• Non ci sono risultati.

Optimal band separation of extracellular field potentials

N/A
N/A
Protected

Academic year: 2021

Condividi "Optimal band separation of extracellular field potentials"

Copied!
13
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Neuroscience

Methods

jo u rn al h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / j n e u m e t h

Optimal

band

separation

of

extracellular

field

potentials

Cesare

Magri

a,b

, Alberto

Mazzoni

c

, Nikos

K.

Logothetis

a,d

, Stefano

Panzeri

c,∗

aMaxPlanckInstituteforBiologicalCybernetics,38Spemannstrasse,72076Tübingen,Germany bBernsteinCenterforComputationalNeuroscienceTübingen,Germany

cRobotics,BrainandCognitiveSciencesDepartment,ItalianInstituteofTechnology,ViaMorego30,16163Genova,Italy dDivisionofImagingScienceandBiomedicalEngineering,UniversityofManchester,ManchesterM139PT,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received19July2011

Receivedinrevisedform30October2011 Accepted2November2011

Keywords: Neuralcode LocalFieldPotential Visualcortex Mutualinformation Frequencybands

a

b

s

t

r

a

c

t

LocalFieldPotentials(LFPs)exhibitabroadbandspectralstructurethatistraditionallypartitionedinto distinctfrequencybandswhicharethoughttooriginatefromdifferenttypesofneuraleventstriggered bydifferentprocessingpathways.However,theexactfrequencyboundariesoftheseprocessesarenot knownand,asaresult,thefrequencybandsareoftenselectedbasedonintuition,previousliterature orvisualinspectionofthedata.Here,weaddresstheseproblemsbydevelopingarigorousmethodfor definingLFPfrequencybandsandtheirboundaries.Thecriterionintroducedfordeterminingthe bound-ariesdelimitingthebandsistomaximizetheinformationaboutanexternalcorrelatecarriedjointlybyall bandsinthepartition.ThemethodfirstpartitionstheLFPfrequencyrangeintotwobandsandthen succes-sivelyincreasesthenumberofbandsinthepartition.WeappliedthepartitioningmethodtoLFPsrecorded fromprimaryvisualcortexofanaesthetizedmacaques,andwedeterminedtheoptimalbandpartitioning thatdescribestheencodingofnaturalisticvisualstimuli.ThefirstoptimalboundarypartitionedtheLFP responseat60Hzintolowandhighfrequencies,whichhadbeenpreviouslyfoundtoconveyindependent informationaboutthenaturalmoviecorrelate.Thesecondoptimalboundarydividedthehigh-frequency rangeatapproximately100Hzintogammaandhigh-gammafrequencies,consistentwithrecentreports thatthesetwobandsreflectpartlydistinctneuralprocesses.Athirdimportantboundarywasat25Hz anditsplittheLFPrangebelow50Hzintoastimulus-informativeandastimulus-independentband.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Local FieldPotentials(LFPs) are a massedsignalwhich cap-turesmultipleneuralcontributions,fromdendrosomaticdipoles generatedbysynapticactivitytonon-synapticslowactivitysuch asvoltage-dependentmembrane oscillationsandspike afterpo-tentials(Logothetis,2003).SinceLFPsaresensitivetosupraand subthresholdprocesses,investigatingstimulusencodingbyLFPs canofferadditionalinsightsintosensoryrepresentationsbeyond those offeredby onlymeasuringneuronal spike trains(Belitski etal.,2010;Logothetis,2003;Montemurroetal.,2008;Nicolelis andLebedev,2009;Rayetal.,2008).Theirstimulustuninghasbeen intensivelyinvestigatedinrecentyears(Belitskietal.,2008;Berens etal.,2008;Frienetal.,2000;Kayser andKonig,2004;Liu and Newsome,2006;SiegelandKönig,2003).LFPsexhibitabroadband spectralstructurewhichis traditionallypartitionedintodistinct frequencybands,initiallyintroducedinthehumanEEGliterature, whicharethoughttooriginatefromdifferenttypesofneuralevents

∗ Correspondingauthor.Tel.:+391070781437. E-mailaddress:stefano.panzeri@iit.it(S.Panzeri).

triggeredbydifferentneuralprocessingpathways(Buzsáki,2006). However,theexactfrequencyboundariesoftheseprocessesare notknown.Frequencybandsarethusoftenselectedbasedon intu-ition,previousresultsintheliteratureorvisualinspectionofthe data.Asaresult,thebandboundariesvarygreatlyacrossstudies. Forexample,thegammabandissometimesreferredtoasanarrow (afewHzwide)frequencyrange(LlinasandRibary,1993;Miltner etal.,1999)andothertimesasawideintervalspanningtensofHz (ChrobakandBuzsaki,1998;KruseandEckhorn,1996).

Arigorousapproachtodefiningtheboundariesofa stimulus-tunedLFPbandhasbeenproposedbySiegelandKönig(2003).Their method,basedonmaximizinganindexofselectivitytoastimulus parameter,allowstheidentificationofboththepartsofthe fre-quencyspectrumthatarebesttunedtoaspecificstimulus,and oftheboundariesthatoptimizethetuningofasinglebandtothe stimulus.Thisapproach,whichwassuccessfullyappliedtoidentify theoptimalboundariesfororientationtuningofthegammaband invisualcortex(SiegelandKönig,2003),requiresamodelofa tun-ingcurvedescribingtherelationshipbetweenanexternalcorrelate ofinterestandtheinducedchangesintheLFPbandconsidered. Acomplementaryapproachwasdevelopedbyourgroup(Belitski etal.,2008)forinvestigatingtherelationshipbetweenthepower 0165-0270/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(2)

ateachfrequencyintheFourierdecomposition–thesmallest fre-quencyelementinwhichwecanbreaktheLFPrange–andcomplex visualstimuli.ThisanalysisrevealedwhichregionsintheLFP spec-trumareinformativeaboutnaturalisticmoviestimuliandwhich regionsare,instead,stimulus-unrelated.However,theseprevious methodscannotdeterminehowtopartitiontheentireLFPrange insuchawaythatthebandsinthepartitioncollectivelycarrythe largestpossibleamountofinformationaboutasetofstimuli.In fact,byfine-tuningonebandatatimeonemightfailtotakeinto accounttherelationshipsbetweendifferentfrequencyregions.For instance,tuningonebandatatimemayindividuateasetofbands whichareindividuallyhighlyinformativeandthatallcarryvery similarinformation,butmayfailtoindividuatebandsthatexpress complementaryaspectsof stimulustuningandthuscarry more informationcollectively.

Herewe introducea newprocedureforpartitioning theLFP responseintobandsthatcollectivelycarrymaximalmutual infor-mationabout a setof external correlates.This proceduredoes notmake any assumptionon thetype of relationshipbetween thepower in an LFP band and the external correlate of inter-est.Rather,becauseof theproperties of mutual information, it naturallytakesintoaccountlinearandnon-linearcorrelationsat anyorderaswellasanyrelationshipbetweenthepowersin dif-ferentbands. Thearticleis structuredasfollows.Afterdefining theprocedure,weinvestigateandaddresstheproblemsrelated toits computationalimplementation. We then apply the tech-niquetotheelectrophysiologicalsignalrecordedfromtheprimary visualcortexofanesthetizedmacaques,andwedeterminea sta-blepartitionofLFPsintobandsthatcarriesanoptimalamountof informationaboutallvisualfeaturesinthemovie.

2. Materialsandmethods

2.1. Recordingprocedures,sensorystimulianddataextraction We analyzed sensory evoked LFPs and MUA recorded from primary visualcortex (V1) of two anaesthetized monkeys. The recordingprocedures and stimulation paradigms for the differ-entdatasetsaredescribedshortlyinthefollowingandhavebeen detailedpreviously(Belitskietal.,2008;2010;Montemurroetal., 2008). All experiments were approved by the local authorities (Regierungspräsidium)andwereinfullcompliancewiththe guide-linesoftheEuropeanCommunity(EUVD86/609/EEC)forthecare and useof laboratoryanimals. Prior totheexperiments, form-fittingheadpostsandrecordingchamberswereimplantedduring anasepticandsterilesurgicalprocedure.

Recordings from V1 of two adult rhesus monkeys (Macaca Mulatta)were obtainedwhile the animals were anaesthetized (remifentanil, 1␮g/kg/min), muscle-relaxed (mivacurium, 5mg/kg/h) and ventilated (end-tidal CO2 33mmHg, oxygen

saturation>95%).Bodytemperaturewaskeptconstant and lac-tatedRinger’ssolution supplied (10ml/kg/h).Vital signs(SpO2,

ECG,bloodpressure,endtidalCO2)werecontinuouslymonitored.

Neuronal activity was recorded from opercular V1 (foval and para-foveal representations) using microelectrodes (FHC Inc., Bowdoinham, Maine, 300–800kOhms), signals were high-pass filtered(1Hz;digitaltwopoleButterworthfilter),amplifiedusing anAlphaOmegaamplifiersystem(AlphaOmegaEngineering)and digitizedat20.83kHz.Binocularvisualstimuliwerepresentedat aresolution of640×480pixels(fieldof view:30◦×23◦,24bit truecolor,60Hzrefresh)usingafiberopticsystem(Avotec,Silent Vision, Florida). Stimuli consisted of ‘naturalistic’ complex and commercially available movies (30Hz frame rate), from which 3.5–4.3minlongsequenceswerepresentedandrepeated30–40 times.We confirmed that thereceptive fieldsof allmulti-unit

activityfromeachrecordingsitewerewellwithinareaofvisual stimulation(Raschetal.,2008).

3. Informationtheoreticanalysis

3.1. Definitionofthemaininformationtheoreticquantities

TodeterminehowwellthepowerinagivenLFPbandencodes thesensorystimuluswecomputedShannon’smutualinformation betweenthestimulusandthepoweroftheLFPband(Shannon, 1948),whichisdefinedas I(S;B)=



b,s P(s)P(b|s)log2 P(b|s) P(b) (1)

whereP(s)istheprobabilityofpresentingstimuluss,P(b|s)isthe probabilityofobservingapowervaluebgivenpresentationof stim-uluss,andP(b)istheprobabilityofobservingpowervaluebacross alltrialstoanystimulus.I(S;B)quantifies,inunitsofbits,the reduc-tionofuncertaintyaboutthestimulusthatcanbegainedfromthe observationofasingle-trialpowervalue.Onebitcorrespondstoa reductionofuncertaintyofafactoroftwo.I(S;B)iszeroonlywhen thestimulusandthepowerarestatisticallyindependent,indicating thatnoknowledgeaboutthestimuluscanbegainedbyobserving theresponse.

