• Non ci sono risultati.

Quantum numbers of the X(3872) state and orbital angular momentum in its rho(0)J/psi decay

N/A
N/A
Protected

Academic year: 2021

Condividi "Quantum numbers of the X(3872) state and orbital angular momentum in its rho(0)J/psi decay"

Copied!
9
0
0

Testo completo

(1)

Quantum numbers of the

Xð3872Þ state and orbital angular momentum

in its

ρ

0

J=ψ decay

R. Aaijet al.* (LHCb Collaboration)

(Received 23 April 2015; published 30 July 2015)

Angular correlations in Bþ→ Xð3872ÞKþ decays, with Xð3872Þ → ρ0J=ψ, ρ0→ πþπ− and J=ψ → μþμ−, are used to measure orbital angular momentum contributions and to determine the JPC value of the Xð3872Þ meson. The data correspond to an integrated luminosity of 3.0 fb−1of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC¼ 1þþ. The Xð3872Þ is found to decay predominantly through an S wave and an upper limit of 4% at 95% C.L. is set on the D-wave contribution.

DOI:10.1103/PhysRevD.92.011102 PACS numbers: 13.25.Hw, 13.25.Gv, 14.40.Nd, 14.40.Rt

The Xð3872Þ state was discovered in

Bþ;0→ Xð3872ÞKþ;0, Xð3872Þ → πþπ−J=ψ, J=ψ → lþldecays by the Belle experiment[1]and subsequently confirmed by other experiments[2–4].1Its production was also studied at the LHC[5,6]. However, the nature of this state remains unclear. The Xð3872Þ state is narrow, has a mass very close to the D0¯D0 threshold and decays to ρ0J=ψ and ωJ=ψ final states with comparable branching fractions [7], thus violating isospin symmetry. This sug-gests that the Xð3872Þ particle may not be a simple c¯c state, and exotic states such as D0¯D0molecules[8], tetraquarks

[9]or mixtures of states[10]have been proposed to explain its composition. The Xð3872Þ quantum numbers, such as total angular momentum J, parity P and charge conjuga-tion C, impose constraints on the theoretical models of this state. The orbital angular momentum L in the Xð3872Þ decay may also provide information on its internal structure.

Observations of the Xð3872Þ → γJ=ψ and Xð3872Þ → γψð2SÞ decays[11–13] imply positive C, which requires the total angular momentum of the dipion system (Jππ) in Xð3872Þ → πþπ−J=ψ decays to be odd. The dipion mass, Mðπþπ−Þ, is limited by the available phase space to be less than 775 MeV, and so Jππ ≥ 3 can be ruled out since there are no known or predicted mesons with such high spins at such low masses.2 In fact, the distribution of Mðπþπ−Þ is consistent with Xð3872Þ → ρ0J=ψ decays[6,14,15], in line with Jππ ¼ 1, the only plausible value.

The choices for JPC were narrowed down to two possibilities, 1þþ or 2−þ, by the CDF Collaboration, via an analysis of the angular correlations in inclusively reconstructed Xð3872Þ → πþπ−J=ψ and J=ψ → μþμ− decays, dominated by prompt production in p ¯p collisions

[16]. Using 1.0 fb−1 of pp collision data collected by LHCb, JPC¼ 2−þ was ruled out in favor of the 1þþ assignment, using the angular correlations in the same decay chain, with the Xð3872Þ state produced in Bþ → Xð3872ÞKþ decays [17]. Both angular analyses assumed that the lowest orbital angular momentum between the Xð3872Þ decay products (Lmin) dominated the matrix element. Significant contributions from Lminþ 2 ampli-tudes could invalidate the 1þþ assignment. Since the phase-space limit on Mðπþπ−Þ is close to the ρ0 pole (775.3  0.3 MeV[7]), the energy release in the Xð3872Þ decay, Q ≡ MðJ=ψπþπ−Þ − MðJ=ψÞ − Mðπþπ−Þ, is a small fraction of the Xð3872Þ mass, making the orbital angular momentum barrier effective.3 However, an exotic component in Xð3872Þ could induce contributions from higher orbital angular momentum for models in which the size of the Xð3872Þ state is substantially larger than the compact sizes of the charmonium states. Therefore, it is important to probe the Xð3872Þ spin-parity without any assumptions about L. A determination of the magnitude of contributions from Lminþ 2 amplitudes for the correct JPC is also of interest, since a substantial value would suggest an anomalously large size of the Xð3872Þ state. In this article, we extend our previous analysis [17] of five-dimensional angular correlations in Bþ → Xð3872ÞKþ, Xð3872Þ → ρ0J=ψ, ρ0→ πþπ−, J=ψ → μþμ− decays to accomplish these goals. The integrated luminosity of the data sample has been tripled by adding 8 TeV pp collision data collected in 2012.

*Full author list given at the end of the article.

1The inclusion of charge-conjugate states is implied in this article.

2

We use mass and momentum units in which c ¼ 1. Published by the American Physical Society under the terms of

the Creative Commons Attribution 3.0 License. Further

distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

3

Dimuon candidates are constrained to the known J=ψ mass[7].

