• Non ci sono risultati.

Rock and stone weathering at Citadel fortifications, Gozo (Malta): benefits from terrestrial laser scanning combined with conventional investigations

N/A
N/A
Protected

Academic year: 2021

Condividi "Rock and stone weathering at Citadel fortifications, Gozo (Malta): benefits from terrestrial laser scanning combined with conventional investigations"

Copied!
1
0
0

Testo completo

(1)

Geophysical Research Abstracts Vol. 14, EGU2012-8389, 2012 EGU General Assembly 2012 © Author(s) 2012

Rock and stone weathering at Citadel fortifications, Gozo (Malta): benefits

from terrestrial laser scanning combined with conventional investigations

D. Tapete, G. Gigli, F. Mugnai, P. Vannocci, E. Pecchioni, S. Morelli, R. Fanti, and N. Casagli Department of Earth Sciences, University of Firenze, Firenze, Italy (deodato.tapete@unifi.it)

Military architecture heritage is frequently built on rock masses affected by slope instability and weathering pro-cesses, which progressively undermine the foundations and cause collapses and toppling of the masonries. The latter can be also weakened by alteration of the stone surfaces, as a consequence of the interactions with the lo-cal environmental conditions. These conservation issues are emphasized for those sites, whose susceptibility to structural damages is also due to the similarity between the lithotypes constituting the geologic substratum and the construction materials. Effective solutions for the protection from such a type of phenomena can be achieved if the whole “rock mass – built heritage system” is analyzed.

In this perspective, we propose a new approach for the study of the weathering processes affecting historic hill-top sites, taking benefits from the combination of terrestrial laser scanning (TLS) and conventional investigations, the latter including geotechnical and minero-petrographic analyses. In particular, the results here presented were obtained from specific tests on the fortifications of Citadel, Gozo (Malta), performed in co-operation with the Restoration Unit, Works Division, Maltese Ministry for Resources and Rural Affairs and the private company Po-litecnica Ingegneria e Architettura.

The Citadel fortifications are built at the top of a relatively stiff and brittle limestone plate, formed by Upper Coralline Limestone (UCL) and overlying a thick Blue Clay (BC) layer. Differential weathering creates exten-sively fractured ledges on the cap and erosion niches in the strata beneath, thereby favouring block detachment, even rockfall events, such as the last one occurred in 2001. The locally quarried Globigerina Limestone (GL), his-torically employed in restoration masonries, is also exposed to alveolization and powdering, and several collapses damaged the underwalling interventions.

Since the erosion pattern distribution suggested a correlation with the structural setting of the rock mass and the mineralogical properties of the limestones, an overall weathering study was carried out, by combining surface sur-veys with analyses of the inner structure. A holistic TLS point cloud of Citadel, produced by Consorzio Ferrara Ricerche of the University of Ferrara and made available by the Restoration Unit, was exploited to perform a 3D quantitative kinematic analysis of the entire rock mass. Each sector was classified in relation to the probability of occurrence of instability mechanisms, among which plane failure, block toppling and wedge failure. The latter was found associated with the highest index measured (30%), followed by the flexural toppling mechanism (17%), providing a confirmation to the field survey and the results of geotechnical analyses. The integration with geologic and diagnostic investigations (e.g., boreholes, thin section observations) highlighted the intrinsic weaknesses of the rocks and stones to weathering, with a quite unexpected higher susceptibility to erosion and disaggregation charac-terizing the inner layers. Hence, the textural appearance of the erosion surfaces, the rock/stone structural properties and the TLS-based classification of the cliff sectors were mutually correlated, and the most unstable areas were mapped. As main implication for the conservation, on site monitoring system (i.e. biaxial inclinometers and crack gauges) was installed and targeted restorations have been properly designed.

Riferimenti

Documenti correlati

Fig 1 A) 3D reconstruction of a specimen; B) Root canal path with selection of the cutting plane; C) Cutting plane orthogonal to the canal axis in the pre-treatment specimen;

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317392655 An analytic hierarchy process approach for the

Decisamente più indicativo, rispetto alle sfide portate dalla emergenza sanitaria da Covid-19 agli assetti tradizionali di tutela della salute e sicurezza dei lavoratori e

Obviously, in the OP engine the heat rejected through the cylinder walls is strongly reduced (-20%, on average, fig. 6c), but also the Turbine Inlet Temperature (TIT) is more than

Design of Experiments has been the approach for evaluating the effect of treatment parameters (i.e temperature, spot size and speed) and to develop predictive models,

The effect of affiliation years is not significant in this first estimate leading us to infer that the various effects (income, risk management, gender and

Based on the red- laser beam technology it is possible to provide the high accuracy data with complete spatial information about a scanned object.. In this article, authors

Recordings taken at Göbekli Tepe in Turkey, Tarxien Temples in Malta, Alatri Acropolis in Italy, Felix Romuliana Palace in Serbia and Epidauros in Greece show