• Non ci sono risultati.

View of Estimation of finite population mean using known correlation coefficient between auxiliary characters

N/A
N/A
Protected

Academic year: 2021

Condividi "View of Estimation of finite population mean using known correlation coefficient between auxiliary characters"

Copied!
12
0
0

Testo completo

(1)

ESTIMATION OF FINITE POPULATION MEAN USING KNOWN

CORRELATION COEFFICIENT BETWEEN AUXILIARY CHARACTERS H.P. Singh, R. Tailor

1.INTRODUCTION

Let U {U U1, 2,...,UN} be a finite population of N units. Suppose two auxil-iary variables X1 and X2 are observed on U ii( 1, 2,...,N), where X1 is

posi-tively and X2 is negatively correlated with the study variable Y. A simple random

sample without replacement (SRSWOR) of size n with n < N, is drawn from the population U to estimate 1 / N i i

Y

¦

y N , the population mean of Y, when the population means 1 1 1 / N i i X

¦

x N and 2 2 1 / N i i

X

¦

x N of X1 and X2 are

re-spectively, known. For estimating Y , Singh (1967) suggested a ratio-cum-product estimator 1 2 1 1 2 ˆ X x Y y x X § ·§ · ¨ ¸¨ ¸ © ¹© ¹ (1) where 1 / n i i y

¦

y n, 1 1 1 / n i i x

¦

x n and 2 2 1 / n i i x

¦

x n.

Wide applicability of the estimator Yˆ1 has led many authors to suggest

unbi-ased versions of 1

ˆ

Y with their properties, for instance, see Sahoo and Swain (1980), Biradar and Singh (1992-93) and Tracy et al. (1998). Sahai and Sahai (1985) and Singh (1987 b) have mentioned that the past association with experimental material might provide a close guess for the correlation coefficient Uyx1 between study variate Y and auxiliary character X1 i.e. Uyx1 can be guessed quite

accu-rately. Recently, Singh and Tailor (2003) have utilized the information on Uyx1 and suggested a modified ratio estimator for Y with its properties. Further Singh

(2)

and Singh (1984) advocated that the correlation coefficient Ux x1 2 between auxil-iary variates X1 and X2 may be known in many practical situations and hence

utilizing the known value of Ux x1 2 suggested a class of estimators for population variance V2y of Y with its properties. This led authors to suggest modified ratio-cum-product estimator using Ux x1 2 with its properties.

A jackknife version of the suggested estimator Yˆ2 is also given and its proper-ties are studied. An empirical study is carried out in support of the proposed es-timator.

2. SUGGESTED RATIO-CUM-PRODUCT ESTIMATOR

Assuming that the correlation coefficient Ux x1 2 between auxiliary characters

1

X and X2 is known, we define a ratio-cum-product estimator of Y as

1 2 1 2 1 2 1 2 1 2 2 1 2 ˆ x x x x x x x x X x Y y x X U U U U §  ·§  · ¨¨ ¸¨¸¨ ¸¸   © ¹© ¹. (2)

To the first degree of approximation, the bias and mean square error (MSE) of the proposed estimator 2

ˆ

Y are respectively, given by

1 1 2 2 1 2 * 2 * * 2 * 2 1 1 2 1 ˆ ( ) [ x ( yx ) x ( yx x x )] B Y TY P C P K P C K P K (3) and 1 1 2 2 1 2 2 2 * 2 * * 2 * * 2 1 1 2 2 1 ˆ ( ) [ y x ( 2 yx ) x { 2( yx x x )}] MSE Y TY C P C P  K P C P  K P K , (4) where 1 1( / 1) yx yx y x K U C C , Kyx2 Uyx2(Cy/Cx2), Kx x1 2 Ux x1 2(Cx1/Cx2 ), 1 2 * /( ) i Xi Xi x x P U , i (1, 2); 1 1 n N T §¨  ·¸ © ¹, Cy Sy/Y , / ,( 1, 2) i i x x i C S X i ; Uy xi Syxi /(S Sy xi ),(i 1, 2); 2 2 1 ( ) /( 1) N y i j S

¦

y Y N  , 2 2 1 ( ) /( 1),( 1, 2) i N x ij i j S

¦

x X N  i and

(3)

1 ( )( )/( 1),( 1, 2) i N yx i ij i j S

¦

y Y x X N  i .

