• Non ci sono risultati.

Spectroscopic investigation of Roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses

N/A
N/A
Protected

Academic year: 2021

Condividi "Spectroscopic investigation of Roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses"

Copied!
7
0
0

Testo completo

(1)

Spectroscopic

investigation

of

Roman

decorated

plasters

by

combining

FT-IR,

micro-Raman

and

UV-Raman

analyses

V.

Crupi

a,

*,

V.

Allodi

b

,

C.

Bottari

a

,

F.

D

’Amico

c

,

G.

Galli

d

,

A.

Gessini

c

,

M.F.La

Russa

e

,

F.

Longo

a

,

D.

Majolino

a

,

G.

Mariotto

b

,

C.

Masciovecchio

c

,

A.

Pezzino

f

,

B.

Rossi

c

,

S.A.

Ruffolo

e

,

V.

Venuti

a

a

DipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerra,UniversitàdegliStudidiMessina,VialeFerdinandoStagno d’Alcontres31,98166Messina,Italy

bDipartimentodiInformatica,UniversitàdegliStudidiVerona,StradaleGrazie15,37134Verona,Italy cElettra—SincrotroneTrieste,StradaStatale14km163.5,AreaScience70Park,34149Trieste,Italy d

SoprintendenzaSpecialeperiBeniArcheologicidiRoma,VilladeiQuintili,viaAppiaNuova1092,00197Roma,Italy

e

DipartimentodiBiologia,EcologiaeScienzedellaTerra(DiBEST),UniversitàdegliStudidellaCalabria,ViaPietroBucci,87036ArcavacatadiRende,Cs,Italy

f

DipartimentodiScienzeBiologiche,GeologicheeAmbientali—SezionediScienzedellaTerra,UniversitàdegliStudidiCatania,CorsoItalia57,95129Catania, Italy

ARTICLE INFO

Articlehistory: Received5October2015

Receivedinrevisedform22January2016 Accepted26January2016

Availableonline29January2016

Keywords: Archaeometry

Romandecoratedplasters Pigments

IRabsorbance Ramanmapping

ABSTRACT

Inthiswork,thecomplementaryuseofFouriertransforminfrared(FT-IR)spectroscopy,conventional micro-RamanspectroscopyandUV-Ramanscatteringprovedsuccessfulforthecharacterizationofbulk minerals and of a varietyof pigments fromdecorated finishing layers of plasters from a Roman archaeologicalsiteknownasVilladeiQuintili,amonumentalresidencelocatedinthesouth-easternpart ofRome(Italy).

Theusedmulti-techniqueapproachprovidedinsightsonthepictorialtechnique,givinginformation thatcouldbeusefulforproperrestoration.

ItisworthunderliningthatthepresentstudyrepresentsthefirstattemptofcarryingoutUVresonance Ramanmeasurementsforanalysingculturalheritagematerials.

ã2016ElsevierB.V.Allrightsreserved.

1.Introduction

Theknowledgeofbulkandpigmentminerals,their composi-tionandmethodsofutilizationisveryimportantfor understand-ingthehistoryofa workof artandtheresolution ofproblems relatedtoconservation,restoration,datingandauthorattribution

[1,2].Aswellknown,whendealingwitharchaeologicalmaterials, eventhefragmentssampledfromtheartwork,whateveritis,can bepreciousandthepreservationoftheirintegrityisoftenrequired. Hence,theuseofnon-destructive orat mostmicro-destructive analyticaltechniquessuchasthevibrationalspectroscopies,have been extensively used for the identification of archaeological source materials [3,4], especially ancient pigments [5–8]. In particular,thecombinedapplicationofFouriertransforminfrared (FT-IR),Ramanandmicro-Ramanspectroscopies[9–11]hasshown toyieldvaluablecomplementary[9]informationfortheanalysisof pigmentsonwallpaintings.Aswellknown,infact,althoughboth

FT-IRandRamanspectroscopyprovideinformationabout charac-teristicvibrationallevelsofmolecularsystems[12–15], neverthe-less,accordingtoselectionrules,sometransitionsmayturnout IR-allowedandRaman-forbidden,orviceversa.Furthermore,someof themaredetectedinbothIRandRamanprofilesatcoincidental frequenciesand,otherscanbeobservedinneitherofthesetwo kindsofspectra.Again,ifthemoleculehasalowsymmetry,most ofthevibrationalmodesappearinbothitsIRandRamanspectra, but,usually,withverydifferentintensities.Itoccursbecausethe polarizabilitychange(whichprovidestherequiredselectionrule forRamanscattering)associatedtoaspecificvibrationdiffersfrom thedipolemomentchange(i.e.:therequiredselectionruleforIR absorption)associatedtothesamevibration[16,17].The simulta-neous use of thetwo techniques, then, will behelpful for the completeidentificationofthevariouspossiblematerials character-ing the pigments, such as the minerals, the oxides and the sulphides,asexamples.Finally,theincorporationofmicro-Raman spectroscopyintothestudyallowsustoachieve moredetailed results withhigh spatial resolution by means of a rapid, non-destructivespectroscopictool.

