicconditionsarewhite,opaque,smoothandcircularwithentire edges,whiletheembeddedcoloniesarelens-shapedorelliptical. Coloniesreach1.0–2.0mmindiameterafter3daysofincubation. Cellscangrowintherange22–48◦C. CellsgrowatpH4.0–7.5.
OptimalconditionsofgrowthoccuratpH7and37◦C.UsingAPI 50CHLsystemacidsareproducedfromd-glucose,l-arabinose, d-fructose,d-mannitol,d-mannose,raffinose,turanose,d-galactose, sorbitol,gluconicacidandproducedweaklyfromd-ribose, mal-tose, lactose, starch and 5-ketogluconate but not from other carbohydrates.Activitywasobservedfor␣-andˇ-galactosidase, ˛-glucosidase,˛-arabinosidase,glutamicaciddecarboxylase, argi-ninearylamidase,prolinearylamidase,phenylalaninearylamidase, leucine arylamidase, tyrosine arylamidase,alanine arylamidase, glycine arylamidase, histidine arylamidase, serine arylamidase. Activitywasalsoobservedweaklyforl-argininedihydrolase, ˇ-glucosidase.Aesculineishydrolysed.Noreductionofnitrateswas recognized.Cellsarepositiveforurease.Thepeptidoglycantypeis l-Orn(l-Lys)-d-Glu.
ThetypestrainRST9T (=BCRC81136T=NBRC113378T=DSM 106027T)wasisolatedfromthefaeces oftheEgyptianfruitbat Rousettusegyptiacus.TheDNAG+Ccontentofthetypestrainis 64.55mol%.
ThetaxonumberofdigitalprotologueisTA00875.
GenBankaccessionnumber
The GenBank accession number for the 16S rRNA par-tial gene sequence for the novel isolated strains RST 7, RST 8, RST 9T, RST 11, RST 16T, RST 17, RST 19, RST 27 are MK722390, MK722393, MK722392, MK722391, MK722394, MK722395,MK722396,MK722397,respectively.
TheGenBankaccessionnumbersforthegenomesofthenovel isolated strainsRST 7,RST 8, RST9T,RST 11, RST 16T,RST 17, RST19,RST27areRZUI00000000,RZOA00000000,PEBH00000000,
following:RST7(BCRC81134,NBRC113376,DSM106022),RST8 (BCRC81135,NBRC113377);RST11(BCRC81136,NBRC113379, DSM106024);RST17(BCRC81139,NBRC113381,DSM106026); RST19(BCRC81140,NBRC113382,DSM106027);RST27(BCRC 81141,NBRC113383,DSM106028) Acknowledgements
ComputationalanalysiswasperformedontheNIG supercom-puteratTheResearchOrganization ofInformationand Systems (ROIS).Thetravelcost wassupportedbySOKENDAIShort-term ResearchAbroad&long-termInternshipProgram2018.Thiswork waspartiallysupportedbyJSPSKAKENHI(17K19248)inJapan. AppendixA. Supplementarydata
Supplementarymaterialrelated tothis article canbefound, intheonlineversion,atdoi:https://doi.org/10.1016/j.syapm.2019. 126017.
References
[1]Banskar,S.,Mourya,D.T.,Shouche,Y.S.(2016)Bacterialdiversityindicates dietaryoverlapamongbatsofdifferentfeedinghabits.Microbiol.Res.182, 99–108,http://dx.doi.org/10.1016/J.MICRES.2015.10.006.
[2]Capella-Gutierrez,S.,Silla-Martinez,J.M.,Gabaldon,T.(2009)trimAl:atoolfor automatedalignmenttrimminginlarge-scalephylogeneticanalyses. Bioinfor-matics25(15),1972–1973,http://dx.doi.org/10.1093/bioinformatics/btp348. [3]Cavalli-Sforza,L.L.,Edwards,A.W.F.(1967)Phylogeneticanalysis.Modelsand
estimationprocedures.Evolution(N.Y).21(3),550–570.
[4]Endo,A.,Futagawa-Endo,Y.,Schumann,P.,Pukall,R.,Dicks,L.M.T.(2012) Bifi-dobacteriumreuterisp.nov.,Bifidobacteriumcallitrichossp.nov.,Bifidobacterium saguinisp.nov.,Bifidobacteriumstellenboschensesp.nov.andBifidobacterium biavatiisp.nov.isolatedfromfaecesofcommonmarmoset(Callithrixjacchus) andred.Syst.Appl.Microbiol35(2),92–97,http://dx.doi.org/10.1016/j.syapm. 2011.11.006.