Eq.(1)canbeextendedtoquantifytheinformationaboutaset ofstimuligainedbythesimultaneousobservationofthepowerin LdifferentLFPbands,asfollows:

I(S;B1...BL)=



b,s P(s)P(b1...bL|s)log2 P(b1... bL|s) P(b1...bL) (2) where in the above P(b1...bL|s) is the probability of the joint

observationofobservingjointlythepowervaluesb1...bLinthe

consideredbandsduringasingle-trialpresentationofstimuluss. 3.2. Definitionofstimulusset

Computationofinformationrequiresthedefinitionofasetof sensorystimuliSaboutwhichtheneuralresponsecarries informa-tion.Ourdatasetwasmadeofrecordingsinresponsetorepeated presentationofthesamemovie.Toquantifytheamountofvisual informationcarriedbytheLFPpowerinthisexperiment,weused afeature-independentdefinitionofstimulus,describednext(de RuytervanStevenincketal.,1997;Strongetal.,1998).Themovie presentationtimewasdividedintonon-overlappingtimewindows oflengthT=960msandeachwindowwaslabeledwitha stimu-lusidentificationnumber(s=1,2,...). Inthispaperwepresent resultsobtainedwithawindowoflengthT=960ms,butresults werequalitativelysimilarwhenvaryingthelengthoftherunning windowTintherange480–1920ms(notshown).TheLFPpower wasquantifiedseparatelyineachwindow(seebelow)andwe com-putedtheinformationbetweentheLFPpowerandthesectionofthe movie(“stimuluswindow”)atwhichtheresponsewascollected. Itisimportanttonotethattheresponsecollectedinthes-th win-dowispotentiallyelicitedbythewholetemporalpatternofvisual stimulationuptothelasttimepointofstimuluswindows. There-forethisdefinitionofinformationcarriedbytheresponseabout whichstimuluswindowwasbeingpresentedtakesintoaccount thepotentialcontributionsofallstimulusfeaturesatallprevious movieframesaswellasthecontributionofthevisualfeaturesin thecurrentmovieframe.Assuch,theinformationcalculationdoes notassumeaninstantaneousrelationshipbetweenLFPsand stim-uli,andtakesintoaccounttheeffectsofalltimelagsbetweenthe neuralresponseandanyvisualfeaturethatprovokedit.This def-initionofstimulussethastheadvantagethatit doesnot make anyassumptionsaboutwhichstimulusfeaturesorcombinationsof

(3)

them,eitherpresentedatthecurrenttimeorintheperiodpriorto theconsideredneuralresponse,provokestheneuronalresponse. Thisalsomakestheinformationvalueformallyinvarianttoany rigidtimeshiftbetweenstimuluswindowsandneuralresponse correspondingtoanyassumptionofagivenlatencyvaluebetween stimuliandresponses.

3.3. Computationofspectralpowerineachbandforinformation calculation

Computation of information requires the evaluation of the single-trialspectralpowerofeachbandineachofthe“stimulus windows”oflengthTdefinedabove.Herewecomputedthe single-trialpowerineachwindowusingthemultitapermethod(Percival andWalden,2006)withtime-bandwidthparameterNW=2.This methodofspectralestimationwaschosenbecauseitgivesan excel-lenttrade-offbetweenbiasandvarianceandbecauseitwasshown toworkwellonLFPdata(Belitskietal.,2008;Pesaranetal.,2002). Tocomputethepowerinagivenfrequencybandweintegratedthe spectralpowerbetweenthebandboundaries.However,we veri-fiedthattheuseofalternativemethodsforbandpowerestimation withinawindow,suchasaveragingoverthetimepointswithinthe windowtheinstantaneousHilbertpowerofasignalband-passed withinthedefinedboundboundarieswithaKaiserfilter(asdone e.g.in(Belitskietal.,2010;Kayseretal.,2009)),gaveresultswhich wereessentiallyidenticaltothatobtainedwiththesummationof Multitaperpowerusedhere(see(Magri,2009)formoredetails). 3.4. Informationredundancy

TheinformationredundancybetweenthepowerindifferentLFP bandswasdefinedasthedifferencebetweentheinformation pro-videdbythejointsignalsb1,...,bLandthesumoftheindependent

informationvalues(Belitskietal.,2008;Hatsopoulosetal.,1998; Polaetal.,2003;Schneidmanetal.,2003):

Red(B1...BL)=I(S;B1...BL)− L



i=1

I(S;Bi) (3)

Positivevalues of redundancyindicatethat thejoint knowl-edgeofthepowerofallbandscarries lessinformationthanthe sumoftheinformationprovidedbyeachindividualband.Negative valuesofredundancydenotethepresenceofsynergistic interac-tionbetweendifferentbands,whichmakethetotalinformation greaterthanthesumoftheinformationprovidedindividuallyby eachband.Wenormalizedredundancyexpressingitaspercentage ofthetotalinformationcarriedbythejointobservationofallbands inthepartition.Thispercentageredundancywasthusdefinedas Red(B1...BL)=100×

Red(B1...BL)

I(S;B1...BL)

(4) Wealsocomputedtheinformationcarriedbythepowerata sin-gleFouriercoefficientratherwithinanLFPband.Thecalculationof thesinglefrequencybininformationwasdoneexactlyasdescribed above,theonlydifferencebeingthatbwasnowthepowerofa singleFouriercoefficient.

4. Computationofinformation

The computation of the information with Eqs. (1) and (2) requirestheestimationofstimulus-conditionalresponse probabil-itiesP(b|s)andP(b1,...,bL|s).Theseprobabilitiesarenotknowna

prioriandmustbemeasuredexperimentallyfromafinitenumber oftrials.Inthisworkwecomparedtwocomplementaryprocedures formeasuringtheprobabilitydistributionsandthecorresponding informationvalues,namely,theDirectMethodandtheGaussian

Methoddescribedbelow.Allinformationanalyseswereperformed usingtheInformationBreakdownToolbox(www.ibtb.org;(Magri etal.,2009)).

4.1. TheDirectMethod

Computation ofinformation according totheDirect Method (Strongetal.,1998)wasasfollows.Wefirstdiscretizedtheresponse spacebybinningtheresponsepowerintoMequi-populatedbins. TheparameterMwasvariedbetween3and32inordertoevaluate the effect of the discretization on the Direct information esti-mates.Wethenestimatedtheprobabilitiesofthediscreteneural responsesbysimplycomputingthefractionoftrialsinwhicheach responsevalueisobserved,andthenbyinsertingthese response-probabilityestimates intotheinformation Eqs.(1) and (2).The DirectMethod,beingbasedonempiricallycomputingthe prob-abilityhistogramsofdiscreteordiscretizedneuralresponses,does notmakeanyassumptionontheshapeoftheprobability distri-butions.ThismakestheDirectMethodwidelyapplicabletomany differenttypesofdata.

Evenwheneachstimulusisrepeatedmanytimes,aswasthe casehere,theestimatedprobabilitiessufferfromfinitesampling errors,whichinduceasystematicerror(bias)ininformation esti-mates(Panzeriet al.,2007).Tocorrect for thebias, weused a quadraticextrapolationprocedure(Strongetal.,1998)toestimate andsubtractoutthebiasofeachinformationquantity.When com-putingtheinformationconveyedbythejointobservationoftheLFP powerinmorethanonebandweadditionallyappliedthe “shuf-flingprocedure”describedin(Montemurroetal.,2007;Panzeri etal.,2007),whichgreatlyreducesthebiasofmultidimensional informationestimatesandtypicallymakestheresidualbias nega-tive.Thisimpliesthatourestimatesofthejointinformationcarried bytwosignals(andthusofredundancy)tendtobeslightlybiased downward.

4.2. TheGaussianMethod

AnalternativeapproachtotheDirectestimation of informa-tionistouseanalyticalmodelsoftheprobabilitydistributions;fit thesedistributionstothedata;andthencomputetheinformation fromtheseprobabilitymodels.TheGaussianMethodfor comput-inginformationandentropiesistheonebasedonfittingresponse probabilitiestoGaussianfunctions.

UndertheGaussianhypothesis,mutualinformationisgivenbya simplefunctionofthetrial-to-trialvarianceofLFPresponses(Cover andThomas,2006)

I(S;B)= 12(log2[2e|2(B)|]−log2[2e|s2(B)|]) (5)

where|2(B)|and|

s2(B)|arethedeterminantsofthematricesof

covariancecomputedacrosstrialsandstimuli,andacrosstrialsto stimuluss,respectively.

TheGaussian Methodhastwo mainadvantages: itdoesnot requiredatadiscretizationpriortotheinformationcalculation,and itdependsonlyonafewparametersthatcharacterizetheneural response(i.e.,thevarianceandcovarianceoftheresponses),which makesitmoredata-robustandlesspronetosamplingbiasthanthe Directcalculation(Magrietal.,2009;Yuetal.,2010).The poten-tialdangerwiththisapproachisthattheestimatesprovidedbyEq. (2)maybeinaccurateiftheunderlyingdistributionsarenotclose enoughtoGaussians.

AlthoughlessseverethanintheDirectcase,thebiasofthe infor-mationcalculationduetolimitedsamplingisstillpresentwhen usingtheGaussianMethod.Whentheunderlyingdistributionsare

(4)

GaussiananexactexpressionforthebiasofI(S;B)canbecomputed asfollows(Goodman,1963;Misraetal.,2005;Oymanetal.,2003): bias[I(S;B)]=gbias(Ntr×Nwin)−



s

p(s)gbias(Ntr) (6)

whereNtr isthenumberofavailabletrials perstimulus(inour

experimentthenumberofmovierepetitions)andNwinisthe

num-berofstimuli(inourcasethenumberofwindowsoflengthTinto whichthemoviepresentationtimewassubdivided).Thefunction gbias(·)isdefinedas gbias(N)= 1 2 ln 2

Lln



2 N−1



+ L



j=1 



Nj 2



(7)

and isthepolygammafunctionandListhenumberofbands considered.

Whenusing theGaussian Methodwetookthecubic rootof power;wefittedthedistributionofthisresponsetoeachstimulus toaGaussian;andwefinallycomputedtheinformationthrough Eq.(5)subtractingtheanalyticGaussianbiascorrection,Eq.(6). Thereasonforapplyingthecubicroottransformationisthat mul-titaperpowerestimatesareasymptoticallychi-squaredistributed (PercivalandWalden,2006)thustheircubicrootisapproximately Gaussian(Wilsonand Hilferty,1931).The cubicroot operation, beingmonotonic,doesnotaffecttheunderlyinginformationvalues ofthepower,butitmakesresponseprobabilitiesmuchmore Gaus-sianandthusfacilitatesinformationestimationwiththeGaussian Method.