*Correspondingauthor.

E-mailaddress:vcrupi@unime.it(V.Crupi).

http://dx.doi.org/10.1016/j.vibspec.2016.01.009 0924-2031/ã2016ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

Vibrational

Spectroscopy

(2)

In the present work, we carried out an archaeometric characterization,atmolecularlevel,byusingFT-IRspectroscopy, micro-Raman and UV-Raman spectroscopy, of the bulk and of differentpaintedsurfacesofplasters,sampledfromvariousareas ofanimportantRomanmonumentalcomplex,knownasVilladei Quintili(Rome,Italy),datedbacktothefirsthalfofthe2ndcentury CE [18].In the frameof a wider researchproject aimedat the reconstructionofthisattractivearchaeologicalsite,uptonowlittle explored,thestudyofthesearchaeologicalfindingsthroughthe investigationofanychangesinthecompositionofthematerialsis assessed in order to understand variations in the artistic methodology, styles, or production processes. The obtainable informationcanstronglycontribute,ontheonehandtothestudies ofthearchaeologistsforthefullknowledgeofthehistoryofthe site,andontheotherhandtorestorationaims.

Thin-sectionsofsampleshavebeenalreadyclassifiedfromthe petrographicpointofviewintothreedifferentgroupsbasedonthe type/sorting of the aggregate and on the main features of the cluster[19]. Preliminary measurementsperformed byscanning electronmicroscopycoupledwithenergy-dispersiveX-ray spec-trometry(SEM-EDS)revealedthepresenceoftwolayers,identified as the preparation layer and the paintedlayer. Moreover, two portableinstruments(XRFandRaman)havebeenalreadyusedin ordertoachieveinformation,innon-invasiveway,onthesurfaceof some of these samples [20]. In particular, a handheld energy-dispersiveX-ray fluorescence(hXRF) analyserwas employedin order to obtain, starting from the elemental composition, an indirectidentificationofpigmentsthroughthedetectionoftheir key elements. For example, in the case of some plasters with reddishlayer,thesimultaneouspresenceofHgandSallowedusto hypothesizetheuseofcinnabar(HgS).However,XRFisinsensitive tothechemicalstateand/orthemolecularenvironmentinwhich the elements are present. Consequently, it cannot provide informationofthespecifickindofpigmentpresentinthesample. For this reason, the analysis was integrated with conventional Ramanmeasurements performedwitha portable spectrometer (pRaman)workinginthevisiblelightregion.Thecollecteddata evidenced the typical peaks of cinnabar for those samples for whichXRFrevealedthesimultaneouspresenceofHgandS[20]. Here,weperformedtheanalysisofpigmentswiththeuseofa micro-Ramanset-upworkinginthevisiblelightrange,inorderto obtainanincreasedsignal-to-noiseratioandareductioninofthe sampleareasdowntoafew

m

m2.

Finally,wehavecarriedout,forthefirsttimeinthecultural heritage filed,complementary resonanceRaman measurements employingtheUVradiationavailableattheIUVSbeamlineatthe Elettra facility [21]. The use of UV radiation instead of the conventionalvisibleonnear-IRonestakesseveraladvantages:(a) itincreasesoforderofmagnitudetheRamansignalcomingfrom moleculargroups having

p

-

p

* electronic transitions in theUV range,e.g.suchasaromaticringsand/oroxygencomposites;(b)it allowstogetasignificantreductionoftheunwantedfluorescence background,thuspermittingamoreaccuratespectrallineshape analysis;(c)itallowstoanalysealsoexcitationmodesoccurringin the low-energy region, which is not easily accessible to a conventionalRamanset-up.

2.Experimental

2.1.Materialsandsampling

AdetaileddescriptionofthearchaeologicalsiteoftheVilladei QuintilihasbeenalreadyreportedinRef[19];werecallhereonly themainpoints.