When no auxiliary information is used the estimator Yˆ2 reduces to the con-ventional unbiased estimator y . If the information only on auxiliary variate X1

is used, then the estimator Yˆ2 tends to the usual ratio estimator yR y X( 1/x1).

On the other hand if the information is available on auxiliary variate X2 only,

2

ˆ

Y reduces to the usual product estimator yP y x( 2/X2).

It is well known that sample mean y is an unbiased estimator of Y and its variance under SRSWOR sampling scheme is given by

2 2

( ) y

V y TY C . (5)

To the first degree of approximation, the biases and MSEs of yR , yP and Yˆ1 are respectively given by

1 1 2 ( R) x (1 yx ) B y TYC K , (6) 2 2 2 ( P) x yx B y TYC K , (7) 1 1 2 2 1 2 2 2 1 ˆ ( ) [ x (1 yx ) x ( yx x x )] B Y TY C K C K K , (8) 1 1 2 2 2 ( R) [ y x (1 2 yx )] MSE y TY C C  K , (9) 2 2 2 2 2 ( P) [ y x (1 2 yx )] MSE y TY C C  K , (10) and 1 1 2 2 1 2 2 2 2 2 1 ˆ ( ) [ y x (1 2 yx ) x {1 2( yx x x )}] MSE Y TY C C  K C  K K . (11) 3.EFFICIENCY COMPARISIONS

It follows from (4), (5), (9), (10) and (11) that (i) MSE y( R)V y( ) if 1 1 2 yx K ! (12)

(4)

(ii) MSE y( P)V y( ) if 2 1 2 yx K   (13) (iii) 1 ˆ ( ) ( ) MSE Y V y if 1 1 2 2 1 2 2 2 [Cx (1 2 Kyx )Cx {1 2( Kyx Kx x )}] 0 which is always true if

1 1 2 yx K ! and 2 1 2 1 2 yx x x K¨K  ·¸ © ¹ (14) (iv) 2 ˆ ( ) ( ) MSE Y V y if 1 1 2 2 1 2 2 * * 2 * * * 1 1 2 2 1 [Cx P P( 2Kyx )Cx P P{ 2(Kyx P Kx x )}] 0 which always holds if

1 * 1 2 yx K ! P and 2 1 2 * * 2 1 2 yx x x K §¨P K  P ·¸ © ¹ (15) (v) MSE Y( ˆ1)MSE y( R) if 2 1 2 1 2 yx x x K K  (16)

(vi) MSE Y( ˆ1)MSE y( P) if

1 2 1 1 2 yx x x K ! K  , (17) where Kx x2 1 Ux x1 2(Cx2 /Cx1).

(vii) MSE Y( ˆ2)MSE y( R) if

1 1 2 1 2 2

* * 2 * * * 2

1 1 2 2 1

[(1P ){2Kyx  (1 P )}Cx P P{ 2(Kyx P Kx x )}Cx ] 0 which is always true if

1 * 1 (1 ) 2 yx K  P and 2 1 2 * * 2 1 2 yx x x K §¨P K  P ·¸ © ¹ (18)

(viii) MSE Y( ˆ2)MSE y( P) if

1 2 1 1 2 2

* * * 2 * * 2

1 1 2 2 2

(5)

which always holds if 1 2 1 * * 1 2 2 yx x x K ! P K  P and 2 * 2 (1 ) 2 yx K !  P (19) and (ix) 2 1 ˆ ˆ ( ) ( ) MSE Y MSE Y if 1 1 2 1 2 2 2 * * 2 * * 1 1 1 2 * * 2 2 [ (1 ){2 (1 )} {2 (1 ) (1 )(1 2 }] 0 x yx x x x yx C K C K K P P P P P P           

which is always true if

1 * 1 (1 ) 2 yx K  P and 1 2 2 * * * 1 2 2 * 2 (1 ) (1 ) 2 (1 ) x x yx K K P P P P ª   º !«  »  « » ¬ ¼. (20)