(2)

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range 2 < η < 5, described in detail in Refs. [18,19]. The Xð3872Þ candidate selec-tion, which is based on reconstructing Bþ→ ðJ=ψ → μþμ−Þ πþπKþ candidates using particle identification informa-tion and transverse momentum (pT) thresholds and requir-ing separation of tracks and the Bþvertex from the primary pp interaction vertex, is improved relative to that of Ref. [17]. The signal efficiency is increased by lowering requirements on pTfor muons from 0.90 to 0.55 GeV and for hadrons from 0.25 to 0.20 GeV. The background is further suppressed without significant loss of signal by requiring Q < 250 MeV. The Xð3872Þ mass resolution (σΔM) is improved from about 5.5 to 2.8 MeV by constraining the Bþ candidate to its known mass and requiring its momentum to point to a pp collision vertex in the kinematic fit of its decay. The distribution ofΔM ≡ Mðπþπ−J=ψÞ − MðJ=ψÞ is shown in Fig.1. A Crystal Ball function [20] with symmetric tails is used to model the signal shape, while the background is assumed to be linear. An unbinned maximum-likelihood fit yields 1011  38 Bþ → Xð3872ÞKþ decays and 1468  44 background entries in the 725 < ΔM < 825 MeV range used in the angular analysis. The signal purity is 80% within2.5σΔM from the signal peak. From studying the Kþπþπ− mass distribution, the dominant source of the background is found to be Bþ→J=ψK1ð1270Þþ, K1ð1270Þþ→ Kþπþπ− decays.

Angular correlations in the Bþdecay chain are analyzed using an unbinned maximum-likelihood fit to determine the Xð3872Þ quantum numbers and orbital angular momentum in its decay. The probability density function (P) for each JPC hypothesis, J

X, is defined in the five-dimensional angular spaceΩ≡ðcosθX;cosθρ;ΔϕX;ρ;cosθJ=ψ;ΔϕX;J=ψÞ,

whereθX,θρandθJ=ψare the helicity angles[21–23]in the Xð3872Þ, ρ0 and J=ψ decays, respectively, and ΔϕX;ρ, ΔϕX;J=ψ are the angles between the decay planes of the Xð3872Þ particle and of its decay products. The quantity P is the normalized product of the expected decay matrix element (M) squared and of the reconstruction efficiency (ϵ), PðΩjJXÞ ¼ jMðΩjJXÞj2ϵðΩÞ=IðJXÞ, where IðJXÞ ¼RjMðΩjJXÞj2ϵðΩÞdΩ. The efficiency is averaged over the πþπ− mass using a simulation [24–28] of the Xð3872Þ → ρ0J=ψ, ρ0→ πþπ− decay. The line shape of the ρ0 resonance can change slightly depending on the Xð3872Þ spin hypothesis. The effect on ϵðΩÞ is very small and is neglected. The angular correlations are obtained using the helicity formalism[16],

jMðΩjJXÞj2¼ X Δλμ¼−1;þ1 j X λJ=ψ;λρ¼−1;0;þ1 AλJ=ψ;λρ D JX 0;λJ=ψ−λρð0; θX; 0Þ  D1λρ;0ðΔϕX;ρ; θρ; 0Þ  D1λJ=ψ;ΔλμðΔϕX;J=ψ; θJ=ψ; 0Þj2; ð1Þ where the λ’s are particle helicities, Δλμ¼ λμþ− λμ− and DJλ1;λ2 are Wigner functions [21–23]. The helicity cou-plings, AλJ=ψ;λρ, are expressed in terms of the LS couplings, BLS, with the help of Clebsch-Gordan coefficients, where L is the orbital angular momentum between theρ0 and the J=ψ mesons, and S is the sum of their spins,

AλJ=ψ;λρ¼ X L X S BLS JJ=ψ Jρ S λJ=ψ −λρ λJ=ψ−λρ ! ×  L S JX 0 λJ=ψ−λρ λJ=ψ−λρ  : ð2Þ

Possible values of L are constrained by parity conservation, PX ¼ PJ=ψPρð−1ÞL¼ ð−1ÞL. In the previous analyses

[14,16,17], only the minimal value of the angular momen-tum, Lmin, was allowed. Thus, for the preferred JPC¼ 1þþ hypothesis, the D wave was neglected allowing only S-wave decays. In this work all L values are allowed in Eq. (2). The corresponding BLS amplitudes are listed in TableI. Values of JXup to 4 are analyzed. Since the orbital angular momentum in the Bþ decay equals JX, high values are suppressed by the angular momentum barrier. In fact, the highest observed spin of any resonance produced in B decays is 3[29,30]. Since P is insensitive to the overall normalization of the BLScouplings and to the phase of the matrix element, the BLSamplitude with the lowest L and S is set to the arbitrary reference value (1,0). The set of other possible complex BLS amplitudes, which are free parameters in the fit, is denoted asα.