4.3. DescriptionoftheoptimalprocedureforpartitioningtheLFP response

Theprocedurethatweproposeforanoptimalpartitionofthe LFPrangeintoagivennumberofbandsworksasfollows.First,we definethehighandthelow cutoffsfrequenciesthatdelimitthe partofthespectrumoftheextracellularsignalwhichistakento betheLFP.Thehighfrequencycutoff,usuallytakenintherange betweenoneandafewhundredHz,isnotconsistentlydefinedin theliterature.Ourapproachhereistoconsidertheeffectofdifferent valuesofthisparametersuponthebandpartition.Ontheother hand,thelowfrequencycutoffoftheLFPisusuallyconstrainedonly bythehighpassfilterofthepreamplifierintherecordingsetup, whichinourcasewas1Hz(seeSection2).Becausethepowerof theextracellularsignalisnegligiblebelowthishigh-passvalue,in thefollowingforsimplicitywewillreportourresultsusingalow frequencycutoffof0Hz.However,theresultswouldhavebeen identicalhadweusedalowfrequencycutoffof1Hz.

OncetheLFPcutofffrequencieshavebeenspecified,ourmethod seekstopartitionthisrangeintoanumberofbandschosento maxi-mizetheinformationcarriedbytheLFPpartitionaboutanexternal setofcorrelatesofinterest,suchasasetofsensorystimuli.This meansthat,amongallpossiblepartitionsoftheLFPrangeintothe considerednumberofbands,weselecttheonewhichextractsthe largeststimulus-informationasdefinedinEq.(2).Additionally,we proposetoimplementthisprocedureinanincrementalway,i.e. westartbypartitioningtheLFPresponseintotwobandsandwe thenincreasethenumberofbandsconsidered.Thisisusefulfor tworeasons.First, itprovidesa waytoranktheboundariesby importance,undertheassumptionthat theboundariesdefining theoptimalpartitionwithsmallnumberofbandsaremore funda-mentalthanboundariesappearingonlyinoptimalpartitionswith alargernumberofbands.Second,theincrementalprocedure per-mitstoidentifytheboundariesthataremoststabletothenumber ofbandsconsidered,i.e.ifaboundaryidentifiesanoptimal par-titionintoagivennumber ofbands,thesameboundaryshould

alsobelongtotheoptimalpartition withonemore band. Indi-cationsthatthebandsarestabletorecursiverefinementofthe partitionareimportanttosupportthenotionthattheidentified bandboundariesaretrue“separators”ofdifferentneuralprocesses, oratleastarestableboundariesofspectralregionswhichexpress complementaryinformationaboutthestimulus.

5. Results

WerecordedLFPsfrom23sitesin theprimaryvisualcortex (V1)fromtwoanesthetizedmonkeys,usinganarrayofelectrodes, duringthepresentationofa3.5-to4.3-min-longsequencefrom commerciallyavailablemovies.Eachmovieextractwasrepeated 30–40times.Theresponsesofthesamesitetodifferentmovies wereanalyzedseparately.Insomecases,wewereabletomeasure theresponsesofarecordingsitetorepeatedpresentationsofa sec-ondorthirddifferentmovie.Insuchcases,theresponsesofthe samesitetodifferentmovieswereanalyzedseparately.Thisgave usatotalof57cases,whichwecollectedalltogetherinour popu-lationanalysisandweconsideredeachofthem,forsimplicity,asa differentrecordingsite.

ThespectrogramoftheLFP(Fig.1A)wastypicalofprimary cor-tical recordings,in that itshoweda broadbandspectrum with significantpoweratfrequenciesinthewholerange0–100Hzand withthepowerdecreasingathigherfrequenciesafterreachingan initialpeakatlowfrequencies(inthiscasethepeakwasat2Hz). Presentationofthemoviestimulusinducedamarkedincreasein spectralpowerbetween40and150Hzoverthepowerobserved duringspontaneousactivity.

5.1. TheinformationconveyedbysingleLFPfrequencies

Thedatasetusedinthisstudyhasbeeninvestigatedinseveral previousworksfromourgroup(Belitskietal.,2008,2010;Magri etal.,2009).Inthesestudiesweinvestigatedtheinformationabout anaturalisticmoviestimuluscarriedjointlybytheLFPpowerat eachfrequencyoftheFourierspectrum(Belitskietal.,2008;Magri etal.,2009), and thecorrelations betweenLFPpowerat differ-entfrequencies(Magrietal.,2009).Here webrieflysummarize theseresultsfromthesepreviousworks,withtheaimof point-ingtotheattentionofthereaderthefactsandfindingsthatare mostrelevanttotheanalysispresentedinthisstudy.Wealso facil-itatethecomparisonbetweenthepresentstudyandourprevious workbyre-computingourpreviouslypublishedinformation quan-titieswithexactlythesameinformationestimationalgorithm(the GaussianMethod)usedforthenewoptimalbandpartitionresults. WebeginthissummarybyreportingtheinformationthatLFP powercarriesaboutwhichscenewasbeingpresented.Theaverage overallrecordingsisreportedinFig.1B.Wefoundtwo informa-tivebandsintheLFPspectrum:alowfrequencyrangebelow12Hz (correspondingtothedeltaandthetabands)andahighfrequency range(above50Hz)inthegammaandhigh-gammabands.While theinformationatlowfrequencieswashighonlyoveranarrow bandcenteredaround5Hz,theinformationpeakathigh frequen-cieswasbroad and long-tailedtoward frequencies higher than 100Hz.Intermediate frequencies[12–50Hz]didnotcarrymuch information.

Havingestablishedthatbothgamma,high-gammaandlowLFP frequenciesconveyinformation,thenextimportantquestionisto determinewhetherthedifferentinformativefrequenciesranges areredundantornot,i.e.whetherornottheycarrythesameor differentstimulusinformation.Wecomputedboththejoint infor-mationcarriedbythepowerofpairsofLFPfrequencies(Eq.(2))and theirredundancy(Eq.(3)).Theinformationobtainedbythe com-binedknowledgeofthepoweratlowfrequenciesandthepowerat

(5)

Fig.1.TheinformationcarriedbyLFPpoweratsinglefrequencies.Resultsare aver-agedoverasetof57V1recordingsitesfromanaesthetizedmacaques.Information estimateswerecomputedusingtheGaussianMethodcorrectedwiththeGaussian biascorrectionprocedureandusingthecuberootoftheLFPpowerintensities.(A) AveragepowerspectrumoftheLFPsrecordedduringthepresentationofa naturalis-ticmovie(solidline)andduringspontaneousactivity(dashedline).(B)Information aboutanaturalisticmoviestimuluscarriedbyLFPpoweratsinglefrequencies. TheareaindicatestheSEM.(C)Left:informationaboutanaturalisticmovie car-riedjointlybytheLFPpowerattwofrequencies.Right:insetoftheinformation valuesintheregion50–150Hzindicatedbytherectangleintheleftpanel.(D)Left: theredundancybetweentheinformationcarriedbytheLFPpowerattwo frequen-cies.Right:insetoftheredundancyvaluesintheregion50–150Hzindicatedbythe rectangleintheleftpanel.

gammafrequencieswasnearlythesumoftheinformationcarried bythetwofrequenciesseparately(Fig.1C).Thismeansthatthe redundancybetweentheinformationcarriedbythepowerofhigh andlowfrequenciesisnearlyzero(Fig.1D).Thiszeroredundancy reflectedthefactthat,asshownin(Belitskietal.,2008;Magrietal., 2009),LFPfrequenciesbelow40Hzweretotallydecoupledfrom gammaandhigh-gammaoscillations(bothintermsofsimilarity ofstimulusselectivity(“signalcorrelations”),andoftrial-to-trial covariations(“noisecorrelations”).

Incontrast,frequenciesinthegammabandandhigh-gamma bandwerehighlyredundantbetweeneachother(Fig.1D).Thiswas because(Belitskietal.,2008;Magrietal.,2009)gamma frequen-cieshadasimilarresponseprofileacrossdifferentmoviescenes(in otherwords,theyhadhigh“signalcorrelation”).Theredundancy wasparticularly pronounced betweenfrequencies in the range 50–100Hz,suggestingthatallfrequenciesinthisrangereflecttoa largeextentthesamenetworkphenomenon.Wefound consider-ablysmallerredundancybetweenfrequenciesinthegammarange

[50–100Hz]andthoseinthehigh-gammarange,suggestingthat gammaandhigh-gammamayreflectpartlydifferentneural phe-nomena.

5.2. Validationofthemethodsusedtoestimateinformation carriedbythepowerintheLFPbands

AproblemlimitingtheuseoftheDirectMethodinourstudy is that it can only beappliedto computethe information car-riedjointlybyoneormaximumtwoLFPbands.Thesmallnumber (30–40)oftrialsavailabledoesnotallowanaccuratesamplingof theprobabilitydistributionsrequiredforcalculatinginformation withtheDirectMethodwhenseveralbandsareconsidered.Thisis because,asreviewedin(Panzerietal.,2007),thebiasofthedirect methodgrowsexponentiallywiththenumberofdimensionsof theresponsespace(whichinthiscasecorrespondstothe num-berLofbandsconsideredintheinformationcalculation).Thisbias problemisgreatlyalleviatedbytheGaussianMethod,becauseit requiresextractingonlyasmallnumberofparametersfromthe data.Theseparameterscanberobustlycomputedusingfewtrials evenwhenseveralbandsareconsideredatthesametime.Before applyingtheGaussianMethod,however,weneedtoensurethat methodisaccurateonthedatasetunderanalysis.Tothisaim,we comparedinformationvaluesobtainedwiththeGaussianandwith theDirectMethodwhenonlyoneortwoLFPbandswere consid-ered.Ifthetwomethodsreturncomparableinformationresultswe canconcludethattheGaussianMethodcanbeusedsafelyfor com-putingtheinformationcarriedbythepowerofseveralLFPbands. TheGaussianMethodwaspreviouslyvalidatedonsinglefrequency bins(Magrietal.,2009),butnotyetonpowerofextendedbands.

Webeganthis checkbycomputingthestimulus-information carriedbytheLFPpowerwithinafrequencybandB=[f–250Hz] (for61valuesoffuniformlydistributedbetween0and250Hz) usingboththeDirectandtheGaussianMethod.Forthe computa-tionwiththeDirectMethodwevariedM,thenumberofbinsused fordiscretizingtheneuralresponse,between3and32.Thelatter isanupperlimittothenumberofbinsforwhichwecouldstill computelargelyunbiasedinformationestimateswiththeDirect Methodgiventheavailablenumberoftrials,see(Panzerietal., 2007).Wefound(Fig.2A)thattherelationbetweentheinformation valuesobtainedwiththetwomethodswasapproximatelylinear. Whenfew(M=3,4,6)binswereusedwiththeDirect computa-tionthelinearregressorlaybelowthequadrantdiagonal,meaning thattheDirectMethodusedwithsmallnumberofbinsprovides consistentlylowerinformationvaluesthantheonesestimatedby theGaussianMethod.Thislikelyhappensbecausetheuseofcoarse responsediscretizationleadstoaninformationloss.However,the slope,b,ofthelinearregressorincreasedwithincreasingnumber ofbinsusedfortheDirectcomputation,suggestingthattheuseof finerbinsreducedtheinformationlossoftheDirectMethod.For M>13,theintersectaandtheslopeb(theparametersofthelinear regressor)reachedaplateauata=0andb=1(Fig.2B), demonstrat-ingthatforlargenumberofbinsMtheGaussianandtheDirect Methodsprovideessentiallyidenticalresults.