Now combining (12), (16) and (20) we get that the proposed estimator Yˆ2 is more efficient than y, yR and Singh’s (1967) estimator Yˆ1 i.e.MSE Y( ˆ2) MSE Y( ˆ1) MSE y( R)V y( ) if

1 * 1 (1 ) 1 2 Kyx 2 P    and 1 2 2 1 2 * * * 1 2 2 * 2 (1 ) (1 ) 1 2 2 (1 ) x x yx x x K K K P P P P ª   º § ·     « » ¨ ¸  © ¹ « » ¬ ¼ . (21)

Further combining (20), (17) and (13) we obtained that the suggested estimator

2

ˆ

Y is more efficient than y , yP and Singh’s (1967) estimator Yˆ1

i.e. MSE Y( ˆ2) MSE Y( ˆ1)MSE y( P)V y( ) if

2 1 1 * 1 (1 ) 1 2 2 x x yx K K P §  ·  ¨ ¸ © ¹ and 1 2 2 * * * 1 2 2 * 2 (1 ) (1 ) 1 2 2 (1 ) x x yx K K P P P P ª   º     « »  « » ¬ ¼ . (22)

It is to be noted that the suggested estimator 2

ˆ

Y is biased. In some applica-tions, bias is a major disadvantage. Keeping this in view, we have discussed the unbiasedness of the proposed estimator 2

ˆ

Y , and using the technique suggested by Quenouille (1956) known as ‘Jack-knife’ technique, proposed a family of al-most unbiased estimators with its properties.

(6)

4. FAMILY OF UNBIASED ESTIMATORS OF POPULATION MEAN Y USING JACKKNIFE TECHNIQUE

Let a simple random sample of size n = gm drawn without replacement and split at random into g sub-samples, each of size m. Then we define the Jack-knife ratio-cum-product estimator for population mean Y as

1 2 1 2 1 2 1 2 ' 1 2 ' 2 ' 1 1 2 1 ˆ g x x j x x J j j j x x x x X x Y y g x X U U U U §  ·§  · ¨ ¸¨ ¸ ¨  ¸¨  ¸ © ¹© ¹

¦

(23)

where y'j (n ym yj)/(nm) and xij' (n xi m xij)/(nm),i 1, 2; are the sample means based on a sample of (n-m) units obtained by omitting the jth group and yj and xij (i 1, 2; j 1, 2,..., )g are the sample means based on the jth sub samples of size m = n/g.

The bias of Yˆ2J, to terms of order

1

n , can be easily obtained as

1 1 2 2 1 2 * 2 * * 2 * 2 1 1 2 1 ( ) ˆ ( ) [ ( ) ( )] ( ) J x yx x yx x x N n m B Y Y C K C K K N n m P P P P       . (24)

From (3) and (24) we have

2 2 ˆ ( ) ( )( ) ˆ ( ) ( J) B Y N n n m n N n m B Y     (25) or 2 2 ( )( ) ˆ ˆ ( ) ( ) ( ) J N n n m B Y B Y n N n m     or ( ˆ2) ( )( ) ( ˆ2 ) 0 ( ) J N n n m B Y B Y n N n m      or O*B Y( ˆ2)G O* *B Y( ˆ2J) 0 (26)

for any scalar O*, we have

* ( )( ) ( ) N n n m n N n m G     . (27) From (26), we have

(7)

* * * 2 2 ˆ ˆ ( ) ( J ) 0 E Y Y E Y Y O  G O  or O*E Y( ˆ2  y)G O* *E Y( ˆ2J  y) 0 or E[O*Yˆ2 O G* *Yˆ2J  y{ (1O* G*) 1}] .Y

Hence, the general family of almost unbiased ratio-cum-product estimators of Y as * * * * * 2 2 2 ˆ [ {1 (1 )} ˆ ˆ ] u J Y y O G O Y O G Y (28)

see Singh (1987 a).