The Roman archaeological site of Villa dei Quintili is a monumentalresidencelocatedinthesouth-easternpartofRome,

Italy(Fig.1(a)).Itwasbuiltinthefirsthalfofthesecondcenturyby thefamilyoftheQuintilibrothers,onthepromontoryformedby the‘CapodiBovelavaflow,eruptedduringthevolcanicactivityof theAlbanHills[22].Themonumentalcomplex,whichbelongedto several emperors,consistsofmanystructuresexpandedaround variouscentresandcharacterizedbydifferentbuildingtechniques ascribable to nine construction phases ranging from 98–138CE (Trajan-Hadrian) up to Middle and Modern Ages [23]. The archaeological importanceof theresidenceis mainlyrelatedto the high quality of the building and decorative materials, particularlyfinemarblefromaroundtheworld.Theornamental elements of the floors generally consist of opus sectile and polychromemosaics,whereasmarble,frescoes,andmosaicswere usedforthewalls.

The samples under investigation are seven fragments of plasterscomingfromanextensivesamplingperformedonseveral edificesofthemonumentalcomplexofVilladeiQuintili(Fig.1(b)). Some images of the analysed archaeological fragments are reportedinFig.2.

Thesamplingwascarriedoutatfullrespectoftheintegrityof themonumentaccordingtotheItalianregulations[24].withthe

Fig.1.SatelliteviewofVilladeiQuintili(a)anddetailsofthesampledareas(b). Notes:A=representationarea;B=privateresidences;C=BasisVillae;D= Frigidar-ium; E=Calidarium;F=Ludus-Viridarium; L=Tepidarium; R=Hippodrome; T= Arcades.

(3)

assistanceofarchaeologistsfromtheArchaeological Superinten-denceof Rome, in order totakesamples representative of the differentconstructionphases.Thelistoftheanalysedsamplesis reported in Table 1, together with a brief description of their macroscopicfeatures,theindicationofthesamplingarea,ofthe previously performed analyses [20], and of the methods of investigationappliedinthiswork.

2.2.FT-IRspectroscopymeasurements

Fourier transforminfraredmeasurementswereperformedin the “micro-destructive” transmission configuration on all the

samplesbymeansofaBOMEMDA8FT-IRspectrometer,equipped withaGlobaraslightsource,aKBrbeamsplitter,andaDTGS/MIR detector.Spectrawerecollectedfrom500to4000cm 1,usinga

resolutionof4cm 1.Thesampleswerepreparedinpellets,using

small quantities (2mg) of sample dispersed in 200mg of powderedCsI,thatis,transparentintheinvestigatedIRfrequency range.32repetitive scanswereautomaticallyaddedtoobtaina good signal-to-noise ratio and spectral reproducibility. The experimental absorbanceprofileswerecompared withthoseof standard minerals and clays [25] and with data reported in differentsources[26,27]forareliableassignmentofthebands. 2.3.Micro-Ramanspectroscopymeasurements

Allmicro-Ramanmeasurementswerecarriedoutonsamples deposited onaglass slidein airand at roomtemperature.The correspondingspectrawereobtainedinbackscatteringgeometry andbyusingtwodifferentexperimentalsetupstobetterexplore differentspectralfeaturesofthesamples.

2.3.1.Ramanmappingmeasurements

Raman maps were acquired by using a software-controlled motorizedXY stagecoupledtoa Ramansystem (HORIBAJobin Yvon LabRam HR800) consisting of an 80cm focal length spectrograph using a 600 grooves/mm grating and a charge-coupleddevice(CCD)detectorcryogenicallycooled.TheRaman spectrain thewavenumber rangebetween200 and 1200cm 1

werecollectedbyusinganexcitingradiationat632.8nm(He-Ne laser,powerattheoutput20mW).Thelaserwasfocusedonto thesamplesurfacewithaspotareaofabout4

m

m2throughthe

80objective(NA=0.9)ofthemicroprobe setup.Theelastically scattered radiation was filtered by using a notchfilter. In this configuration, the resolution was about 1cm 1/pixel. Raman

mappingwasachievedbycollectingsets ofspectrasequentially recordedstep-by-stepfromsamplepoints,3

m

mawayfromeach other, within rectangular regions of interest. Repeated Raman mapswerecarriedoutfromthesamesampleinordertoassessthe analysisreproducibility.

2.3.2.UV-Ramanspectroscopymeasurements

UVMicroRamanscatteringmeasurementswerecarriedoutat theBL10.2-IUVSbeamlineattheElettraSynchrotronlaboratoryin Triestebyexploitingtheexperimentalset-updescribedinRef[20]. VerticallypolarizedVVRamanspectrawereexcitedat266nm.The inelastic scattered signal was collected in a back-scattering geometrybymeansof areflective40objective.Atriple stage spectrometer(Trivista,PrincetonInstruments)andaback-thinned CCD detectorwereusedtoget theRamanspectra in the200– 1200cm 1 wavenumberrange.Theexperimentalresolutionwas

setto5cm 1inordertoensureenoughresolvingpowerand count-Fig.2.RepresentativeimagesofI2(a)andMD1(b)fragments.