) [MeV] ψ ) - M(J/ ψ J/ -π + π M = M( Δ 740 760 780 800 820

Candidates per 1 MeV

0 20 40 60 80 100 120 140 160 LHCb

FIG. 1 (color online). Distribution of ΔM for Bþ→ J=ψKþπþπ− candidates. The fit of the Xð3872Þ signal is displayed. The solid (blue), dashed (red) and dotted (green) lines represent the total fit, signal component and background component, respectively.

(3)

The function to be minimized is −2 ln LðJX; αÞ ≡ −sw2PNdata

i¼1 wilnPðΩijJX; αÞ, where LðJX; αÞ is the unbinned likelihood, and Ndata is the number of selected candidates. The background is subtracted using the sPlot technique[31]by assigning a weight, wi, to each candidate based on itsΔM value (see Fig.1). No correlations between ΔM and Ω are observed. Prompt production of Xð3872Þ in pp collisions gives negligible contribution to the selected sample. Statistical fluctuations in the background subtrac-tion are taken into account in the log-likelihood value via a constant scaling factor, sw¼

PNdata i¼1 wi=

PNdata

i¼1 wi2. The efficiency ϵðΩÞ is not determined on an event-by-event basis, since it cancels in the likelihood ratio except for the normalization integrals. A large sample of simulated events, with uniform angular distributions, passed through a full simulation of the detection and the data selection process, is used to carry out the integration, IðJXÞ ∝PNMC

i¼1 jMðΩijJXÞj2, where NMC is the number of reconstructed simulated events. The negative log like-lihood is minimized for each JX value with respect to free BLS couplings, yielding their estimated set of values ˆα. Hereinafter,LðJXÞ ≡ LðJX; ˆαÞ.

The1þþ hypothesis gives the highest likelihood value. From angular momentum and parity conservation, there are two possible values of orbital angular momentum in the Xð3872Þ decay for this JPC value, L ¼ 0 or 2. For the S-wave decay, the total spin of theρ0and J=ψ mesons must be S ¼ 1; thus B01 is the only possible LS amplitude. For the D-wave decay, two values are possible, S ¼ 1 or 2, corresponding to the amplitudes B21and B22, respectively. The squared magnitudes of both of these D-wave ampli-tudes are consistent with zero, as demonstrated by the ratios jB21j2=jB01j2¼ 0.002  0.004 and jB22j2=jB01j2¼ 0.007  0.008. Overall, the D-wave significance is only 0.8 standard deviations as obtained by applying Wilks theorem to the ratio of the likelihood values with the D-wave amplitudes floated in the fit and with them fixed to zero.

The total D-wave fraction depends on the BLS amplitudes, fD≡RjMðΩÞDj2dΩ=

R

jMðΩÞSþDj2dΩ, where MðΩÞ D is the matrix element restricted to the B21 and B22 amplitudes only andMðΩÞSþD is the full matrix element. To set an upper limit on fD, we populate the four-dimensional space of complex B21 and B22 parameters TABLE I. Parity-allowed LS couplings in the Xð3872Þ →

ρ0J=ψ decay. For comparison, we also list a subset of these couplings corresponding to the lowest L, used in the previous determinations[14,16,17]of the Xð3872Þ quantum numbers.

BLS

JPC Any L value Minimal L value

0−þ B 11 B11 0þþ B00; B22 B00 1−þ B 10; B11; B12; B32 B10; B11; B12 1þþ B 01; B21; B22 B01 2−þ B11; B12; B31; B32 B11; B12 2þþ B 02; B20; B21; B22; B42 B02 3−þ B 12; B30; B31; B32; B52 B12 3þþ B 21; B22; B41; B42 B21; B22 4−þ B 31; B32; B51; B52 B31; B32 4þþ B22; B40; B41; B42; B62 B22 D f 0 0.02 0.04 0.06 Likelihood 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 LHCb

FIG. 2 (color online). Likelihood-weighted distribution of the D-wave fraction. The distribution is normalized to unity.

Experiments / 25 200 -+ =0 alt X J JPC=1++ JXalt=0++ ++ =1 PC J Experiments / 25 200 -+ =1 alt X J ++ =1 PC J ) ] ++ (1 L )/ alt X (J L = -2ln[ t -1 LHCb 3 fb Experiments / 25 200 -+ =2 alt X J JPC=1++ JaltX=2++ ++ =1 PC J Experiments / 25 200 -+ =3 alt X J JPC=1++ JaltX=3++ JPC=1++ t -1000 -500 0 500 1000 Experiments / 25 0 200 -+ =4 alt X J ++ =1 PC J t -1000 -500 0 500 1000 ++ =4 alt X J ++ =1 PC J

FIG. 3 (color online). Distributions of the test statistic t ≡ −2 ln½LðJalt

XÞÞ=Lð1þþÞ, for the simulated experiments under the JPC¼ Jalt

X hypothesis (blue solid histograms) and under the JPC ¼ 1þþ hypothesis (red dashed histograms). The values of the test statistics for the data, tdata, are shown by the solid vertical lines.