Remark 4.1. For O* ,0 2

ˆ

u

Y yields the usual unbiased estimator y while

* * 1

(1 )

O G  , gives an almost unbiased estimator for Y as

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 * 2 1 2 ' 1 2 ' ' 1 1 2 ( ) ˆ ( )( 1) x x x x u x x x x g x x j x x j j j x x x x X x N n m Y g y N x X X x N n g y Ng x X U U U U U U U U §  ·§  ·   ¨ ¸¨ ¸ ¨  ¸¨  ¸ © ¹© ¹ §  ·§  ·    ¨¨ ¸¨¸¨ ¸¸   © ¹© ¹

¦

(29)

which is Jack-knifed version of the proposed estimator Yˆ2.

Many other almost unbiased estimator from (28) can be generated by putting suitable values of O*.

5.SEARCH OF AN OPTIMUM ESTIMATOR IN FAMILY Yˆ2u AT (28)

The family of almost unbiased estimator 2

ˆ u Y at (28) can be expressed as * 2 1 ˆ u Y y O y , (30)

where y1 [(1G*)y y2] and y2 Yˆ2 G*Yˆ2J. The variance of Yˆ2u is given

by * 2 * 2 1 1 ˆ ( u) ( ) ( ) 2 ( , ) V Y V y O V y  O Cov y y (31)

(8)

*

1 1

( , )/ ( )

Cov y y V y

O . (32)

Substitution of (32) in (31) yields minimum variance of 2

ˆ u Y as 2 1 2 1 { ( , )} ˆ min . ( ) ( ) ( ) u Cov y y V Y V y V y  V y( )(1U012 ), (33)

where U01 is the correlation coefficient between y and y1.

From (33) it is immediate that

2

ˆ

min. (V Y u)V y( ).

To obtain the explicit expression of the variance of Yˆ2u, we write the

follow-ing results to terms of order n1, as

2 2 2 2

ˆ ˆ ˆ ˆ

( J) ( , J) ( )

MSE Y Cov Y Y MSE Y (34)

and 1 1 2 2 2 2 * * 2 2 1 2 ˆ ˆ ( , ) ( , J) [ y yx y x yx y x ] Cov y Y Cov y Y TY C P U C C P U C C (35)

where MSE Y( ˆ2) is given by (4).

Now using the results from (4), (5) and (35) into (31) we get the variance of

2

ˆ

u

Y to the terms of order n1 as

1 2 1 2 1 2 2 2 *2 * 2 *2 2 *2 2 * * 2 1 2 1 2 ˆ ( u) [ y (1 ) ( x x 2 x x x x ) V Y TY C O G P C P C  U C C P P 2O*(1G*)(P U1* yx1C Cy x1 P U2* yx2C Cy x2)] (36) which is minimized for

1 1 2 2 1 2 1 2 1 2 * * 1 2 * * * *2 2 *2 2 * * 1 2 1 2 ( ) (1 )( 2 ) yx y x yx y x opt x x x x x x C C C C C C C C P U P U O G P P P P U O     . (37)

Substitution of Oopt* in Yˆ2u yields the optimum estimator Yˆ2 (u opt) (say). Thus the resulting minimum variance of Yˆ2u is given by

(9)

1 1 2 2 1 2 1 2 1 2 * * 2 1 2 2 2 2 *2 2 *2 2 * * 2 ( ) 1 2 1 2 ( ) ˆ ˆ min. ( ) 1 ( ) ( 2 ) yx x yx x u y u opt x x x x x x C C V Y Y C V Y C C C C P P U T P P P P U U ª  º  « »   « » ¬ ¼ . (38) From (4), (11) and (38) we have

1 1 2 2 1 2 1 2 1 2 * * 2 1 2 2 2 2 *2 2 *2 2 * * 1 2 1 2 ( ) ˆ ( ) min. ( ) 0 ( 2 ) yx x yx x u y x x x x x x C C V y V Y Y C C C C C P P U T P P P P U U ª  º  « »t   « » ¬ ¼ (39) and 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 2 *2 2 *2 2 * * * * 2 1 2 1 2 1 2 2 *2 2 *2 2 * * 1 2 1 2 ˆ ˆ ( ) min . ( ) ( 2 ) 0. ( 2 ) u x x x x x x yx y x yx y x x x x x x x MSE Y V Y C C C C C C C C Y C C C C P P P P U U P U P T P P P P U  ª     º t « »   « » ¬ ¼ (40) Thus from (39) and (40) we have the following inequalities:

2 ˆ min. (V Y u)dV y( ) (41) and 2 2 ˆ ˆ min. (V Y u)d MSE Y( ) (42)

which follows that 2

ˆ

u

Y with O* Oopt* is more efficient than y and 2

ˆ Y .