Table1

Listofinvestigatedfragmentsofplasters,togetherwiththeirmacroscopicfeatures,theindicationofprovenancearea,ofthepreviouslyperformedanalyses,andofthe methodsofinvestigationappliedhere.

Fragment Macroscopicfeatures Provenance

area

Previouslyperformed analyses

Presentperformedanalyses

I1A Reddishfinishinglayer R54 hXRF,pRaman IR

I1B Fragmentofplasterwithreddishfinishinglayer R54 hXRF IR,Micro-Raman I2 Fragmentofplasterwith3finishinglayers:reddish-brown,greenandlight

yellow

R6 hXRF IR,Micro-Raman, UV-Raman

I3 Fragmentofplasterwithtworeddish-brownfinishinglayers A5-A6 hXRF IR,Micro-Raman I4A Fragmentofplasterwithwhitishfinishinglayer BasisVillae hXRF,pRaman IR

I4B Fragmentofplasterwithreddishfinishinglayer BasisVillae hXRF,pRaman IR,UV-Raman MD1 Fragmentofplasterwithreddishfinishinglayer E2 – IR,Micro-Raman

(4)

rates.Nobaselinecorrectionwasperformedtoachievethefinal spectra.

3.Resultsanddiscussion

3.1.FT-IRspectroscopymeasurements

FT-IRanalysis,performedforallsamplesinthe500–4000cm 1

range, has been aimed at qualitative identification of the mineralogical composition of the bulk of the findings, and to the determination of the molecular nature of the pigmenting agents.

InFig.3 theFT-IRspectrumof thebulkofthesampleI1Bis reportedasanexample.

In spite of thecomplexity of thevibrational features in the investigatedrange,wehavebeenabletoassignspectratospecific materials.Inparticular,inFig.4,weplotted,asexamples,theIR spectra ofthefindings I2,I3,MD1,and I4Arelative todifferent sampling areas,amplifiedin the 500–2000cm 1 region, where

mostofthevibrationalcontributionsofthedifferentmineralogical phasesfall,togetherwiththecorrespondingcentre-frequenciesof themainvibrationalbands.

These IR spectra revealed the most relevant differences between the bulk and the corresponding painted surface, so hereinafterwewillfocusthediscussiononlyonthesesamples.

Table2summarizestheobtainedresults.

AsfarassampleI2isconcerned(Fig.4(a)),theFT-IRprofileof thebulkisdominatedbytheabsorptionbandsofcalcite(CaCO3),

centred,inparticular,at714cm 1,874cm 1,1440cm 1and

1797cm 1.Furthermore,abroadbandisclearlyevidentinthe 950–1268cm 1 rangethat canbeascribedtothepresence of

feldspars.ConsideringthehighH2Ocontent,assuggestedbythe

observation,forallsamples,between3000and3800cm 1of

theO Hstretchingvibration(seeFig.3),wecanhypothesizethat thepresentfeldspariskaolinite(Al2O3



2SiO2



2(H2O)),productofa

slow and complex hydrothermal alteration of feldspars, of feldspathoids and of other aluminiferous silicates, present as essential components in many rocks, mainly of granitic and gneissicotype.TheFT-IRprofileoftheredpigmentclearlyrevealed thepresenceofironoxidespigmentbasedcontributionscentredat 544 and 910cm 1. Furthermore, the large band between

950 and 1268cm 1 includes,otherthan thecontribution of

feldspar,alsothoseofironoxidecentredat1011and1052cm 1. ItisinterestingtonotehowverysimilartheFT-IRspectraofgreen

Fig.3.FT-IRspectrum,inthe4000–500cm 1

range,ofthebulkofI1Bsample.

Fig.4. FT-IRspectrum,inthe2000–500cm 1

range,oftheI2(a),I3(b),MD1(c),andI4A(d)samples,relativetothedifferentanalysedzones.Darkline:bulk,redline:red pigment,greenline:greenpigment,greyline:whitepigment.Themaincentre-frequenciesarealsoindicated.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

(5)

andredpigmentsappear.Consequently,wecanguessthat,with goodprobability,thesameagentsacttocolourthesampleboth greenandred.