(4)

with uniformly distributed points in a large region around the B21and B22fit values (14 standard deviations in each parameter). For each point we determine the likelihood value from the data and an fD value via numerical integration of the matrix element squared. The distribution of fDvalues weighted by the likelihood values is shown in Fig.2. It peaks at 0.4% with a non-Gaussian tail at higher values. An upper limit of fD< 4% at 95% C.L. is determined using a Bayesian approach.

The likelihood ratio t ≡ −2 ln½LðJalt

XÞ=Lð1þþÞ is used as a test variable to discriminate between the 1þþ and alternative spin hypotheses considered (JaltX). The values of t in the data (tdata) are positive, favoring the1þþ assign-ment. They are incompatible with the distributions of t observed in experiments simulated under various JaltX hypotheses, as illustrated in Fig. 3. To quantify these disagreements we calculate the approximate significance of rejection (the p-value) of JaltX asðtdata− htiÞ=σðtÞ, where hti and σðtÞ are the mean and rms deviations of the t distribution under the Jalt

X hypothesis. In all spin configu-rations tested, we exclude the alternative spin hypothesis with a significance of more than 16 standard deviations. Values of t in data are consistent with those expected in the 1þþ case as shown in Fig. 3, with fractions of simulated 1þþ experiments with t < tdata in the 25%–91% range. Projections of the data and of the fit P onto individual angles show good consistency with the1þþassignment as

illustrated in Fig. 4. Inconsistency with the other assign-ments is apparent when correlations between various angles are exploited. For example, the data projection onto cosθX is consistent only with the1þþfit projection after requiring j cos θρj > 0.6 (see Fig. 5), while inconsistency with the other quantum number assignments is less clear without the cosθρ requirement.

The selection criteria are varied to probe for possible biases from the background subtraction and the efficiency corrections. By requiring Q < 0.1 GeV, the background level is reduced by more than a factor of 2, while losing only 20% of the signal. By tightening the requirements on the pT of the π, K and μ candidates, we decrease the signal efficiency by around 75% with a similar reduction in the background level. In all cases, the significance of the rejection of the disfavored hypotheses is compatible with that expected from the simulation. Likewise, the best fit fD values determined for these subsamples of data change within the expected statistical fluctuations and remain consistent with the upper limit we have set.

In summary, the analysis of the angular correlations in Bþ→ Xð3872ÞKþ, Xð3872Þ → πþπ−J=ψ, J=ψ → μþμ− decays, performed for the first time without any assumption about the orbital angular momentum in the Xð3872Þ decay,

Candidates 50 100 150 ψ J/ θ cos ψ X,J/ Δφ Candidates 50 100 150 X θ cos LHCb Data ++ =1 PC J θ cos -1 -0.5 0 0.5 Candidates 0 50 100 150 ρ θ cos [rad] Δφ -2 0 2 ρ X, Δφ

FIG. 4 (color online). Background-subtracted distributions of all angles for the data (points with error bars) and for the1þþfit projections (solid histograms).

Candidates / 0.2 20 40 60 80 LHCb JPC=0-+ JPC=0++ Candidates / 0.2 20 40 60 80 JPC=1-+ JPC=1++ Candidates / 0.2 20 40 60 80 JPC=2-+ JPC=2++ Candidates / 0.2 20 40 60 80 JPC=3-+ JPC=3++ X θ cos -1 -0.5 0 0.5 1 Candidates / 0.2 0 20 40 60 80 JPC=4-+ X θ cos -0.5 0 0.5 1 ++ =4 PC J

FIG. 5 (color online). Background-subtracted distribution of cosθX for candidates with j cos θρj > 0.6 for the data (points with error bars) compared to the expected distributions for various Xð3872Þ JPCassignments (solid histograms) with the B

LS ampli-tudes obtained by the fit to the data in the five-dimensional angular space. The fit displays are normalized to the observed number of the signal events in the full angular phase space.

(5)

confirms that the eigenvalues of total angular momentum, parity and charge conjugation of the Xð3872Þ state are 1þþ. These quantum numbers are consistent with those predicted by the molecular or tetraquark models and with the χc1ð23P1Þ charmonium state [32], possibly mixed with a molecule[10]. Other charmonium states are excluded. No significant D-wave fraction is found, with an upper limit of 4% at 95% C.L. The S-wave dominance is expected in the charmonium or tetraquark models, in which the Xð3872Þ state has a compact size. An extended size, such as that predicted by the molecular model, implies more favorable conditions for the D wave. However, conclusive discrimi-nation among models is difficult because quantitative predictions are not available.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ

and FINEP (Brazil); NSFC (China); CNRS/IN2P3

(France); BMBF, DFG, HGF and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); and NSF (U.S.). The Tier1 computing centers are supported by IN2P3 (France), KIT and BMBF

(Germany), INFN (Italy), NWO and SURF (The

Netherlands), PIC (Spain) and GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software research and development tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).

[1] S.-K. Choi et al. (Belle Collaboration),Phys. Rev. Lett. 91,

262001 (2003).

[2] D. Acosta et al. (CDF Collaboration),Phys. Rev. Lett. 93,

072001 (2004).

[3] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 93,

162002 (2004).