Fig.2BshowswhathappenswhentheGaussiananalysisis per-formedwithoutapplyingthecuberoottransformationpriortothe computationofinformation:independentlyofthenumberofbins usedfortheDirectMethod,theGaussianandtheDirectMethod failedtoconvergetoacommonestimationvalue.Thisprovesthat thecuberoottransformationisanecessarystepforreliably com-putingtheinformationconveyedbyLFPpowerusingtheGaussian Method.

Finally,wecomputedthevaluesof thestimulusinformation I(S;B1B2)carriedjointlybyapartitionoftheLFPresponseinto two-bandsB1=[0Hz–f]andB2=[f–250Hz]forallpossiblevalues of theboundary parameterfbetween 0and 250Hz. Again,we

(6)

Fig.2.ValidationoftheGaussianMethodtoevaluateinformation.Dataweretaken fromarepresentativecase(channel7ofsessionD04nm1).Unlessotherwisestated, GaussianinformationestimateswerecomputedusingtheGaussianMethod cor-rectedwiththeGaussianbiascorrectionprocedureandusingthecuberootofthe powervalues(seetext);theDirectinformationvalueswerecomputedafter dis-cretizingthepowerresponseintoMequi-populatedlevels.(A)Comparisonofthe informationvaluesobtainedusingtheGaussianMethodandtheDirectMethodfor theinformationaboutanaturalisticmoviestimuluscarriedbyLFPpower.Thered scatterplotshowsGaussianandDirectestimatesofthestimulus-information car-riedbytheLFPpowerinafrequencybandofwidth[f–250Hz]fordifferentvaluesof fbetween0and250Hz.Theorangescatterplotillustratesthestimulus-information carriedjointlybytheLFPpowerintwofrequencybandsofwidth[0Hz–f]and [f–250Hz]forthesamevaluesoftheparameterfconsideredforthesingle-band case.Forbothscatterplots,M=3binswereusedfordiscretizingthepowerresponse fortheDirectcomputation.Thewhitesolidlineandthewhitedashedlineillustrate thelinearfittothepointsinthesingle-bandinformationandinthetwo-bands informationscatterplots,respectively.Thelightgrey,thedarkgreyandtheblack linesindicatethelinearfitwhenM=4,6and16levelsareusedforthe discretiza-tion,respectively(thecorrespondingscatterplotsarenotshownforthesecases). Thesameconventionisusedasforthewhiteline,withthesolidandthedashed linesindicatingthefitforthesingle-bandandforthetwo-bandsinformation val-ues,respectively.Notethat,duetothelimitednumberoftrialsavailable,forM=16 binsitwasnotpossibletocomputetheDirectinformationforthetwo-bandscase, thereforeonlythesolidlineisshown.Thegreendashedlineindicatesthequadrant diagonal.(B)Asymptoticbehavioroftheslopeparameter,b,andoftheintercept parameter,a,ofthelinearfitbetweeninformationvaluesobtainedwiththeGaussian andtheDirectMethodsasafunctionofthenumberofbins,M,usedfordiscretizing thepowerresponsefortheDirectcomputation(blueline).Mwasvariedbetween 3and32.Thecyanlinesindicatethevaluesofaandbwhennocuberoot trans-formationisappliedtotheLFPpowerforthecomputationofinformationwiththe GaussianMethod.

found(Fig.2A)alinearrelationshipbetweentheinformation val-uesobtainedusingtheDirectandtheGaussianMethod,theslopes ofthelinearfittingcurvesbeingnearlyidenticaltothoseobtained whenonlyonebandwasconsidered.Note,however,thatinthis casewecouldnotcomputeinformationforM>6usingtheDirect Methodbecausethenumberoftrialsavailabledoesnotallowto properlysampletheresponsespaceforlargevaluesofM.

Taken together theseresults demonstrate that the accuracy oftheGaussianapproximationtocomputeinformationfromLFP powers.Whencomputingtheinformationaboutamovie stimu-luscarried bythepowerinoneor moreLFPbands,differences betweenGaussianandDirectinformationvaluesarisemainlyfrom thediscretizationusedfortheDirectprocedureandthatthetwo methodsprovidecomparableresultswhenenoughbinsareused forthediscretization.

Inwhatfollows,unlessotherwisestated,wewillalwaysusethe GaussianMethodwiththeGaussianbiascorrection(seeSection2) forcomputinginformationvalues.

5.3. PartitioningofLFPresponsesintotwobands

Webegan byinvestigatingwhatisthebestwaytopartition theLFPspectrumintotwofrequencybands.AlthoughtheLFPis consistentlydefinedintheliteratureasthelowfrequencyrange ofthespectrumoftheextracellularlyrecordedneuralsignal,there

Fig.3. PartitioningtheLFPintotwobands.Resultsare averagedoverasetof 57V1recordingsitesfromanaesthetizedmacaques.Informationestimateswere computedusingtheGaussianMethodcorrectedwiththeGaussianbiascorrection procedureandusingthecuberootofthepowervalues.(A)Theinformationabout anaturalisticmoviestimuluscarriedjointlybythepowerinthetwoLFPbands B1=[0Hz–f]andB2=[f–250Hz]asafunctionoftheboundaryparameterfvaried between0and250Hz.ThegreyareaindicatestheSEM.Thedashedanddottedlines illustratetheinformationobtainedwhenvaryingtheupperedgeofB2from250to 200andto300Hz,respectively.(B)Thepercentageredundancybetweenthe infor-mationcarriedbythepowerinthetwoLFPbandsB1andB2definedasinpanelA. ThegreyareaindicatestheSEM.Thedashedanddottedlinesillustratethe redun-dancyobtainedwhenvaryingtheupperedgeofB2from250to200andto300Hz, respectively.(C)Theinformationaboutanaturalisticmoviestimuluscarried indi-viduallybyLFPpowerinthebandB1=[0–60Hz]andbytheLFPpowerintheband B2=[60–250Hz].TheerrorbarsindicatetheSEM.Thetrianglemarkerindicatesthe informationconveyedbytheunpartitioned[0–250Hz]LFPrange.

isnoagreementabouttheprecisefrequencyrangethatshouldbe consideredasLFPactivity.Someauthorsincludefrequenciesonly upto100Hz,whileothersincludeuptoseveralhundredHz.Here westartedbyassumingtheLFPspectrumtorangefrom0to250Hz. Welatercheckedfortheeffectofconsideringotherdefinitionsof theLFPfrequencyrange.

Wecomputedthestimulus-information,I(S;B1B2),carriedby theLFPpowerwhenpartitionedintothetwobandsB1=[0Hz–f] and B2=[f–250Hz], as a function of the boundary parameterf (with0<f<250Hz).Wefound(Fig.3A)thattheamountof infor-mationcarriedjointlybythetwobandswas,onaverageacross thepopulation,maximalwhensplittingthebandsatf=60Hz.The information,washoweververyhighforabroadfrequencyregion, extendingapproximatelybetween50and70Hz.Thedistribution acrossrecordingsites ofthevalue ofthefrequency boundaryf at which information was maximal in each recording site had a median of62Hz and aninterquartile range of 53–79Hz. The informationaboutthemoviestimulusobtainedaftersplittingthe [0–250Hz]LFPrangeintotwobandsatthef=60Hzoptimal bound-arieswas1.03±0.05bits(hereandhereafter,andunlessotherwise stated,informationvaluesarereportedasmean±SEMover pop-ulation). In comparison, the information in the un-partitioned [0–250Hz] LFP power was 0.30±0.02bits. Thus, splitting the LFP response at the optimal boundary f=60Hz allowed the

(7)

extractionofmore thanthree timestheinformation carriedby theun-partitionedLFPpower.Takentogether,theseresultsclearly indicatethatthemostinformativewaytopartitiontheLFPresponse intotwobandsistoseparatelowandhighLFPfrequencieswitha boundaryplacedatapproximately55–65Hz.

Wenotedthattheinformation(Fig.3A)didnotfall monoton-icallyafterthemaximumat60Hz,butratherasecondlocalpeak waspresentatapproximately105Hz. Similarly,theredundancy (Fig.3B)reachedasecondlocalminimuminthesamefrequency region.

Tounderstandbetterthereasonswhyitwasoptimalto par-tition theLFP range by splittingit at f=60Hz, we investigated howtheredundancybetweentheinformationcarriedbythebands dependedupontheboundaryvaluef.Wefound(Fig.3B)thatthe redundancybetweenthetwobandswasingeneralsmallandwas minimalintherange50–60Hz.Theminimumwasreachedat53Hz andwas−0.05±0.004bits.ThissuggeststhatsplittingtheLFPat theoptimalboundaryrange(50–70Hz)partitionstheLFPintotwo regionswithlargelyindependent(evenweaklysynergistic) infor-mationcontentandstimulustuningproperties.Theseobservations aboutLFPbandsareconsistentwiththeresultsobtainedregarding theinformationcontentofthepowerofsingleLFPfrequencies,see Fig.1Cand(Belitskietal.,2008).

Fig. 3C reports that the information carried by the high-frequency[60–250Hz]bandwas0.69±0.04bits.Incontrast,the low frequency [0–60Hz] band carried much less information (0.29±0.02bits).Thisresult,togetherwiththeaboveinformation redundancyfindings,indicatethatthelargeamountofinformation gainedbypartitioning theLFPrangeintothehighand low fre-quencycomponentsarisesmostlybecausethispartitioningallows accessingtheinformationinthelow-powerbuthighlyinformative high-frequencyrange.Intheunpartitionedsignal,instead,the rel-ativelylowpowerofthehigh-frequencyrangeismaskedbythe highpowerofthelessinformativebutverylow-frequencyrange.