InthecaseofI3fragment(Fig.4(b)),theFT-IRspectrumofthe bulk presents, as for I2 sample, the same absorption bands of calcite.Theabsenceoffeldsparscanbeascribedtothedifferent samplingareaof thetwo findings. In thespectrum of thered pigmentwereveal,onceagain,thepresenceofthecharacteristic peaksofthebulkwith,inaddition,thoseofpigmentsbasedoniron oxides,centredat542,910,1011,and1052cm 1(theselatter

two,inparticular,giverisetothebroadbandobservedbetween 950and1268cm 1).

Calcite is always present in the FT-IR profile of the bulk of MD1sample (Fig.4(c)).Theobservation ofthespectruminthe wholeanalysedwavenumberrangesuggestsusthatthesampleis strongly hydrated, as appears evident from the intense O H stretching band between 3000 and 3800cm 1. The band

between950and1268cm 1isinpartattributabletokaolinite

thatcontributes,inparticular,withpeakscentredat1002and 1118cm 1.Inthespectrumoftheredpigmentitispossibleto

recognize,similarlytothesampleI2,thecharacteristic contribu-tionsofthepigmentbasedonironoxide,at550and913cm 1. Thebroadbandbetween950and1268cm 1isdue,otherthan

tofeldspars, also tothe presence of iron oxide, with peaks at 1011and1052cm 1.

Finally,insampleI4A(Fig.4(d)),vibrationalbandsofcalcitecan be noticed for the bulk, and for the white pigment as well. Nevertheless, in the case of the white surface layer, the contributionofcalcite(peakat876cm 1)appearsmuchmore

intense with respect to the broad band observed between 950and1268cm 1duetofeldspars.Thisoccurrenceindicates

calciteasmainconstituent ofthewhitepigment,in agreement withourpreviousportableRamanmeasurements.It isprobably producedbythecalciumoxide(CaO)alsousedforthepreparatory layer.

To conclude, the predominant presence of Ca in all the investigated samples can be attributed to the fact that IR absorptiondoesnotallowtodistinguishthesurfacelayerfrom theceramic bulkthat inevitablyremainedasaresultof micro-sampling.Nevertheless,itisalsotruethat,aswellknown,Roman frescoesweregenerallymadebyapplyingpigmentsondryplaster, whichreacted withtheatmospheric CO2 producinganexternal

layerofCaCO3.Amixturebasedonwaterandlimewasoftenused

forfixingpigmentsandgettingthedesiredshade.

3.2.Micro-Ramanspectroscopymeasurements

Micro-Raman analysis has been performed on thefinishing layerofthosefragmentsreportedinTable1,andwediscusshere those spectra for which fluorescence didnot mask meaningful information.Again,theresultsobtainedfortheanalysedfragments arereportedinTable2.

In Fig.5,someopticalmicroscopy images,taken ontheI1B fragment, as detected by Raman mapping, (a) and the related typicalspectra(b),areshown.

Several clearlycontrasted peaks are observed in the region between200and700cm 1,associatedtohematiteandmagnetite

(redarrow)[28–30].thussuggestingthepresenceofredochre,an inorganic substance which was known and largely used since antiquity.Thespectracollectedontheseveralinvestigatedareas appear to be more similar to each other, therefore we can hypothesizethatmagnetiteiswidelydistributedinthepigment layer.

Itisworthnotingthat,althoughI1AandI1Barefragmentsof plasters both collected from the R54 area, different pigments (cinnabar[20]andredochre)arerevealed.Thislatterresultcould beindicativeofadifferentmanufacturingtechniquerelatedtothe occurrencethatthemonumentalcomplexofVilladeiQuintiliwas theresidenceofemperorsbelongingtodifferenttimes,ormore probablyrelatedtothevariousrestorationworksincurred.

Table2

ResultsofIR,micro-RamanandUV-Ramananalysesperformedontheinvestigatedfragmentsofplasters.

Performedanalyses Analyzedfragment Bulk Redlayer Greenlayer Whitelayer

IR I2 Calcite

Kaolinite

Ironoxides Ironoxides –

I3 Calcite Ironoxides – –

MD1 Calcite

Kaolinite

Ironoxides – –

I4A Calcite – – Calcite

Redlayer Greenlayer Whitelayer

Micro-Raman I1B – Hematite

Magnetite – – I2 – Hematite Magnetite Hematite Magnetite – Redlayer Greenlayer Whitelayer

UV-Raman I2 – Calcite Calcite –

I4B – Cinnabar

Calcite

– –

Fig.5.OpticalmicroscopyimageofthesampleregioninvestigatedbyRaman mapping(a)andarelatedtypicalspectrum(b)ofI1Bsample,fragmentofplaster withreddishfinishinglayer.Theredarrowindicatesthemaincontributionof magnetite.(Forinterpretationofthereferencestocolourinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

(6)

InFig.6,weshowtheopticalmicroscopyimageofasample region((a), top panel) together withtwo Ramanmaps of this region((a),middle and bottompanels) andtwo related typical spectra (b) recorded from reddish-brown finishing layer of I2sample.