When O* does not coincide with Oopt* then from (5) and (36) we note that

2 ˆ ( u) ( ) V Y dV y if * * * * 0 2 2 0 opt opt either or O O O O ½   ° ¾   °¿ (43)

It is observed from (11) and (36) that MSE Y( ˆ2u)MSE Y( ˆ1) if

2 2 * * * ( ) ( ) (1 ) (1 ) B B AC B B AC A O A G G         , (44) 1 2 1 2 1 2 *2 2 *2 2 * * 1 2 1 2 ( x x 2 x x x x ) A P C P C  P P U C C ,

(10)

1 1 2 2 * * 1 2 ( yx y x yx y x ) B P U C C P U C C , 1 1 2 2 1 1 2 2 [ x (1 2 yx ) x {1 2( yx x x )}] C C  K C  K K .

We also note from (4) and (36) that the estimator Yˆ2u is better than Y orYˆ2( ˆ2*u) if

* * * * * * * * 1 1 2 (1 ) (1 ) 1 1 2 (1 ) (1 ) opt opt either or O O G G O O G G ½ ª º  «  » °  ¬  ¼ ° ¾ ª º °    «  »  ° ¬ ¼ ¿ (45)

The optimum value Oopt* of O* can be obtained quite accurately through past data or experience.

6. EMPIRICAL STUDY

To observe the relative performance of different estimators of Y , we consider a natural population data set given in Steel and Torrie (1960, p.282). The popula-tion descrippopula-tion is given below:

y : Log of leaf burn in sec.

1

x : Potassiam percentage

2

x : Clorine percentage.

The required population values are: 0.6860 Y , C y 0.4803, Uyx1 0.1794, N=30 , 1 4.6537 X ,Cx1 0.2295, Uyx2 0.4996, n=6, 1 0.8077 X ,Cx2 0.7493, Ux x1 2 0.4074, g=2.

The percentage relative efficiencies (PREs) of various estimators of Y with re-spect to y have been computed and presented in Table 1.

TABLE 1

Percent relative efficiencies of different estimators of Y with respect to y

Estimator y yR yP Yˆ1 Y Yˆ2(ˆ2*u) 2

ˆ

u

Y with Oopt* 1.19751

(11)

Table 1 clearly indicates that the suggested estimators 2 2* ˆ ( ˆ ) u Y or Y and 2 ˆ u Y with O*=Oopt* , are more efficient than usual unbiased estimator y , ratio estima-tor yR , product estimator yP, and Singh’s (1967) ratio-cum-product estimator

1

ˆ

Y with considerable gain in efficiency.

7.CONCLUDING REMARKS

Usually information regarding correlation coefficient Ux x1 2 between the two

auxiliary variates X1 and X2 is known or can made known to the experimenter

through past studies or with the familiarity of experimental material. When Ux x1 2

is known an improved version Yˆ2u of Singh’s (1967) estimator Yˆ1 is suggested

with its properties. Using ‘Jack-knife’ technique envisaged by Quenouille (1956), a family of unbiased estimators Yˆ2u is also proposed. A large number of unbiased

estimators can be generated from Yˆ2u. Asymptotically optimum estimator (AOE)

in the family of estimators Yˆ2u is identified with its variance formula. It is shown

that the suggested family of estimators Yˆ2u is more efficient than y and Yˆ2 at

optimum conditions. Empirical study also suggests that the suggested estimators

* 2 2 ˆ ( ˆ ) u Y or Y and Yˆ2u with * * opt

O O are better than y , yR , yP and Singh’s (1967) estimator Yˆ1. Thus we conclude that the proposed estimators

* 2 2 ˆ ( ˆ ) u Y or Y and 2 ˆ u

Y are to be preferred in practice.