Itisinterestingtocomparetheamountofinformationcarried bythepowerofanoptimallydefinedLFPbandwiththeamount of information that can beextracted by the power at a single frequency.Wefirstcomparedtheinformationintheentirehigh frequencybandwiththeinformation intheindividual frequen-ciesinthehigh-frequencyrange.Consistentwithpreviousresults (SiegelandKönig,2003),weobservedthatintegratingLFPpower over the range [60–250Hz] greatly increased thetotal amount of information (0.69±0.04bits)compared tothehighest infor-mation carried by a single LFP frequency in the gamma range (0.31±0.02bits).Thiscanbeunderstoodbythefactthat frequen-ciesabove60Hzcarrylargelyredundantinformationwithlargely similarstimulusselectivity,high“signalcorrelation”,andalmost independenttrial-to-trialvariability,i.e.relativelylow“noise cor-relation”(Belitskietal.,2008;Magrietal.,2009).Integratingneural responses with similar stimulus selectivity and weakly corre-latednoisehasbeendemonstratedtogreatlyincreaseinformation (AbbottandDayan,1999;Orametal.,1998;Zoharyetal.,1994).We thencomparedtheinformationintheentirelowfrequencyband [0–60Hz]withtheinformationintheindividualfrequenciesinthe low-frequencyrange.Wefound(Fig.3C)thatintegratingtheLFP poweroverthelow[0–60Hz]frequencyrangeprovided informa-tion(0.292±0.015bits)comparabletothemaximuminformation obtainedforsingleLFPfrequenciesinthisrange(0.289±0.017bits; Fig.1B).Thefactthatessentiallynoinformationisgainedby inte-gratingthepowerinthelowfrequenciesislikelyduetothefact thatlowfrequencieshaveasmallredundancy(Fig.1C)duetoa verysmallsimilarityintheirtuningtothemovie(Belitskietal., 2008;Magrietal.,2009)andsummingdifferentlytunedresponses doesnotleadtoinformationgain.

Aswementionedearlier,theupperfrequencycutoffdefining theLFPrangeisanarbitraryparameternotconsistentlyusedin

theliterature.Weinvestigatedwhethertheoptimalbandsplitting dependedontheupperfrequencycutoffdefiningtheLFPbyvarying thisparameterintherange200–300Hz.Wefound(Fig.3)thatboth thevalueoftheoptimalfrequencycutoffandtheamountof infor-mationobtainedfromtheoptimallysplitLFPwerehighlystable whenvaryingthisparameter.

5.4. PartitioningofLFPresponsesintothreebands

Next,weconsideredtheproblemoffindingboundariesf1,f2 that optimally partition the LFPs into three bands, B1=[0–f1], B2=[f1–f2] and B3=[f2–250Hz]. Fig. 4A reports the informa-tioncarriedjointly bythethreefrequencyranges,computedas a function of the two boundaries parameters f1 and f2 (with 0Hz<f1<f2<250Hz)andaveragedoverthepopulation.The opti-malpartitionwasfoundatf1=54Hzandf2=97Hz.Asforthecase oftwobands,thepositionoftheinformationpeakwasrobusttothe choiceoftheupperboundaryusedfordefiningtheLFPrange(not shown).Again,wefoundthattheredundancy(Fig.4B)was negli-gibleforf1andf2intheoptimallyinformativeregion.Acrossthe populationthedistributionofthepositionoftheinformationpeaks wascentered around 52Hz (median value; interquartile range: 43–57Hz)for f2and around98Hz(medianvalue; interquartile range:92–106Hz).

Thefirstoptimalboundary(atapproximately55Hz)tosplitthe LFPrangeintothreebandsisessentiallycoincidentwiththeoptimal boundaryforsplittingtheLFPintotwobands.Thesecond opti-malboundary(at97Hz)forthethreebandpartitioncorresponds to thelocal peak (Fig.3B) observed when partitioning the LFP responseintotwobands.Thissecondoptimalboundaryseparates thehigh-frequencyrange[54–250Hz]intotworanges[54–97Hz] and[97–250Hz].Thefirstrangecorrespondstothefrequencyrange layinginsidewhatistraditionallycalledthegammarange,andis consistentwiththeoptimalgammabanddefinition[64–103Hz] obtainedforthecatvisualcortexusinganalternativeprocedure forfunctionallydefiningthisband(SiegelandKönig,2003).This alsosuggests,consistentwith(SiegelandKönig,2003),thatwidely useddefinitionofthegammabandastheregionaround40Hz(the frequencyatwhichLFPpowerpeaksinthisrange,andneural syn-chronizationisusuallymaximal)maynottobetheoptimalchoice whenconsideringstimuluscoding.Thesecondrange[97–250Hz] correspondstotherangewhichhasbeentermedthe“high-gamma” band,andwhichwasfound(RayandMaunsell,2011)tocorrelate withspikingactivity.

Thefactthatthepositionofthefirstoptimalboundaryis essen-tiallyunchanged whenpartitioning theLFPresponse intothree bandsindicatesthatthisboundaryisstableandthatitdefinesbands whicharelikelytoreflecttruedistinctneuralphenomena.Italso indicatesthatthemostimportantstep,whenpartitioningtheLFP responseaccordingtoourprocedure,istoseparatelowandhigh LFPfrequencies.Thesignificanceofthisoptimalboundaryisalso indicatedbytheextensionofthepeakoftheinformation curve averagedoverthepopulation(Fig.4A),whichisnarroweralong thef1directioncomparedtof2,indicatingasharpertuningofthe informationcurvetothefirstboundary.Additionally,thebroadness ofthef2peakisconsistentwiththeobservationthattheboundary foundfordelimitingthehighgammarangeshouldnotbethoughtof asastrictboundaryandthatthelowerandupperfrequencylimits ofthehigh-gammabandappeartobesomewhatvariable depend-ingonthetask,corticalsite,andsubject(Croneetal.,2006;Rayand Maunsell,2010).

Weobservedthatthefirstoptimalboundarywasstableinthat itappearedbothwhenpartitioningtheLFPrangeintotwoorinto threebands.Totestforthestabilityofthesecondoptimalboundary wepartitionedtherange[54–250Hz]intotwobands.The ratio-naleforconsideringthisrangeseparatelyfromthelowfrequencies

(8)

Fig.4.PartitioningofLFPresponseintothreebands.Resultsareaveragedoverasetof57V1recordingsitesfromanaesthetizedmacaques.Informationestimateswere computedusingtheGaussianMethodcorrectedwiththeGaussianbiascorrectionprocedureandusingthecuberootofthepowervalues.(A)Theinformationabouta naturalisticmoviestimuluscarriedjointlybythepowerinthethreeLFPbandsB1=[0Hz–f1],B2=[f1–f2]andB3=[f2–250Hz]asafunctionoftheboundaryparametersf1 andf2variedbetween0and250Hzwithf1<f2.Thedashedrectangleindicatestheinterquartilerangeforthepositionoftheinformationpeaksacrossthepopulation.(B)The percentageredundancybetweentheLFPpowerinthethreeLFPrangesB1,B2andB3.ThedashedrectangleindicatethesameregionboxedinpanelA.(C)Theinformation aboutanaturalisticmoviestimuluscarriedindividuallybytheLFPpowerinthebandB1=[0–54Hz],inthebandB2=[54–97Hz]andinthebandB3=[97–250Hz].Theerror barsindicatetheSEM.(D)Top:theinformationaboutanaturalisticmoviestimuluscarriedjointlybythepowerinthetwoLFPbandsB1=[54Hz–f]andB2=[f–250Hz]asa functionoftheparameterfvariedbetween54and250Hz.Bottom:theredundancybetweentheinformationcarriedbytheLFPpowerinB1andB2.Thegreyareaindicates theSEM.

isthatwehaveobserved(Figs.1Dand3B)thatLFPpowerbelow 54Hzconveysinformationwhichisindependentfromthatofthe higherfrequencies.Wefound(Fig.4D)thattheinformationwas maximalforfagainintherange[90–110Hz].Wealsofoundthat theredundancybetweentheinformationconveyedbythegamma andthehigh-gammabandswaspositivebutverysmall(reaching aminimumof3%±2%at99Hz)consistentwiththelowvalues oftheredundancy(Fig.1C)observedbetweensinglegammaand high-gammafrequencies.

Amongthebandsintheoptimalthree-bandpartition,the opti-malgammaband[54–100Hz]wastheone carryingthelargest single-band stimulusinformation (0.66±0.03bits; Fig.4C). The secondmostinformativerangewas[97–250Hz](0.61±0.04bits) followedbythelow(<54Hz)LFPfrequencies(0.29±0.02bits). 5.5. Determiningadditionaloptimalboundaries

Anissuewiththemethodproposedfordeterminingthe opti-malboundariesisthattheparameterspaceinwhichtosearchfor theoptimalboundariesincreasesexponentiallywiththenumber ofboundariesconsidered.Forexample,aspectralwindowoflength T=960mshas241Fouriercoefficientsbetween0and250Hzwith oursamplingrate.IdentifyingtheoptimalpartitionoftheLFPinto

threebandsthusrequirescomputinginformationforseveral hun-dredthousandpossiblecombinationsoftheboundaryparameters foreachrecordedchannel.Thisisdifficulttoperformsystematically withcurrentcomputationalmeans.Downsamplingthefrequency spaceisalsonotasolutiontothisproblem,asahighfrequency res-olutionbecomesmoreandmorecrucialwhenconsideringmany bands,sincetheoptimalboundariesbecomecloserandthusharder todiscriminate.

InordertoassesstheutilityofafurtherpartitionoftheLFP spec-trumintofourbands,wefollowedaslightlydifferentapproach: wefixedthetwopreviouslyobtainedprincipalbandboundaries and wecomputed theoptimalwaytofurthersplit each ofthe threeprincipalbands,ratherthanperformingabrute-forcesearch acrosstheentirefour-dimensionalfrequencyspace.Thischoice wasjustifiedbyourfindingsthat theoptimalboundaries at54 and97Hz(whichwecalltheprincipalboundaries)arestablewith respectbothtochangesintheparametersoftheanalysisandto arefinementofthepartition,andthatthethreeprincipalbands ([0–54Hz],[54–97Hz]and[97–250Hz])conveylargely indepen-dentinformationand,consequently,theirfurtherrefiningcanbe studiedindependentlyoftheothers.In whatfollows,the infor-mationgainedbyfurthersplittingabandwasquantifiedasthe differencebetweentheinformationcarriedbythepartitionofthe

(9)

Fig.5. PartitioningtheLFPintofourbands.Resultsareaveragedoverasetof 57V1recordingsitesfromanaesthetizedmacaques.Informationestimateswere computedusingtheGaussianMethodcorrectedwiththeGaussianbiascorrection procedureandusingthecuberootofthepowervalues.Thesolidlinesindicatethe averageoverallavailablerecordingsandthegreyareasindicatestheSEM.(A)The informationgainaboutanaturalisticmoviestimulusobtainedwhenpartitioning theLFPrange[0–54Hz]intotwobandsB1=[0Hz–f]andB2=[f–54Hz]asafunction oftheboundaryparameterf.Therighty-axisexpressesthegainasthepercentage oftheinformationconveyedbytheun-partitionedband.(B)Thepercentage redun-dancybetweentheinformationcarriedbythepowerintheLFPbandsB1=[0Hz–f] andB2=[f–54Hz]asafunctionoftheboundaryparameterf.(C)Sameplotasin panelAbutforapartitionoftheband[54–97Hz].(D)SameplotasinpanelBbut forapartitionoftheband[54–97Hz].(E)SameplotasinpanelAbutforapartition oftheband[97–250Hz].(F)SameplotasinpanelBbutforapartitionoftheband [97–250Hz].

selectedbandandtheinformationcarriedbytheun-partitioned band.Thisinformationgainwasexpressedeitherasanabsolute difference(inbits)betweenthesetwoterms,orwasnormalized aspercentagegainwithrespecttotheinformationcarriedbythe un-partitionedband.