Again,Fig.7reportstheopticalmicroscopyimageofasample region((a), top panel) together withtwo Ramanmaps of this region((a),middleandbottompanels)andtworelatedtypical(b), this time recorded fromgreenish and light yellowish finishing layersofI2fragment.

Inbothcases,thepigmentedlayershowstwodifferentregions: oneischaracterizedbythepresenceofochre(redline),constituted by hematite and magnetite (red arrow), widely distributed as indicatedbythehomogeneityofthespectrain alltheanalysed area,and theotherregionshowsthepresenceof calcite(green line), with its typical fingerprints occurring at 283, 714 and, especially,1088cm 1[31].

For this sample, micro-Raman spectral mapping, otherthan confirmingtheresultsobtainedbyFT-IRmeasurements,furnished useful information on the composition of the ochre. We can

associatethepresenceofCaCO3tothetechniqueofRomanfrescoes

orconsideritasaccessorymineralthatcontributestoaparticular nuanceofredochre.

Finally,thenoticeablesimilarityofthesetwospectraconfirms thehypothesisfortheuseofthesameagentsfor obtainingthe wantedcolouration.

3.3.UV-Ramanspectroscopymeasurements

As first attempt in the cultural heritage field, UV-Raman measurementshavebeencarriedoutforsamplesI2andI4B,inthe aim tocompare them with, micro-Raman and portable Raman results,respectively.

UV-RamanspectrumoftheredpigmentofI2(seeFig.8(a)and

Table 2)sample gaveclearevidenceof calcitepeakscentredat 283,713and1088cm 1(mainpeak).

Asexpected, inthis casethesepeaks arestronglyenhanced, sinceweareworkinginresonantconditionswiththefunctional groupsofCaCO3,whichoccurjustatUVwavelengths.Moreover,

forthesamefragment,thegreenpigmentexhibitedanUV-Raman spectrum (not reported here) very similar to that of the red pigment,inagreementwithwhathasalreadybeenhypothesized accordingtotheanalysisoftheFT-IRandmicro-Ramanspectra.

Concerning I4B fragment (Fig. 8(b), the well evident peak centred at 262cm 1 can be ascribed to cinnabar [28–31],

confirming the portable-Raman results. In addition, the most prominentpeakat1080cm 1testifiesonceagainthepresenceof

calcite already associated to the painting technique of Roman frescoes.

Theagreementoftheobtainedresultswiththosecomingfrom conventional Raman methodologies encourages us on possible futureapplicationofUV-Ramantechniquesintheculturalheritage field. We would like to further stress that, in principle, the tunabilityofthesynchrotronradiationsource,offeredbyIUVS set-up, will allow us to work in resonant conditions between the excitationwavelengthand thewavelengthof UV-absorptionfor specificfunctionalgroupsoftheinvestigatedsamples,whichisnot accessibletoconventionallaserRamansystems.Finally,itcould alsobeconsideredasanalternativespectroscopicapproachwith

Fig.7.Opticalmicroscopyimageofasampleregion((a),toppanel)togetherwith twoRamanmapsofthisregion((a),middleandbottompanels)andtworelated typical (b) collected from greenish and light yellowish finishing layers of I2fragmentofplaster.Redline:ochre,Greenline:calcite.Theredarrowindicates themaincontributionofmagnetite.(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(a)

(b)

Fig. 8.UV-Ramanspectrum, inthe 1130–200cm 1

range, recordedfrom the reddishfinishinglayerofI2(a)andI4B(b)samples,relativetothedifferentanalysed zones.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereader isreferredtothewebversionofthisarticle.)

Fig.6.Opticalmicroscopyimageofasampleregion((a),toppanel)togetherwith twoRamanmapsofthisregion((a),middleandbottompanels)andtworelated typical(b)recordedfromreddish-brownfinishinglayerofI2fragmentofplaster. Redline:ochre,Greenline:calcite.Theredarrowindicatesthemaincontributionof magnetite.(Forinterpretationofthereferencestocolourinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

(7)

respecttosynchrotron radiationX-ray absorptionspectroscopy (SR-XAS) techniques, recently successfully exploited in some culturalheritagestudies,inwhichthenon-destructiveidenti fica-tion of the main pigmenting agents of coloured coatings was indirectlyachievedbymeansofstructuralinformation.