[4] B. Aubert et al. (BABAR Collaboration),Phys. Rev. D 71,

071103 (2005).

[5] R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 72, 1972 (2012).

[6] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 04 (2013) 154.

[7] K. A. Olive et al. (Particle Data Group),Chin. Phys. C 38,

090001 (2014).

[8] N. A. Tornqvist, Phys. Lett. B 590, 209 (2004).

[9] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer,Phys.

Rev. D 71, 014028 (2005).

[10] C. Hanhart, Y. S. Kalashnikova, and A. V. Nefediev, Eur.

Phys. J. A 47, 101 (2011).

[11] B. Aubert et al. (BABAR Collaboration),Phys. Rev. D 74,

071101 (2006).

[12] V. Bhardwaj et al. (Belle Collaboration),Phys. Rev. Lett.

107, 091803 (2011).

[13] R. Aaij et al. (LHCb Collaboration),Nucl. Phys. B886, 665 (2014).

[14] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. D 84,

052004 (2011).

[15] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett.

96, 102002 (2006).

[16] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett.

98, 132002 (2007).

[17] R. Aaij et al. (LHCb Collaboration),Phys. Rev. Lett. 110,

222001 (2013).

[18] A. A. Alves, Jr. et al. (LHCb Collaboration),J. Instrum. 3,

S08005 (2008).

[19] R. Aaij et al. (LHCb Collaboration),Int. J. Mod. Phys. A 30,

1530022 (2015).

[20] T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics of the Polish Academy of Sciences, 1986 [Deutsches Elektronen-Synchrotron Report No. DESY-F31-86-02, 1986 (unpublished)], http://inspirehep.net/record/230779/ files/230779.pdf.

[21] M. Jacob and G. C. Wick,Ann. Phys. (N.Y.) 7, 404 (1959). [22] J. D. Richman, Report No. CALT-68-1148, 1984,http://charm .physics.ucsb.edu/people/richman/ExperimentersGuideTo

TheHelicityFormalism.pdf.

[23] S. U. Chung,Phys. Rev. D 57, 431 (1998).

[24] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[25] I. Belyaev et al., in Proceedings of the IEEE Nuclear Science Symposium Conference Record (NSS/ MIC), Knoxville, TN, 2010 (IEEE, New York, 2011), p. 1155.

[26] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[27] J. Allison et al. (GEANT4 Collaboration),IEEE Trans. Nucl. Sci. 53, 270 (2006); S. Agostinelli et al. (GEANT4 Collabo-ration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[28] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe,J. Phys. Conf.

Ser. 331, 032023 (2011).

(6)

[29] R. Aaij et al. (LHCb Collaboration),Phys. Rev. Lett. 113,

162001 (2014).

[30] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 90,

072003 (2014).

[31] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods

Phys. Res., Sect. A 555, 356 (2005).

[32] N. N. Achasov and E. V. Rogozina, Xð3872Þ; IGðJPCÞ ¼ð1þþÞ, as the χ

1cð2PÞ charmonium,arXiv:1501.03583.

R. Aaij,38B. Adeva,37M. Adinolfi,46A. Affolder,52Z. Ajaltouni,5S. Akar,6 J. Albrecht,9 F. Alessio,38M. Alexander,51 S. Ali,41G. Alkhazov,30P. Alvarez Cartelle,53A. A. Alves Jr.,57S. Amato,2S. Amerio,22Y. Amhis,7L. An,3L. Anderlini,17,a J. Anderson,40M. Andreotti,16,b J. E. Andrews,58R. B. Appleby,54O. Aquines Gutierrez,10F. Archilli,38P. d’Argent,11 A. Artamonov,35M. Artuso,59E. Aslanides,6G. Auriemma,25,cM. Baalouch,5S. Bachmann,11J. J. Back,48A. Badalov,36 C. Baesso,60W. Baldini,16,38R. J. Barlow,54C. Barschel,38S. Barsuk,7W. Barter,38V. Batozskaya,28V. Battista,39A. Bay,39

L. Beaucourt,4 J. Beddow,51F. Bedeschi,23I. Bediaga,1 L. J. Bel,41I. Belyaev,31E. Ben-Haim,8 G. Bencivenni,18 S. Benson,38J. Benton,46 A. Berezhnoy,32R. Bernet,40 A. Bertolin,22M.-O. Bettler,38 M. van Beuzekom,41 A. Bien,11 S. Bifani,45T. Bird,54A. Birnkraut,9A. Bizzeti,17,dT. Blake,48F. Blanc,39J. Blouw,10S. Blusk,59V. Bocci,25A. Bondar,34

N. Bondar,30,38 W. Bonivento,15 S. Borghi,54M. Borsato,7T. J. V. Bowcock,52 E. Bowen,40C. Bozzi,16S. Braun,11 D. Brett,54M. Britsch,10T. Britton,59J. Brodzicka,54N. H. Brook,46A. Bursche,40J. Buytaert,38S. Cadeddu,15 R. Calabrese,16,b M. Calvi,20,eM. Calvo Gomez,36,f P. Campana,18D. Campora Perez,38L. Capriotti,54A. Carbone,14,g

