• Non ci sono risultati.

Problema n.41 della rivista "Mathproblems"

N/A
N/A
Protected

Academic year: 2021

Condividi "Problema n.41 della rivista "Mathproblems""

Copied!
3
0
0

Testo completo

(1)

Proposed problem Dear Editors in Chief,

I would like to propose the attached problem to “Mathproblems” which was inspired by num. 11639 of Americam Mathematical Monthly, Aplil–2012 (Omran Kouba). That problem asked to evaluate ∫0π/2(ln(cos x))2dx Evaluateπ/2 0 4(cos x)2(ln(cos x))2dx Answer: −π ln 2 + π ln22 π 2 + π3 12

Proof Setting x = arctan t we get

∫ +∞ 0 ( ln(1 + t2))2 (1 + t2)2 dt We write d da ∫ + 0 ( ln(1 + at2))2 (1 + t2)2 dt = ∫ + 0 2 ln(1 + at2)t2 (1 + t2)2(1 + at2)dt =2√a ∫ + 0 ln(1 + t2)t2 (1 + t2)(a + t2)2dt = a ∫ + −∞ ln(1 + t2)t2 (1 + t2)(a + t2)2dt

Standard theorem on the exchange between integral and derivatives allow us to differentiate under the integral.

By introducing the complex function

z2Ln(z2+ 1) (1 + z2)(z2+ a)2 = z2Ln(z + i) (1 + z2)(z2+ a)2 + z2Ln(z− i) (1 + z2)(z2+ a)2

we write the two integrals

a ∫ + −∞ z2Ln(z + i) (1 + z2)(z2+ a)2 + a ∫ + −∞ z2Ln(z− i) (1 + z2)(z2+ a)2 where Ln(z) = ln(|z|) + iϑ.

Let’s consider the complex function f1(z) =

z2Ln(z + i)

(1 + z2)(z2+ a)2 and cut the complex plane along

the set Rez = 0, Imz = [−i, −∞). We perform the counterclockwise integral over the two curves

γ1(t) = {z ∈ C : z = t, −r ≤ t ≤ r},

γ2(t) = {z ∈ C : z = reit, 0≤ t ≤ π},

γ1∪γ2

f1(z)dz = 2πi(Resf1(i) + Resf1(i

a))

Moreover by defining f2(z) =

z2Ln(z − i)

(1 + z2)(z2+ a)2 and cutting the complex plane along the set

Rez = 0, Imz = [i, +∞), we perform the clockwise integral over the two curves γ1(t) = {z ∈ C : z = t, −r ≤ t ≤ r},

γ2(t) = {z ∈ C : z = re−it, −2π ≤ t ≤ −π},

(2)

γ1∪γ2

f2(z)dz =−2πi(Resf2(−i) + Resf2(−i

a))

Now we compute the various residues.

2πi (Resf1(i) + Resf2(−i)) = −2πiLn(2i)

2i(a− 1)2 2πiLn(−2i) 2i(a− 1)2 = −π2 ln 2 (a− 1)2 Resf1(i a) = lim z→i√a d dz z2Ln(z + i) (1 + z2)(z + ia)2 = = lim z→i√a ( z2 (z + i)(1 + z2)(z + ia)2 + 2zLn(z + i) (1 + z2)(z + ia)2+ 2z3Ln(z + i) (1 + z2)2(z + ia)2 2z2Ln(z + i) (1 + z2)(z + ia)3 ) . = a3+ a4+ a5+ a6 Resf2(−i a) = lim z→−i√a d dz z2Ln(z− i) (1 + z2)(z− i√a)2 = = lim z→−i√a ( z2 (z− i)(1 + z2)(z− i√a)2 + 2zLn(z− i) (1 + z2)(z− i√a)2+ 2z3Ln(z− i) (1 + z2)2(z− i√a)2 2z2Ln(z− i) (1 + z2)(z− i√a)3 ) . = a7+ a8+ a9+ a10 a3− a7 = 1 2i(1− a)((1 +√a) a4− a8 = −i ln(1 + a) a(1− a) a5− a9 = −i√a ln(1 +√a) (1− a)2 a6− a10 = i ln(1 +√a) a(1− a)2 and then a ∫ + −∞ z2Ln(z + i) (1 + z2)(z2+ a)2 + a ∫ + −∞ z2Ln(z− i) (1 + z2)(z2+ a)2 = −2π ln 2√a (a− 1)2 + π√a (1− a)(1 +√a) + π ln(1 +√a) (1− a) + 2πa ln(1 +√a) (1− a)2