Wefirstconsideredhowtosplitthe[0–54Hz]low-frequency range. We found(Fig.5A) thatthe information gain wassmall whentheboundarybetweenthetwo sub-bandswassetbelow 15Hz but that itincreased rapidlyreachinga globalmaximum of0.32±0.03bitsat27Hz,correspondingtoaninformationgain of111%±11%withrespecttotheinformationcarriedbythe un-partitionedband.Thisoptimalsplitat27Hzcorrespondsroughly topartitioningthelowfrequencyrangeintoastimulus-informative [0–27Hz]and tothestimulus-unrelatedfrequencies [27–50Hz] band(see thesinglefrequency informationanalysisreportedin Fig.1Bandin(Belitskietal.,2008;Magrietal.,2009)).Theoverall informationgainofthefurtherpartitionofthe[0–54Hz]bandcan beconceptualizedashelpingisolatingthe“noisy”frequenciesfrom thestimulus-evokedones.

We then considered how best to sub-partition the gamma [54–97Hz] band into two sub-bands. Fig. 5C shows that the optimalsplitwasobtainedusingaboundaryat73Hz.The infor-mation gain of this optimal split over the information in the wholebandwas0.35±0.06bits(correspondingto53%±8%more information).Thus,afurthersplitofthegammarangewas worth-whilebecauseitincreasedtheinformation,althoughwithaless

importantproportionalgainwithrespecttotheoneobtainedby furtherpartitioningthelowfrequencyrange.Thefactthatthe par-titionofthegammarangegavealowerproportionalincreasecanbe understoodbyobservingthattheoptimallysplitsub-rangeswithin thegammafrequency domainwere stillalmost 18%redundant (Fig.5D), suggesting that the division at 73Hz separates simi-larfrequencyregionswithaslightlydifferenttuningratherthan identifyingregionswhichqualitativelydifferentstimuluscoding properties.

The smallestinformation gain (bothin absoluteand in pro-portionalterms)wasobtainedwhenpartitioningthehigh-gamma [97–250Hz]range,Fig.5E.Theoptimalsplitofthehigh-gamma rangewasachievedwithaboundaryat111Hz,butitledtoonly asmall(0.16±0.05bits,correspondingto26%±8%)information gain, indicating that littleadditionalinformation can begained byadditionallypartitioningthehighfrequencies.Thisfindingis furthersupportedbytheveryhighvaluesofredundancy(Fig.5F) obtainedforanychoiceoftheboundary.

Theseresultssuggestthatthemostconvenientwayofadding athirdoptimalboundaryistopartitionthelowfrequencyrange intoa [0–27Hz]bandand a[27–54Hzrange]since considering thesetwobandsseparatelyprovidesaproportionallylargegainin informationanditseparatesregionswithaqualitativelydifferent relationtothevisualstimulus.

5.6. Distributionofoptimalbandboundariesacrosssitesand animals

IntheabovesectionswepartitionedtheLFPsintooptimalbands usinginformationvaluesaveragedoverallavailablesitesand mon-keys.PreviousworkhasshownthattheLFPspectrumcanchange dependingonfactorssuchasthedetailsofthestimulusused(Ray andMaunsell,2010),thetask(Friesetal.,2001)orrecordingdepth (Maieretal.,2011).Inparticular,itwasshownthatgammaactivity canvarysignificantlyinpowerandpeakfrequencyacrosssubjects andrecordingsite(Limaetal.,2010;Muthukumaraswamyetal., 2010).Hereweinvestigatetheresultsobtainedbyapplyingour partitioningtechniqueindependentlyforeachrecordingchannel andforeachmonkey.

Results of the single-site two-bands optimal partition are reportedinFig.6B.Wefoundthatthemethodwasabletofind optimalboundariesalsoatthesinglechannellevel.Thepositionof theoptimalboundaryforthetwo-bandspartitionhadamedianof 62Hz(range45–100Hz)forthefirstmonkeyandof45Hz(range 33–69Hz)forthesecondmonkey.Thedistributionofthe bound-ariesinthefirstmonkeywassignificantlyhigherthanthatofthe secondmonkey(p<0.05;Wilcoxonranksumtest).Althoughthe limitednumber ofsubjectsusedinthestudydoesnotallowto perform anexhaustive analysisof thedependency of theband boundariesonthespectralpropertiesofeachanimal,itis tempt-ingtosuggestthatthedifferenceinthedistributionofthefirst optimalboundarybetweenthetwomonkeysmaybeattributedto themuchlargergammapowerobservedinspectrumofthefirst monkey(Fig.6A).

Furthermore,whenpartitioningtheLFPrangeintothreebands independently for each siteof thefirst monkey,we foundthat thefirstoptimalboundarywasdistributedbetween32and63Hz withamedianof54Hzandthatthesecondoptimalboundarywas between74and118Hzwitha medianof98Hz.For thesecond monkeythefirstboundarywasbetween32and49Hz(medianof 38Hz),comparabletotherangeobtainedwhenpartitioningthe LFPsrecordedfromthismonkeyintotwobands(Fig.6B),andthe secondboundarywasbetween79and147Hz(medianof127Hz). Itisimportanttonotethatthepartitioningalgorithmdetermined thatthefirstboundarywaspreservedwhenrefiningthepartition fromtwotothreebandsevenatthesinglerecordingsitelevel,and

(10)

Fig.6.Distributionoftheoptimalboundariesacrosssitesandanimals.Resultsareshownforeachofthetwomonkeysusedinthisstudy.Quantitiesplottedingreyreferto monkey1,quantitiesplottedinblacktomonkey2.(A)AveragepowerspectrumoftheLFPsrecordedduringthepresentationofanaturalisticmovie.(B)Distributionofthe optimalboundariesobtainedforeachrecordingsitewhenpartitioningtheLFPsintotwobands.(C)Distributionofthefirstandsecondoptimalboundariesobtainedforeach recordingsitewhenpartitioningtheLFPsintothreebands.

notonlyatthepopulationlevel.Thissuggeststhatouralgorithmis robustenoughtoanalyzeandpartitionsinglecases,andnotonly grandpopulationaverages.

6. Discussion

WedevelopedanewprocedureforpartitioningtheLFPresponse intoaspecifiednumberofbands,whichopensthewayforamore objective,semi-automaticanalysisoftheroleofcortical oscilla-toryactivity in sensory function. The methodselects theband boundariesthatmaximizetheinformationaboutasetof exter-nalcorrelatescarriedjointlybyallbandsinthepartition.Weused thisproceduretodetermineamaximallyinformativepartitioning ofprimaryvisualcorticalLFPsintotwotofourbands,and iden-tifiedbandboundarieswhicharecompatiblewithourknowledge andintuitionaboutthefunctionalLFPspectruminvisualcortex.It isimportanttonotethatourmethod,thoughexemplifiedforLFPs, canbereadilyappliedtoa varietyofbroad-bandneuralsignals, fromintracellularrecordingsofmembranepotentialfluctuationsto populationspikingactivityortonon-invasiveneuroimagingsignals suchasEEG,magnetoencephalography(MEG)andfunctional mag-neticresonanceimaging(fMRI).Ourmethodcanthereforebecome ausefultoolfortheendeavorofextractinginformationfromthese signals(Alendaetal.,2010;FuhrmannAlpertetal.,2007;Ostwald etal.,2010;Panzerietal.,2008;QuirogaandPanzeri,2009;Schyns etal.,2011).

Theimplicationsofboththemethodologicaladvancesandof theneurophysiologicalresultsarediscussedinthefollowing.

6.1. Potentialapplicationsofmethodsforpartitioningneural responsesintomaximallyinformativebands

Asillustrated by our application to visualcortical LFPs, our methodispotentiallyrelevantforsensoryphysiology.The spec-trumofLFPoscillationsandfluctuationsinresponsetoastimulus isoftenbroadandlacksaclearseparationbetweenspectralregions tunedtodifferentstimulusfeatures.TherelationshipbetweenLFPs andstimuliisparticularlydifficulttountanglewhenconsidering complexstimulimadeofmanyfeaturesvaryingatdifferenttime scales,suchasforexamplenaturalisticmoviesornaturalsounds (KayserandKonig,2004;Kayseretal.,2009).Understandinghow topartitiontheLFPintoaspecificnumberofbandsthatare col-lectivelymaximallyinformativeaboutthestimulusshedslighton differencesinstimulustuningofdistinctLFPfrequencyregions,and helpsindividuatingfrequencyregionsthatmustbeconsidered sep-aratelybecausetheycarrycomplementaryinformationaboutthe externalcorrelates.Beingabletoindividuateobjectivelyandalmost automaticallytheoptimaldefinitionsofsuchbandswillalso facil-itatehomogeneityofanalysisacrossfuturestudiesandwillmake itiseasierandmoremeaningfultocomparedifferentstudiesor preparations.

Althoughherewefocusedonmaximizingtheinformationabout anexternalcorrelate,ourmethodcouldbereadilyusedto deter-minetheoptimalpartitionofbroadbandneuralsignalsintobands whicharemaximallyinformativeaboutinternal(ratherthan exter-nal) correlates. For example, our procedure could be used to determineasetofLFPregressorsprovidinganoptimalprediction oftheBOLDfMRI.

(11)

Finally, determiningthe partitions of theLFPspectra which aremaximallyinformativeaboutsensorystimuliiscrucialforthe developmentofbrainmachineinterfaces(Andersenetal.,2004; Donoghueetal.,1998).TheLFPisaparticularlysuitedneural sig-nalforBMIsbecausetheyhavethepotentialtoprolongthelifetime ofelectrodeimplantsandtoimprovedecodingperformancewhen combinedwithspikes(Andersenetal.,2004;Belitskietal.,2008).It iswidelyrecognizedthatthemainbottlenecktotheperformanceof BMIsistherelativelysmallamountofinformationthatweare cur-rentlyabletoextractfromneuralactivity(Donoghueetal.,1998). Ourmethodprovidesatoolformaximizingtheinformationabout externalcorrelates(suchas,forexample,movementdirection)thus potentiallyenlargingbottlenecksinperformance.