G. Carboni,24,h R. Cardinale,19,iA. Cardini,15P. Carniti,20 L. Carson,50K. Carvalho Akiba,2,38R. Casanova Mohr,36 G. Casse,52L. Cassina,20,e L. Castillo Garcia,38M. Cattaneo,38Ch. Cauet,9 G. Cavallero,19R. Cenci,23,jM. Charles,8

Ph. Charpentier,38M. Chefdeville,4 S. Chen,54S.-F. Cheung,55N. Chiapolini,40M. Chrzaszcz,40,26X. Cid Vidal,38 G. Ciezarek,41P. E. L. Clarke,50 M. Clemencic,38H. V. Cliff,47J. Closier,38V. Coco,38J. Cogan,6E. Cogneras,5

V. Cogoni,15,k L. Cojocariu,29G. Collazuol,22P. Collins,38A. Comerma-Montells,11A. Contu,15,38A. Cook,46 M. Coombes,46S. Coquereau,8 G. Corti,38M. Corvo,16,bB. Couturier,38G. A. Cowan,50 D. C. Craik,48 A. Crocombe,48 M. Cruz Torres,60S. Cunliffe,53R. Currie,53C. D’Ambrosio,38J. Dalseno,46P. N. Y. David,41A. Davis,57K. De Bruyn,41 S. De Capua,54M. De Cian,11J. M. De Miranda,1L. De Paula,2W. De Silva,57P. De Simone,18C.-T. Dean,51D. Decamp,4 M. Deckenhoff,9 L. Del Buono,8 N. Déléage,4D. Derkach,55O. Deschamps,5F. Dettori,38B. Dey,40A. Di Canto,38 F. Di Ruscio,24H. Dijkstra,38S. Donleavy,52F. Dordei,11M. Dorigo,39A. Dosil Suárez,37D. Dossett,48 A. Dovbnya,43

K. Dreimanis,52L. Dufour,41G. Dujany,54F. Dupertuis,39P. Durante,38 R. Dzhelyadin,35A. Dziurda,26A. Dzyuba,30 S. Easo,49,38U. Egede,53V. Egorychev,31S. Eidelman,34S. Eisenhardt,50 U. Eitschberger,9 R. Ekelhof,9 L. Eklund,51 I. El Rifai,5Ch. Elsasser,40S. Ely,59S. Esen,11H. M. Evans,47T. Evans,55A. Falabella,14 C. Färber,11 C. Farinelli,41 N. Farley,45S. Farry,52R. Fay,52D. Ferguson,50V. Fernandez Albor,37F. Ferrari,14F. Ferreira Rodrigues,1M. Ferro-Luzzi,38

S. Filippov,33M. Fiore,16,38,bM. Fiorini,16,bM. Firlej,27C. Fitzpatrick,39T. Fiutowski,27P. Fol,53M. Fontana,10 F. Fontanelli,19,iR. Forty,38O. Francisco,2M. Frank,38C. Frei,38M. Frosini,17J. Fu,21E. Furfaro,24,hA. Gallas Torreira,37 D. Galli,14,gS. Gallorini,22,38S. Gambetta,19,iM. Gandelman,2P. Gandini,55Y. Gao,3 J. García Pardiñas,37J. Garofoli,59 J. Garra Tico,47L. Garrido,36D. Gascon,36C. Gaspar,38U. Gastaldi,16R. Gauld,55L. Gavardi,9G. Gazzoni,5A. Geraci,21,l D. Gerick,11E. Gersabeck,11M. Gersabeck,54T. Gershon,48Ph. Ghez,4A. Gianelle,22S. Gianì,39V. Gibson,47L. Giubega,29 V. V. Gligorov,38C. Göbel,60D. Golubkov,31A. Golutvin,53,31,38 A. Gomes,1,m C. Gotti,20,e M. Grabalosa Gándara,5 R. Graciani Diaz,36L. A. Granado Cardoso,38E. Graugés,36 E. Graverini,40G. Graziani,17A. Grecu,29E. Greening,55 S. Gregson,47P. Griffith,45L. Grillo,11O. Grünberg,63B. Gui,59E. Gushchin,33Yu. Guz,35,38T. Gys,38C. Hadjivasiliou,59

G. Haefeli,39C. Haen,38S. C. Haines,47S. Hall,53 B. Hamilton,58T. Hampson,46X. Han,11S. Hansmann-Menzemer,11 N. Harnew,55S. T. Harnew,46J. Harrison,54J. He,38T. Head,39V. Heijne,41K. Hennessy,52P. Henrard,5 L. Henry,8

J. A. Hernando Morata,37E. van Herwijnen,38M. Heß,63 A. Hicheur,2 D. Hill,55M. Hoballah,5 C. Hombach,54 W. Hulsbergen,41T. Humair,53N. Hussain,55D. Hutchcroft,52D. Hynds,51M. Idzik,27P. Ilten,56R. Jacobsson,38A. Jaeger,11 J. Jalocha,55E. Jans,41A. Jawahery,58F. Jing,3 M. John,55D. Johnson,38C. R. Jones,47C. Joram,38B. Jost,38N. Jurik,59 S. Kandybei,43W. Kanso,6 M. Karacson,38T. M. Karbach,38,† S. Karodia,51M. Kelsey,59I. R. Kenyon,45M. Kenzie,38