[5]Fujita,M.S.,Tuttle,M.D.(1991)Flyingfoxes(Chiroptera:Pteropodidae): threat-enedanimalsofkeyecologicalandeconomicimportance.Conserv.Biol.5(4), 455–463,http://dx.doi.org/10.1111/j.1523-1739.1991.tb00352.x.
[6]Hamada,M.,Yamamura,H.,Komukai,C.,Tamura,T.,Suzuki,K.,Hayakawa,M. (2012)Luteimicrobiumalbumsp.nov.,anovelactinobacteriumisolatedfroma lichencollectedinJapan,andemendeddescriptionofthegenusLuteimicrobium. J.Antibiot.(Tokyo)65(8),427–431,http://dx.doi.org/10.1038/ja.2012.45. [7]Hughes,G.M.,Leech,J.,Puechmaille,S.J.,Lopez,J.V.,Teeling,E.C.(2018)Isthere
alinkbetweenagingandmicrobiomediversityinexceptionalmammalian longevity?PeerJ6,e4174,http://dx.doi.org/10.7717/peerj.4174.
[8]Jones,G.,Teeling,E.C.,Rossiter,S.J.(2013)Fromtheultrasonictotheinfrared: molecularevolutionandthesensorybiologyofbats.Front.Physiol.4,117, http://dx.doi.org/10.3389/fphys.2013.00117.
[9]Katoh,K.,Standley,D.M.(2013)MAFFTmultiplesequencealignmentsoftware version7:improvementsinperformanceandusability.Mol.Biol.Evol.30(4), 772–780,http://dx.doi.org/10.1093/molbev/mst010.
[10]Kim,B.J.,Kim,H.-Y.,Yun,Y.-J.,Kim,B.-J.,Kook,Y.-H.(2010)Differentiationof BifidobacteriumspeciesusingpartialRNApolymerase{beta}-subunit(rpoB) genesequences.Int.J.Syst.Evol.Microbiol.60(Pt12),2697–2704,http://dx. doi.org/10.1099/ijs.0.020339-0.
[11]Kolodny,O.,Weinberg,M.,Reshef,L.,Harten,L.,Hefetz,A.,Gophna,U.,Feldman, M.W.,Yovel,Y.(2019)Coordinatedchangeatthecolonylevelinfruitbatfur microbiomesthroughtime.Nat.Ecol.Evol.3(1),116–124,http://dx.doi.org/ 10.1038/s41559-018-0731-z.
dx.doi.org/10.1101/232934.
[13]Kultzer,E.(1979)Physiologicalecologyandgeographicalrangeinthe fruit-eatingcavebatgenusRousettusGray1821—areview.BonnerZool.Beiträge30, 233–275.
[14]McCracken,G.F.,Westbrook,J.K.,Brown,V.A.,Eldridge,M.,Federico,P.,Kunz, T.H.(2012)Batstrackandexploitchangesininsectpestpopulations.PLoSOne 7(8),e43839,http://dx.doi.org/10.1371/journal.pone.0043839.
[15]Meier-Kolthoff,J.P.,Auch,A.F.,Klenk,H.-P.,Göker,M.(2013)Genome sequence-basedspeciesdelimitationwithconfidenceintervalsandimproveddistance functions.BMCBioinform.14(1),60, http://dx.doi.org/10.1186/1471-2105-14-60.
[16]Michelini,S.,Modesto,M.,Filippini,G.,Spiezio,C.,Sandri,C.,Biavati,B.,Pisi, A.,Mattarelli,P.(2016)Bifidobacteriumaerophilumsp.nov.,Bifidobacterium avesaniisp.nov.andBifidobacteriumramosumsp.nov.:threenoveltaxafrom thefaecesofcotton-toptamarin(SaguinusoedipusL.).Syst.Appl.Microbiol.39 (4),229–236,http://dx.doi.org/10.1016/j.syapm.2016.04.005.
[17]Modesto,M.,Michelini,S.,Sansosti,M.C.,DeFilippo,C.,Cavalieri,D.,Qvirist,L., Andlid,T.,Spiezio,C.,Sandri,C.,Pascarelli,S.,Sgorbati,B.,Mattarelli,P.(2018) Bifidobacteriumcallitrichidarumsp.nov.fromthefaecesoftheemperortamarin (Saguinusimperator).Int.J.Syst.Evol.Microbiol.68(1),http://dx.doi.org/10. 1099/ijsem.0.002472.