6.2. Significanceofthemethodologicaladvances

Onemainadvantageofusinginformationasameasureofthe relationshipbetweenthepowerofthebandpartitionandthe exter-nalcorrelateisthatinformationcapturesalltypesofrelationships (linearandnon-linearandofanyorder).Additionally,by consider-ingtheinformationconveyedsimultaneouslybythepowerinall bands,ourmethoddoesnotonlytakeintoaccountthe relation-shipbetweeneachindividualbandandtheexternalcorrelate,but alsotherelationshipbetweenthedifferentbandsinthepartition. Thesefactorscannotbetakenintoaccountbysingle-frequencyor single-bandanalyses.

Wealsoconsideredthepracticalproblemsinvolvedinthe appli-cation of our methodto empirical neurophysiological datasets. To alleviate the bias problem arising from the limited size of thedatasets thatitisnormallypossibletocollect, weproposed a GaussianMethodand Gaussian biascorrectionforcomputing information.WevalidatedthismethodonvisualcorticalLFPsand demonstratedthat,when oneortwobandsareconsidered, dif-ferencesbetweentheinformation estimatesobtainedusingthe GaussianMethodandthoseobtainedwiththeDirectMethodstem fromthediscretizationusedfortheDirectMethod.Thisresult indi-catesthattheGaussianMethod-basedprocedurethatwepropose canbesuccessfullyappliedtocomputetheinformationconveyed bythepowerinthepartitionoftheLFPresponse.Asecond prac-tical problemis that of implementing thebias corrections and estimationprocedurerequiredfortheproperestimationof infor-mationfromthedata.Wedevelopedafasttoolbox(Magrietal., 2009),whichincludedbothDirectMethodandGaussian compu-tation and canthus be usedto implement and tovalidate our procedure,andmadeitpubliclyavailable(www.ibtb.org).Athird practicalproblemis thatof computationaltime.Besides imple-mentingafasttoolbox,weaddressedthisproblembyproposinga procedureforincrementallyrefiningthepartitionbasedonfurther splittingoptimalbands.Thiscansaveagreatdealofcomputing time whenneedingtopartition theLFPintoa largenumber of bands.Thisapproachisjustifiedbytwokeyfindings:the princi-palbandboundariesarestabletorefinementofthepartition,and optimalpartitionsinmostcasescorrespondtosplitsintolargely independentbands.

Thepartitioningmethodproposedinthisworkalsoprovidesa straightforwardwaytoquantitativelyevaluatetherelativegainof addingextrabandstothepartition.Thiscanbedonebycomparing theinformationobtainedforagivennumberofbandswiththat gainedbyintroducingoneextraband.Byevaluatingthestatistical significanceoftheinformationincreasewhenaddingextrabands, thismethodcouldbeextendedtodeterminethesmallestnumber ofbandsthatneedtobeusedtodescribeallstimulusinformation availableintheLFP. However,giventherichnessand complex-ityofLFPsrecordedinresponsetocomplexnaturalisticstimuli, wefeelthatitmaynotbepossibletodescribealltheinformation

contentofLFPsusingonlyaverysmallnumberofbandssuchas thatconsideredintheaboveanalysis.

Theaboveconsiderations,aswellasthelargenumberof differ-entbandsandpartitionsproposedintheneurophysiologicalandin theneuroimagingliterature,raisethequestionofhowtoevaluate theinformationcontentofanumberofbandsmuchlargerthanthe handfulconsideredhere.Boththebiasoftheinformation calcu-lationandthedifficultyoftheevaluationofitssignificancegrow rapidlywiththecardinality ofthespaceinwhichthe stimulus-responseprobabilitiesaredefined,inthisstudywiththenumber ofbandsincludedintheanalysis(Inceetal.,inpress).Evaluation oftheexactinformationcontentofalargenumberofbands(ofthe orderoftenormore)requireseithercollectinglargerdatasetsor developingaccuratestimulusresponsemodelsdescribedbyeven less parameters thantheones consideredhere.We note, how-ever,thattheinformationbiasofthemethodconsideredhere(Eqs. (6) and (7))depends upon thenumber of bands but is largely independentoftheexactbandboundaries.Thismeansthat the partitioningmethodconsideredheremaybestillusefulto deter-minetheboundariesforoptimalpartitionintolargernumberof bands,althoughinsuchcaseitmaynotallowtoevaluatetheprecise informationcontentoftheoptimalpartition.

6.3. Theoptimalbandpartitionsdescribingvisualprimary corticalencodingofnaturalisticinformation

Weusedourmethodtocomputetheoptimallyinformativeband partitionsofLFPsrecordedinV1ofanesthetizedduring presenta-tionofnaturalisticmovies.

Thefirst,andmostimportant,optimalboundarythatappeared inourpartitionwasatapproximately60Hz, andseparatedlow [0–60Hz]andahigh[60–250Hz]LFPfrequencies.Thefindingthat this is the chief boundaryis consistentwithprevious analyses (Belitskiet al.,2008; Magrietal., 2009)reportingthatthe fre-quenciesabove50–60Hzarealmostcompletelyuncorrelatedin bothsignalandnoisetofrequenciesbelowthiscutoff.Thelarge amountofinformationgainedover theunpartitioned LFPwhen splittingtheLFPsatthisfrequencylendssupporttothehypothesis thatthelow-andthehigh-frequencyrangesconveyindependent informationaboutthestimulusbecausetheyoriginatefrom dif-ferentneuralpathways.Inparticular,theoreticalandexperimental studiessuggestedthatlowLFPfrequenciesreflectentrainmentof localneuralactivitytothelowfrequencycomponentsintheinput (Chandrasekaranetal.,2010;Lakatosetal.,2008;Mazzonietal., 2008)whereashighLFPfrequenciesinthegammarangeandabove conveyinformationaboutthestrengthoftheinputbecausethe lat-termodulatesthelocallygeneratedrhythms(BrunelandWang, 2003;Henrieand Shapley,2005;Mazzonietal., 2008;Rayand Maunsell,2010).

Wefoundasecondoptimalboundaryatapproximately100Hz separating the high-frequency LFP band into two ranges cor-respondingto thegamma[60–100Hz]and to thehigh-gamma [100–250Hz]band, leadingtoa largeincrease (approx.30%)in theamountofinformationthatwecanextractaboutthemovie stimuluscomparedtothecaseinwhichonlytwobandsare con-sidered. Gammaoscillationsare thoughttooriginatetoa large extentfromtherecurrentinteractionsamonginhibitoryneurons andamongexcitatoryandinhibitoryneurons(Bartosetal.,2007; BrunelandWang,2003).High-gammapowerhasbeenproposed tooriginatepartlyfrombroadbandLFPactivityandpartly from briefburstsofpowerassociatedwithspikesgeneratednearthe electrode (the socalled“spike bleed-through”).In some condi-tions,forexamplewhenvaryingcontrast,gamma,high-gammaand spikingactivityarelargelycorrelatedandcarrysimilar informa-tionaboutthestimulusparameters.However,inotherconditions, for examplewhen varyingthe stimulussize,gammaactivityis

(12)

partiallydecoupledandhasadifferentstimulusselectivitythan thatofhighgammaandspikingactivity,whichremainhighly cor-relatedinmostconditions(GieselmannandThiele,2008;Rayand Maunsell,2011).Ourfindingthatthesplitbetweengammaand highgammafrequencies atapproximately100Hz isthesecond mostimportantsplittomaximizeinformationextractionfromthe data,supportsthehypothesisthatgammarhythmandhigh-gamma activityreflectpartlydifferentneuralphenomena,andhighlights theimportanceofdistinguishingandstudyingseparatelythesetwo frequencyrangeswheninvestigatingstimulusselectivityofcortical activity.

Wealsofoundthataddingathirdboundaryatapproximately 25Hzledtoaconsiderablegaininthestimulus-informationthat couldbeextractedfromthelowLFPfrequencies.Thissplitdivides thelowfrequencyLFPrangeintotwoqualitativelydifferentparts: a stimulus-modulatedpart and a stimulusindependent part.A highinformation gain wasobtainedalsowhenfurthersplitting thegammarange[50–100Hz]atapproximately70Hz.Inthiscase, however,theredundancy betweenthetwo sub-bands wasstill considerable.Thissuggeststhattheinformation gainedbyfiner partitionof thegammarangeresultsfromisolating partofthe spectrumoriginatingfrom thesameneuralphenomenon (most likely recurrent inhibitory–inhibitory and excitatory–inhibitory interactions)withslightlydifferenttuningtothestimulus.Thisis compatiblewiththeoreticalmodelsthatpredictthatthepeak fre-quency,thewidthandthestimulusmodulationoftheoscillation spectrumallchangewiththestrengthoftheinputtothenetwork (BrunelandWang,2003;Mazzonietal.,2008).Accordingtothis model,furtherpartitioningthegammarangewouldallow discrim-inatingthesefinerchangesinLFPsinresponsetothestimuli,hence theinformationincreasedespitethepresenceofredundancy. Acknowledgements

ThisworkwassupportedbytheBMIprojectofIIT,bytheMax PlanckSociety,bytheCompagniadiSanPaolo,and waspartof theresearchprogramoftheBernsteinCenterforComputational Neuroscience,Tübingen,fundedbytheGermanFederalMinistryof EducationandResearch(BMBF;FKZ:01GQ1002).

References

AbbottL,DayanP.Theeffectofcorrelatedvariabilityontheaccuracyofapopulation code.NeuralComput1999;11:91–101.

AlendaA,Molano-MazónM,PanzeriS,MaravallM.Sensoryinputdrives mul-tipleintracellularinformationstreamsinsomatosensorycortex.JNeurosci 2010;30:10872–84.

AndersenRA,MusallamS,PesaranB.Selectingthesignalsforabrain-machine inter-face.CurrOpinNeurobiol2004;14:720–6.

BartosM,VidaI,JonasP.Synapticmechanismsofsynchronizedgammaoscillations ininhibitoryinterneuronnetworks.NatRevNeurosci2007;8:45–56. BelitskiA,GrettonA,MagriC,MurayamaY,MontemurroMA,LogothetisNK,etal.

Low-frequencylocalfieldpotentialsandspikesinprimaryvisualcortexconvey independentvisualinformation.JNeurosci2008;28:5696–709.

BelitskiA,PanzeriS,MagriC,LogothetisNK,KayserC.Sensoryinformationinlocal fieldpotentialsandspikesfromvisualandauditorycortices:timescalesand frequencybands.JComputNeurosci2010;29:533–45.

BerensP,KelirisGA,EckerAS,LogothetisNK,ToliasAS.Featureselectivityofthe gamma-bandofthelocalfieldpotentialinprimateprimaryvisualcortex.Front Neurosci2008;2:199–207.

BrunelN,WangXJ.Whatdeterminesthefrequencyoffastnetworkoscillations withirregularneuraldischarges?I.Synapticdynamicsandexcitation-inhibition balance.JNeurophysiol2003;90:415–30.

BuzsákiG.Rhythmsofthebrain.USA:OxfordUniversityPress;2006.