T. Ketel,42B. Khanji,20,38,e C. Khurewathanakul,39 S. Klaver,54K. Klimaszewski,28O. Kochebina,7M. Kolpin,11 I. Komarov,39R. F. Koopman,42P. Koppenburg,41,38M. Korolev,32L. Kravchuk,33K. Kreplin,11M. Kreps,48G. Krocker,11

(7)

P. Krokovny,34F. Kruse,9 W. Kucewicz,26,n M. Kucharczyk,26V. Kudryavtsev,34K. Kurek,28T. Kvaratskheliya,31 V. N. La Thi,39D. Lacarrere,38G. Lafferty,54A. Lai,15D. Lambert,50R. W. Lambert,42G. Lanfranchi,18C. Langenbruch,48

B. Langhans,38T. Latham,48C. Lazzeroni,45R. Le Gac,6J. van Leerdam,41J.-P. Lees,4R. Lefèvre,5A. Leflat,32 J. Lefrançois,7O. Leroy,6T. Lesiak,26B. Leverington,11Y. Li,7T. Likhomanenko,65,64M. Liles,52R. Lindner,38C. Linn,38

F. Lionetto,40B. Liu,15S. Lohn,38I. Longstaff,51J. H. Lopes,2 P. Lowdon,40D. Lucchesi,22,oH. Luo,50A. Lupato,22 E. Luppi,16,bO. Lupton,55F. Machefert,7F. Maciuc,29O. Maev,30K. Maguire,54S. Malde,55A. Malinin,64G. Manca,15,k G. Mancinelli,6P. Manning,59A. Mapelli,38J. Maratas,5J. F. Marchand,4U. Marconi,14C. Marin Benito,36P. Marino,23,38,j R. Märki,39J. Marks,11G. Martellotti,25M. Martinelli,39D. Martinez Santos,42F. Martinez Vidal,66D. Martins Tostes,2

A. Massafferri,1 R. Matev,38A. Mathad,48Z. Mathe,38C. Matteuzzi,20 A. Mauri,40B. Maurin,39A. Mazurov,45 M. McCann,53J. McCarthy,45A. McNab,54R. McNulty,12B. Meadows,57F. Meier,9 M. Meissner,11 M. Merk,41 D. A. Milanes,62M.-N. Minard,4 D. S. Mitzel,11J. Molina Rodriguez,60S. Monteil,5M. Morandin,22P. Morawski,27 A. Mordà,6M. J. Morello,23,jJ. Moron,27A. B. Morris,50R. Mountain,59F. Muheim,50J. Müller,9K. Müller,40V. Müller,9 M. Mussini,14B. Muster,39P. Naik,46T. Nakada,39R. Nandakumar,49I. Nasteva,2M. Needham,50N. Neri,21S. Neubert,11

N. Neufeld,38M. Neuner,11 A. D. Nguyen,39T. D. Nguyen,39C. Nguyen-Mau,39,pV. Niess,5 R. Niet,9 N. Nikitin,32 T. Nikodem,11D. Ninci,23 A. Novoselov,35D. P. O’Hanlon,48A. Oblakowska-Mucha,27V. Obraztsov,35S. Ogilvy,51 O. Okhrimenko,44R. Oldeman,15,k C. J. G. Onderwater,67B. Osorio Rodrigues,1 J. M. Otalora Goicochea,2A. Otto,38 P. Owen,53A. Oyanguren,66A. Palano,13,qF. Palombo,21,rM. Palutan,18J. Panman,38A. Papanestis,49M. Pappagallo,51 L. L. Pappalardo,16,bC. Parkes,54G. Passaleva,17G. D. Patel,52M. Patel,53C. Patrignani,19,iA. Pearce,54,49A. Pellegrino,41 G. Penso,25,sM. Pepe Altarelli,38S. Perazzini,14,g P. Perret,5L. Pescatore,45K. Petridis,46A. Petrolini,19,iM. Petruzzo,21 E. Picatoste Olloqui,36B. Pietrzyk,4T. Pilař,48D. Pinci,25A. Pistone,19S. Playfer,50M. Plo Casasus,37T. Poikela,38F. Polci,8 A. Poluektov,48,34I. Polyakov,31E. Polycarpo,2A. Popov,35D. Popov,10B. Popovici,29C. Potterat,2E. Price,46J. D. Price,52 J. Prisciandaro,39A. Pritchard,52 C. Prouve,46V. Pugatch,44 A. Puig Navarro,39G. Punzi,23,tW. Qian,4 R. Quagliani,7,46 B. Rachwal,26J. H. Rademacker,46B. Rakotomiaramanana,39M. Rama,23M. S. Rangel,2I. Raniuk,43N. Rauschmayr,38 G. Raven,42F. Redi,53S. Reichert,54M. M. Reid,48A. C. dos Reis,1S. Ricciardi,49S. Richards,46M. Rihl,38K. Rinnert,52