School of Studies in Statistics HOUSILA P. SINGH

Vikram University, Ujjain, India

Department of Educational Surveys and Data Processing RAJESH TAILOR

New Delhi, India

ACKNOWLEDGEMENTS

Authors are thankful to the referee for his valuable suggestions regarding improvement of the paper.

(12)

REFERENCES

R.S. BIRADAR, H.P. SINGH (1992-93), Almost unbiased ratio-cum-product estimators, “Aligarh

Jour-nal of Statistics”, 12, pp. 13-19.

M.H. QUENOUILLE (1956), Notes on bias in estimation, “Biometrika”, 43, pp. 353-360.

A. SAHAI, A. SAHAI (1985), On efficient use of auxiliary information, “Journal of Statistical

Plan-ning and Inference”, 12, pp. 203-212.

L.N. SAHOO, A.K.P.C. SWAIN (1980), Unbiased ratio-cum-product estimator, “Sankhya”, C, 42, pp.

56-62.

H.P. SINGH (1987 a), Class of almost unbiased ratio and product-type estimators for finite population

mean applying Quenouilles method, “Journal of Indian Society of Agriculture Statistics”, 39, pp. 280-288.

H.P. SINGH (1987 b), On the estimation of population mean when the correlation coefficient is known in

two phase sampling, “Assam Statistical Review”, 1, pp. 17-21.

H.P. SINGH, R. TAILOR (2003), Use of known correlation coefficient in estimating the finite population

mean, “Statistics in Transition”, 6, pp. 555-560.

M.P. SINGH (1967), Ratio-cum-product method of estimation, “Metrika”, 12, pp. 34-42.

R.K. SINGH, G. SINGH (1984), A class of estimators for population variance using information on two

auxiliary variates, “Aligarh Journal of Statistics”, (3-4), pp. 43-49.

D.S. TRACY, H.P. SINGH, R. SINGH (1998), A class of almost unbiased estimators for finite population

mean using two auxiliary variables, “Biometrical Journal”, 40, pp. 753-766.

R.G.D. STEEL, J.H. TORRIE (1960), Principles and Procedures of Statistics, Mc Graw Hill Book Co.

RIASSUNTO

Stima della media di un popolazione finita con coefficiente di correlazione tra caratteri ausiliari noto

Il contributo propone uno stimatore ratio-cum-product modificato della media di una popolazione finita di una variabile oggetto di studio Y sfruttando il coefficiente di correlazione noto tra due caratteri ausiliari X1 e X2. Si ottiene uno stimatore

ratio-cum-product quasi corretto attraverso la tecnica Jacknife del tipo previsto da Quenille (1956). In seguito vengono esaminati con un esempio numerico i meriti dello stimatore proposto.

SUMMARY

Estimation of finite population mean using known correlation coefficient between auxiliary characters

This paper proposes a modified ratio-cum-product estimator of finite population mean of the study variate Y using known correlation coefficient between two auxiliary charac-ters X1 and X2. An almost unbiased ratio-cum-product estimator has also been

ob-tained by using Jackknife technique envisaged by Quenouille (1956). The merits of the proposed estimator are examined through a numerical illustration.

Riferimenti

Documenti correlati

Questo concetto risulta tanto più preciso tanto più gli intervalli di tempo sono piccoli; facendo dunque tendere gli intervalli di tempo a 0 si introduce la velocità istantanea

• a quale distanza dalla superficie terrestre la forza gravitazionale terrestre è uguale in modulo a quella lunare; • con quale velocità si deve lanciare il satellite affinché

[r]

[r]

Un trasduttore di spostamento è caratterizzato dalla seguente curva di taratura. Determinare la misura corrispondente ad una lettura di 9.00 V, sapendo che la linearità è pari

vediamo ora come il coefficiente di drag dipende dalla scabrezza relativa e dal numero di Reynolds nel caso di corpi tozzi.. Il caso più estremo di corpo tozzo è rappresentato da

Un tappo di peso P chiude superiormente il serbatoio ed è libero di traslare verticalmente senza attrito. Determinare

Innamorati della cultura Reward Cultura, Arte, Cinema Società di Capitali Torino 2013 Microcredit Artistique Reward Cultura, Arte, Cinema Trento 2013 Schoolraising Reward