ChandrasekaranC,TuressonHK,BrownCH,GhazanfarAA.Theinfluenceofnatural scenedynamicsonauditorycorticalactivity.JNeurosci2010;30:13919–31. ChrobakJ,BuzsakiG.Gammaoscillationsintheentorhinalcortexofthefreely

behavingrat.JNeurosci1998;18:388–98.

CoverT,ThomasJ.Elementsofinformationtheory.NewYork:Wiley;2006. CroneNE,SinaiA,KorzeniewskaA.High-frequencygammaoscillationsandhuman

brainmappingwithelectrocorticography.ProgBrainRes2006;159:275–95. deRuytervanSteveninckRR,LewenGD,StrongSP,KoberleR,BialekW.

Repro-ducibilityandvariabilityinneuralspiketrains.Science1997;275:1805–8.

DonoghueJP,SanesJN,HatsopoulosNG,GaálG.Neuraldischargeandlocalfield potentialoscillationsinprimatemotorcortexduringvoluntarymovements.J Neurophysiol1998;79:159–73.

FrienA,EckhornR,BauerR,WoelbernT,GabrielA.Fastoscillationsdisplaysharper orientationtuningthanslowercomponentsofthesamerecordingsinstriate cortexoftheawakemonkey.EurJNeurosci2000;12:1453–65.

FriesP,ReynoldsJH,RorieAE,DesimoneR.Modulationofoscillatoryneuronal syn-chronizationbyselectivevisualattention.Science2001;291:1560–3. FuhrmannAlpertG,Sun FT,HandwerkerD, D’EspositoM,KnightRT.

Spatio-temporalinformationanalysisofevent-relatedBOLDresponses.Neuroimage 2007;34:1545–61.

GieselmannMA,ThieleA.Comparisonofspatialintegrationandsurround suppres-sioncharacteristicsinspikingactivityandthelocalfieldpotentialinmacaque V1.EurJNeurosci2008;28:447–59.

GoodmanN.ThedistributionofthedeterminantofacomplexWishartdistributed matrix.AnnMathStat1963;34:178–80.

HatsopoulosNG,OjakangasCL,PaninskiL,DonoghueJP.Informationabout move-mentdirectionobtainedfromsynchronousactivityofmotorcorticalneurons.P NatlAcadSciUSA1998;95:15706–11.

HenrieJA,ShapleyR.LFPpowerspectrainV1cortex:thegradedeffectofstimulus contrast.JNeurophysiol2005;94:479–90.

InceA,MazzoniA,BartelsA,LogothetisN,PanzeriS.Anoveltesttodetermine thesignificanceofneuralselectivitytosingleandmultiplepotentially corre-latedstimulusfeatures.JNeurosciMeth,doi:10.1016/j.jneumeth.2011.11.013, inpress.

KayserC,KonigP.Stimuluslockingandfeatureselectivityprevailincomplementary frequencyrangesofV1localfieldpotentials.EurJNeurosci2004;19:485–9. KayserC,MontemurroMA,LogothetisNK,PanzeriS.Spike-phasecodingboostsand

stabilizesinformationcarriedbyspatialandtemporalspikepatterns.Neuron 2009;61:597–608.

KruseW,EckhornR.Inhibitionofsustainedgammaoscillations(35-80Hz)byfast transientresponsesincatvisualcortex.PNatlAcadSciUSA1996;93:6112–7. LakatosP,KarmosG,MehtaAD,UlbertI,SchroederCE.Entrainmentofneuronal oscillationsasamechanismofattentionalselection.Science2008;320:110–3. LimaB,SingerW,ChenNH,NeuenschwanderS.Synchronizationdynamicsin

responsetoplaidstimuliinmonkeyV1.CerebCortex2010;20:1556–73. LiuJ,NewsomeWT.LocalfieldpotentialincorticalareaMT:stimulustuningand

behavioralcorrelations.JNeurosci2006;26:7779–90.

LlinasR,RibaryU.Coherent40-Hzoscillationcharacterizesdreamstateinhumans. PNatlAcadSciUSA1993;90:2078–81.

LogothetisNK.TheunderpinningsoftheBOLDfunctionalmagneticresonance imag-ingsignal.JNeurosci2003;23:3963–71.

MagriC.AnInformationtheoreticanalysisofbrainoscillations.Milano:Department ofComputerSciences,UniversityofMilano;2009.

MagriC,WhittingstallK,SinghV,LogothetisNK,PanzeriS.Atoolboxforthefast informationanalysisofmultiple-siteLFP,EEGandspiketrainrecordings.BMC Neurosci2009;10:81.

MaierA,AuraCJ,LeopoldDA.Infragranularsourcesofsustainedlocalfieldpotential responsesinmacaqueprimaryvisualcortex.JNeurosci2011;31:1971–80. MazzoniA,PanzeriS,LogothetisNK,BrunelN.Encodingofnaturalisticstimuliby

localfieldpotentialspectrainnetworksofexcitatoryandinhibitoryneurons. PLoSComputBiol2008;4:e1000239.

MiltnerWHR,BraunC,ArnoldM,WitteH,TaubE.Coherenceofgamma-bandEEG activityasabasisforassociativelearning.Nature1999;397:434–5.

MisraN,SinghH,DemchukE.Estimationoftheentropyofamultivariatenormal distribution.JMultivariateAnal2005;92:324–42.

MontemurroM,SenatoreR,PanzeriS.Tightdata-robustboundstomutual infor-mationcombiningshufflingandmodelselectiontechniques.NeuralComput 2007;19:2913–57.

MontemurroMA,RaschMJ,Murayama Y,LogothetisNK, PanzeriS. Phase-of-firingcodingofnaturalvisualstimuliinprimaryvisualcortex.CurrentBiol 2008;18:375–80.

MuthukumaraswamySD,SinghKD,SwettenhamJB,JonesDK.Visualgamma oscil-lationsandevokedresponses: variability,repeatabilityand structuralMRI correlates.Neuroimage2010;49:3349–57.

NicolelisMA,LebedevMA.Principlesofneuralensemblephysiologyunderlyingthe operationofbrain–machineinterfaces.NatRevNeurosci2009;10:530–40. OramMW,FoldiakP,PerrettDI,SengpielF.The‘IdealHomunculus’:decodingneural

populationsignals.TrendsNeurosci1998;21:259–65.

OstwaldD,PorcaroC,BagshawAP.Aninformationtheoreticapproachto EEG-fMRIintegration of visually evoked responses. Neuroimage 2010;49:498– 516.

OymanO,NabarRU,BolcskeiH,PaulrajAJ.Characterizingthestatistical prop-ertiesofmutualinformationinMIMOchannels.IEEETransSignalProcess 2003;51:2784–95.

PanzeriS,MagriC,LogothetisNK.Ontheuseofinformationtheoryfortheanalysis oftherelationshipbetweenneuralandimagingsignals.MagnResonImaging 2008;26:1015–25.

PanzeriS,SenatoreR,MontemurroMA,PetersenRS.Correctingforthesamplingbias probleminspiketraininformationmeasures.JNeurophysiol2007;98:1064– 72.

PercivalDB,WaldenAT.Waveletmethodsfortimeseriesanalysis.CambridgeUniv Pr;2006.

PesaranB,PezarisJS,SahaniM,MitraPP,AndersenRA.Temporalstructurein neu-ronalactivityduringworkingmemoryinmacaqueparietalcortex.NatNeurosci 2002;5:805–11.

(13)

PolaG,ThieleA,HoffmannK,PanzeriS.Anexactmethodtoquantifytheinformation transmittedbydifferentmechanismsofcorrelationalcoding.Network-Comp Neural2003;14:35–60.

QuirogaRQ,PanzeriS.Extractinginformationfromneuronalpopulations: informa-tiontheoryanddecodingapproaches.NatRevNeurosci2009;10:173–85. RaschMJ,GrettonA,MurayamaY,MaassW,LogothetisNK.Inferringspiketrains

fromlocalfieldpotentials.JNeurophysiol2008;99:14611476.

RayS,CroneNE,NieburE,FranaszczukPJ,HsiaoSS.Neuralcorrelatesofhigh-gamma oscillations(60–200Hz)inmacaquelocalfieldpotentialsandtheirpotential implicationsinelectrocorticography.JNeurosci2008;28:11526–36. RayS,MaunsellJHR.Differencesingammafrequenciesacrossvisualcortexrestrict

theirpossibleuseincomputation.Neuron2010;67:885–96.

RayS,MaunsellJHR.Differentoriginsofgammarhythmandhigh-gammaactivity inmacaquevisualcortex.PLoSBiol2011;9:e1000610.

SchneidmanE,BialekW,BerryMJ.Synergy,redundancy,andindependencein pop-ulationcodes.JNeurosci2003;23:11539–53.

SchynsPG,ThutG,GrossJ.Crackingthecodeofoscillatoryactivity.PLoSBiol 2011;9:e1001064.

Shannon CE. A mathematical theory of communication. AT&T Tech J 1948;27:379–423.

SiegelM,KönigP.Afunctionalgamma-banddefinedbystimulus-dependent syn-chronizationinarea18ofawakebehavingcats.JNeurosci2003;23:4251–60. StrongSP,KoberleR,deRuytervanSteveninckRR,BialekW.Entropyand

informa-tioninneuralspiketrains.PhysRevLett1998;80:197–200.

WilsonEB,HilfertyMM.Thedistributionofchi-square.PNatlAcadSciUSA 1931;17:684–8.

YuY,CrumillerM,KnightB,KaplanE.Estimatingtheamountofinformationcarried byaneuronalpopulation.FrontComputNeurosci2010;4:10.

ZoharyE,ShadlenMN,NewsomeWT.Correlatedneuronaldischargerateandits implicationsforpsychophysicalperformance.Nature1994;370:140–3.

Riferimenti

Documenti correlati

Development of a novel hand-held robotic device which can simplify the PIVC operation and provide safe PIVC operation including automatically inserting the catheter,

Uno dei primi che esplorò il piccolo mondo delle cose quotidiane ma sconosciute fu Dziga Vertov. Egli guardò e fece guardare gli aspetti ignorati delle cose più comuni

Indeed, one of the advantages of the geodatabase infrastructure we developed is being able to insert and/or update the data concurrently using different platforms (WebGIS, QGIS,

At first, as the DMA experiments give a structural damping (tangent angle loss), a structural damping was implemented on all part of the model. As it was previously presented

Claudio Baccarani L’impresa tra crisi, lentezza e bellezza Impresa Progetto - Electronic Journal of Management, n.. crede nella molteplicità produce suoni e non rumori percorre

Nel § 13 dellaNova methodo il volere puro - che è libertà originaria — è posto a fondamento della coscienza e della libertà umana ed è perciò il presupposto che garantisce

The following tables (Tables r2, r3 and r4) display respectively the results of the comparison between HapMap SNPs and SEQ SNPs, between Encode Regions SNPs