[18]Modesto, M.,Michelini,S.,Stefanini,I.,Ferrara,A.,Tacconi,S.,Biavati,B., Mattarelli,P.(2014)Bifidobacteriumaesculapiisp.nov.,fromthefaecesofthe babycommonmarmoset(Callithrixjacchus).Int.J.Syst.Evol.Microbiol.64(Part 8),http://dx.doi.org/10.1099/ijs.0.056937-0.
[19]Modesto,M.,Puglisi,E.,Bonetti,A.,Michelini,S.,Spiezio,C.,Sandri,C., Sgor-bati,B.,Morelli,L.,Mattarelli,P.(2018)Bifidobacteriumprimatiumsp.nov., Bifidobacteriumscaligerumsp.nov.,Bifidobacteriumfelsineumsp.nov.and Bifi-dobacteriumsimiarumsp.nov.:fournoveltaxaisolatedfromthefaecesof thecottontoptamarin(Saguinusoedipus)andtheemperortamari.Syst.Appl. Microbiol.41(6),593–603,http://dx.doi.org/10.1016/J.SYAPM.2018.07.005. [20]Nozawa,Y.,Sakai,N.,Arai,K.,Kawasaki,Y.,Harada,K.(2007)Reliableand
sen-sitiveanalysisofaminoacidsinthepeptidoglycanofactinomycetesusingthe advancedMarfey’smethod.J.Microbiol.Methods70(2),306–311,http://dx. doi.org/10.1016/j.mimet.2007.05.003.
[21]Rada,V.,Sirotek,K.,Petr,J.(1999)Evaluationofselectivemediafor bifidobac-teriainpoultryandrabbitcaecalsamples.Zentralbl.Veterinarmed.B46(6), 369–373,http://dx.doi.org/10.1046/j.1439-0450.1999.00241.x.
[22]Rambaut,A.2014Figtree,aGraphicalViewerofPhylogeneticTrees,Available from:Http://Tree.Bio.Ed.Ac.Uk/Software/Figtree.
[23]Sasser,M.(1990)Identificationofbacteriabygaschromatographyofcellular fattyacids.USFCCNewsl20,16.
[24]Scardovi, V.(1986) Genus bifidobacterium.In:Sneath, P.H.A.,Mair, N.S., M.E.S,J.G.H,(Eds.),Bergey’sManualofSystematicBacteriology,Baltimore,pp. 1418–1434.
[25]Stamatakis,A.(2014)RAxMLversion8:atoolforphylogeneticanalysisand post-analysisoflargephylogenies.Bioinformatics30(9),1312–1313,http:// dx.doi.org/10.1093/bioinformatics/btu033.
[26]Tanizawa,Y.,Fujisawa,T.,Kanimuma,E.,Nakamura,Y.,Arita,M.(2016)DFAST andDAGA:web-basedintegratedgenomeannotationtoolsandresources. Biosci.MicrobiotaFoodHealth35(4),173–184,http://dx.doi.org/10.12938/ bmfh.16-003.
[27]Teeling,E.C.,Springer,M.S.,Madsen,O.,Bates,P.,O’brien,S.J.,Murphy,W.J. (2005) Amolecularphylogeny forbatsilluminatesbiogeographyandthe fossilrecord.Science307(5709),580–584,http://dx.doi.org/10.1126/science. 1105113.
[28]Teeling,E.C.,Vernes,S.C.,Dávalos,L.M.,Ray,D.A.,Gilbert,M.T.P.,Myers,E., Consortium,B.(2018)Batbiology,genomes,andthebat1kproject:togenerate chromosome-levelgenomesforalllivingbatspecies.Annu.Rev.Anim.Biosci. 6(1),23–46,http://dx.doi.org/10.1146/annurev-animal-022516-022811. [29]Vengust,M.,Knapic,T.,Weese,J.S.(2018)Thefecalbacterialmicrobiotaofbats;
Slovenia.PLoSOne13(5),e0196728,http://dx.doi.org/10.1371/journal.pone. 0196728.
[30]Ventura,M.,Canchaya,C.,DelCasale,A.,Dellaglio,F.,Neviani,E.,Fitzgerald,G.F., vanSinderen,D.(2006)Analysisofbifidobacterialevolutionusingamultilocus approach.Int.J.Syst.Evol.Microbiol.56,2783–2792,http://dx.doi.org/10.1099/ ijs.0.64233-0.