Now we must integrate respect to the variable a (we assume 0 < a < 1 but a > 1 would yield

(3)

of course the same result) and we get a ∫ +∞ −∞ ln(1 + t2)t2 (1 + t2)(a + t2)2dt = − 2π ln 2 ( 1 2(1−√a) 1 2(1 +√a) + 1 2ln 1−√a 1 +√a ) + π ( 1 1 +√a 3 2ln(1 + a)− 1 2 ln(1 a) ) + π ( 1 2 ln 2 (1 +√a)− ln 2 · ln(1 −√a) + Li2 ( 1−√a 2 )) + + 2π ( 1 4 ln(1 a) + 1 4 (1 +√a) ln(1 +√a) 1−√a + ln 2· ln(1 − a)− Li2 ( 1−√a 2 ) + + 1 2 ln(1 +√a) 1 +√a + 1 2 1 1 +√a + 1 2ln 2 (1 +√a) ) + C where as usual Li2(z) = k=1 zk k2 = z 0 ln(1 − w)dw w , w ∈ C\{w ∈ C: Imw = 0, Rew ∈

[1, +∞)}. The integrations are standard so we explain only the third integral ∫ ln(1 +√a) a− 1 da =|{z} a=y2 ∫ ( ln(1 + y) 1 + y dy +ln(1 + y) y− 1 ) dy = 1 2ln 2 (1 + y) + ∫ ( ln 2 y− 1 ln(1 1−y2 ) 1− y ) dy = (y = √a) 1 2ln 2 (1 +√a) + ln 2· ln(1 −√a)− Li2( 1−√a 2 ) For a = 0 we have 0 =−πLi2( 1 2) + C = 0 =⇒ C = π3 12 π 2 ln 2

Now we select the terms diverging for a→ 1− and obtain

− 2π ln 2 ( 1 2ln(1 a) + 1 2(1−√a) ) π 2 ln(1 a)− π ln 2 · ln(1 −√a)+ + 2π ( 1 4ln(1 a) + 1 4 (1 +√a) ln(1 +√a) 1−√a + ln 2· ln(1 − a) ) −π 2 ln 2 π 2 The terms not diverging for a → 1− contribute

−π 2 ln 2 + 3 2ln 2 2 and finally we get

−π 2 ln 2 + 3 2ln 2 2 π 2 ln 2 π 2 + π3 12 π 2 ln 2 2 =−π ln 2 + π ln22 π 2 + π3 12 9/aprile/2012; 3

Riferimenti

Documenti correlati

They praised mostly those aspects that favored synchronous interac- tions (e.g., live-built slides, live programming examples, individual support from TAs during labs, and course

WE ITALIANS DON’T LIKE TEA(tì:) VERY MUCH, WE PREFER(prifè:*) COFFEE(kòfi)= A noi Italiani il thè non piace molto, preferiamo il caffè!. ……stessa

During the years spent at the Electromagnetic Communication Lab at Penn State University, he found himself in the difficult task of growing me and guiding me in solving

I am also greatful to following colleagues for their friendship : Maria Rosa, Nurettin, Clara, Luisa, Elisa, Elia, Marina, Natalia and Tommaso.They never let me

Of course, I thank my parents, even if they did not know quite what I was doing, they have always tried to advise me to the best, and have always encouraged me.. But especially,

In your opinion, a section &#34;The expert answers&#34;, where from time to time specialists in a specific field can answer the questions asked by the Members, can arouse the

In addition, I would like to thank Dr Benita Putlitz and other PhD students for help and support during silicate oxygen isotope analyses at the University of Lausanne.. My

Franco Bedeschi, and FNAL- Technical Division/Test &amp; Instrumentation Dept, in the person of Ruben Carcagno, for their support, and also would like to thank all the