4.Conclusions

TheplastermakingtechniqueusedintheRomanarchaeological siteofVilladeiQuintiliwallpaintingsishereexploredbya multi-methodological characterization of seven fragments of plasters withcolouredfinishinglayers.

TheFT-IR profilesofthebulkofalltheinvestigatedsamples revealedastronghydrationandaredominatedbythepresenceof calcite. In addition, kaolinite is recognized for I2 and MD1fragments.

Concerningthedecoratedlayers,thecombineduseofFT-IRand micro-Raman spectroscopies allowed, as main result, for the unambiguous identification of red ochre as red pigment. This occurrencesuggeststheuseoflocallyavailable materialsinthe paintingsofVilladeiQuintili.

Finally,weattemptedforthefirsttimetotestandvalidatethe UV-Raman technique as a non-destructive powerful tool for obtaining a detailed compositional characterization of the decoratedsurfacesof artworksofhistorical-artistic interest.For thetwosamplesinvestigated,theresultsareinagreementwith thoseobtainedbyconventionalRamantechniques,encouragingus onpossible future application of UV-Raman techniques in the culturalheritagefieldwhenevertheconventionalRamanset-upis notabletodetectRamanscattering.

Acknowledgments

TheauthorsaregratefultoDr.RitaParis,ArchaeologistDirector ofSoprintendenzaSpecialeperiBeni ArcheologicidiRoma, for allowingarchaeologicalsamplestobetaken.

References

[1]F.Bardelli,G.Barone,V.Crupi,F.Longo,G.Maisano,D.Majolino,P.Mazzoleni, V.Venuti,IronspeciationinancientAtticpotterypigments:anon-destructive SR-XASinvestigation,J.SynchrotronRadiat.19(2012)782–788.

[2]G.Barone,V.Crupi,F.Longo,D.Majolino,P.Mazzoleni,G.Spagnolo,V.Venuti, E.Aquilia,Potentialityofnon-destructiveXRFanalysisforthedeterminationof CorinthianBamphoraeprovenance,X-raySpectrom.40(2011)333–337. [3]V.C.Farmer,InfraredSpectraofMinerals,MineralogicalSociety,London,1974. [4]G.A.Hope,R.Woods,C.G.Munce,Ramanmicroprobemineralidentification,

Miner.Eng.14(2001)1565–1577.

[5]H.G.M.Edwards,E.M.Newton,J.Russ,Ramanspectroscopicanalysisof pigmentsandsubstratainprehistoricrockart,J.Mol.Struct.550–551(2000) 245–256.

[6]M.Bouchard,D.C.Smith,Catalogueof45referenceRamanspectraofminerals concerningresearchinarthistoryorarchaeology,especiallyoncorroded

metalsandcolouredglass,Spectrochim.ActaPartA:Mol.Biomol.Spectrosc. 59(2003)2247–2266.

[7]P.Vandenabeele,H.G.M.Edwards,L.Moens,AdecadeofRamanspectroscopy inartandarchaeology,Chem.Rev.107(2007)675–686.

[8]K.Eremin,J.Stenger,J.Huang,A.Aspuru-Guzik,T.Betley,L.Vogt,I.Kassal,S. Speakman,N.Khandekar,ExaminationofpigmentsonThaimanuscripts:the firstidentificationofcoppercitrate,J.RamanSpectrosc.39(2008)1057–1065. [9]M.C.Edreira,M.J.Feliu,C.Fernandez-Lorenzo,J.Martın,Spectroscopicanalysis ofromanwallpaintingsfromCasadelMitreoinEmeritaAugusta,Merida, Spain,Talanta59(2003)1117–1139.

[10]L.M.Moretto,E.F.Orsega,G.A.Mazzocchin,Spectroscopicmethodsforthe analysisofceladoniteandglauconiteinRomangreenwallpaintings,J.Cult. Herit.12(2011)384–391.

[11]I.Aliatis,D.Bersani,E.Campani,A.Casoli,P.P.Lottici,S.Mantovana,I.G.Marino, F.Ospitali,GreenpigmentsofthePompeianartists’palette:Spectrochim,Acta PartA:Mol.Biomol.Spectrosc.73(2009)532–538.

[12]R.J.H.Clark,S.Mirabaud,Identificationofthepigmentsonasixteenthcentury PersianbookofpoetrybyRamanmicroscopy,J.RamanSpectrosc.37(2006) 235–239.

[13]B.Schrader,InfraredandRamanSpectroscopy:MethodsandApplications, VCHpublishers,Weinheim,1995.

[14]J.R.Ferraro,K.Nakamoto,IntroductoryRamanSpectroscopy,AcademicPress, Boston,1994.

[15]E.Smith,G.Dent,ModernRamanSpectroscopy—APracticalApproach,J.Wiley &Sons,Hoboken,2005.

[16]I.N.Levine,MolecularSpectroscopy,JohnWileyandSons,NewYork,1975. [17]R.S.Czernuszewicz,T.G.Spiro,IRramanandresonanceramanspectroscopy,

in:E.I.Solomon,A.B.P.Lever(Eds.),InorganicElectronicStructureand Spectroscopy;VolumeI:Methodology,JohnWileyandSons,NewYork,1999, pp.353–441.

[18]A.Rotondi,FormaUrbis-ItinerariNascostiDiRomaAntica,ANNOXVII(2), Roma,2012.

[19]C.M.Belfiore,G.V.Fichera,M.F.LaRussa,A.Pezzino,S.A.Ruffolo,G.Galli,D. Barca,AmultidisciplinaryapproachforthearchaeometricstudyofPozzolanic aggregatesinRomanmortars:thecaseofVilladeiQuintili(RomeItaly), Archaeometry57(2015)269–296.

[20]V.Crupi,G.Galli,M.F.LaRussa,F.Longo,G.Maisano,D.Majolino,M.Malagodi, A.Pezzino,M.Ricca,B.Rossi,S.A.Ruffolo,V.Venuti,Multi-technique investigationofromandecoratedplastersfromvilladeiquintili(Rome,Italy), Appl.Surf.Sci.349(2015)924–930.

[21]F.D’Amico,M.Saito,F.Bencivenga,M.Marsi,A.Gessini,G.Camisasca,E. Principi,R.Cucini,S.DiFonzo,A.Battistoni,Nucl.Instrum.MethodsPhys.Res., Sect.A703(2013)33–37.

[22]A.Rotondi,LaVilladeiQuintilieisuoiantichiproprietari,Forma Urbis-ItinerarinascostidiRomaAnticaANNOXVII(2)(2012)6–8.

[23]G.V.Fichera,D.Barca,C.M.Belfiore,M.F.LaRussa,A.Pezzino,Rendiconti OnlineSocietàGeologicaItaliana21(2012)659–660.

[24]NORMAL3/80.Materialilapidei:campionamentoeconservazionedei campioni,1980,Roma.

[25]SadtlerDatabaseforFT-IR,BioRadLaboratories.

[26]W.P.Griffith,AdvancesinRamanandinfraredspectroscopyofminerals,in:R.J. H.Clark,R.E.Hester(Eds.),SpectroscopyofInorganic-BasedMaterials,John Wiley&Sons,Chichester,UK,1987,pp.119–186.

[27]G.E.DeBenedetto,R.Laviano,L.Sabbatini,P.G.Zambonin,Infrared spectroscopyinthemineralogicalcharacterizationofancientpottery,J.Cult. Herit.3(2002)177–186.

[28]I.M.Bell,R.J.H.Clark,P.J.Gibbs,RamanSpectroscopicLibraryofNaturaland SyntheticPigments,http://www.chem.ucl.ac.uk/resources/raman/. [29]RRUFFProject,2010.DepartmentofGeosciences,UniversityofArizona,

Tucson,USA.http://rruff.info/.

[30]HandbookofRamanspectra,http://ens-lyon.fr/LST/Raman.

[31]S.P.S.Porto,J.A.Giordmaine,T.C.Damen,DepolarizationofRamanscatteringin calcite,Phys.Rev.147(1966)608–611.

Riferimenti

Documenti correlati

In conclusion, natural prey availability and bird distribution proved to have similar trends, however we do not know to what extent Alpine Choughs are able to follow small-scale

The attention was mainly focused on ALS patients carrying mutations of copper-zinc superoxide dismutase-1 (SOD1) gene, since mutations of SOD1 are referred to alter

Ma questo non è decisivo perché ciò che vorremmo fare è mostrare come la semplice giustapposizione, il muto dialogo, di eventi e momenti della comunicazione – micro-testi,

These results have been generalized showing that a legal marking set that is a finite union of integer convex sets may be defined by a disjunction of GMECs, called an OR-AND GMEC

Dal confronto delle figure pubblicate da Portis (fig. 3a) con i reperti esposti attualmente nel museo (fig. 3c, d) si evince che que- sti hanno subito ulteriori danni: a

By means of this characterization, we ascertained that the experimental Raman intensity acquired with the SERS substrate was actually localized only at the cell surface since

(a) Unit cell with type B stents, (b) unit cell with connected type A stents, (c) unit cell with type B stents, axisymmetric mode, (d) unit cell with connected type A