V. Rives Molina,36 P. Robbe,7,38A. B. Rodrigues,1 E. Rodrigues,54 J. A. Rodriguez Lopez,62P. Rodriguez Perez,54 S. Roiser,38V. Romanovsky,35 A. Romero Vidal,37M. Rotondo,22J. Rouvinet,39T. Ruf,38 H. Ruiz,36P. Ruiz Valls,66

J. J. Saborido Silva,37N. Sagidova,30P. Sail,51B. Saitta,15,kV. Salustino Guimaraes,2 C. Sanchez Mayordomo,66 B. Sanmartin Sedes,37 R. Santacesaria,25C. Santamarina Rios,37M. Santimaria,18E. Santovetti,24,hA. Sarti,18,s C. Satriano,25,cA. Satta,24D. M. Saunders,46D. Savrina,31,32M. Schiller,38H. Schindler,38M. Schlupp,9M. Schmelling,10 T. Schmelzer,9B. Schmidt,38O. Schneider,39A. Schopper,38M.-H. Schune,7R. Schwemmer,38B. Sciascia,18A. Sciubba,25,s

A. Semennikov,31 I. Sepp,53N. Serra,40J. Serrano,6L. Sestini,22 P. Seyfert,11M. Shapkin,35I. Shapoval,16,43,b Y. Shcheglov,30T. Shears,52L. Shekhtman,34V. Shevchenko,64A. Shires,9 R. Silva Coutinho,48G. Simi,22M. Sirendi,47

N. Skidmore,46I. Skillicorn,51 T. Skwarnicki,59E. Smith,55,49 E. Smith,53J. Smith,47M. Smith,54H. Snoek,41 M. D. Sokoloff,57,38F. J. P. Soler,51F. Soomro,39D. Souza,46B. Souza De Paula,2B. Spaan,9P. Spradlin,51S. Sridharan,38 F. Stagni,38M. Stahl,11S. Stahl,38O. Steinkamp,40O. Stenyakin,35F. Sterpka,59S. Stevenson,55S. Stoica,29S. Stone,59

B. Storaci,40S. Stracka,23,jM. Straticiuc,29U. Straumann,40R. Stroili,22L. Sun,57W. Sutcliffe,53K. Swientek,27 S. Swientek,9 V. Syropoulos,42M. Szczekowski,28P. Szczypka,39,38 T. Szumlak,27S. T’Jampens,4 T. Tekampe,9 M. Teklishyn,7 G. Tellarini,16,bF. Teubert,38C. Thomas,55 E. Thomas,38J. van Tilburg,41V. Tisserand,4M. Tobin,39

J. Todd,57S. Tolk,42L. Tomassetti,16,b D. Tonelli,38S. Topp-Joergensen,55 N. Torr,55E. Tournefier,4S. Tourneur,39 K. Trabelsi,39 M. T. Tran,39M. Tresch,40A. Trisovic,38A. Tsaregorodtsev,6 P. Tsopelas,41N. Tuning,41,38 A. Ukleja,28

A. Ustyuzhanin,65,64 U. Uwer,11C. Vacca,15,kV. Vagnoni,14 G. Valenti,14A. Vallier,7 R. Vazquez Gomez,18 P. Vazquez Regueiro,37C. Vázquez Sierra,37S. Vecchi,16J. J. Velthuis,46M. Veltri,17,uG. Veneziano,39M. Vesterinen,11

B. Viaud,7 D. Vieira,2 M. Vieites Diaz,37X. Vilasis-Cardona,36,f A. Vollhardt,40D. Volyanskyy,10D. Voong,46 A. Vorobyev,30V. Vorobyev,34C. Voß,63J. A. de Vries,41R. Waldi,63C. Wallace,48 R. Wallace,12J. Walsh,23 S. Wandernoth,11J. Wang,59D. R. Ward,47N. K. Watson,45D. Websdale,53A. Weiden,40M. Whitehead,48D. Wiedner,11

G. Wilkinson,55,38M. Wilkinson,59M. Williams,38M. P. Williams,45M. Williams,56F. F. Wilson,49J. Wimberley,58 J. Wishahi,9W. Wislicki,28M. Witek,26G. Wormser,7S. A. Wotton,47S. Wright,47K. Wyllie,38Y. Xie,61Z. Xu,39Z. Yang,3 QUANTUM NUMBERS OF THE Xð3872Þ STATE AND … PHYSICAL REVIEW D 92, 011102(R) (2015)

(8)

X. Yuan,34O. Yushchenko,35M. Zangoli,14 M. Zavertyaev,10,vL. Zhang,3 Y. Zhang,3 A. Zhelezov,11A. Zhokhov,31and L. Zhong3

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil 2

Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil 3Center for High Energy Physics, Tsinghua University, Beijing, China 4

LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France 5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France

6

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France 7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France 8

LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France 9Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

10

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

11Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany 12

School of Physics, University College Dublin, Dublin, Ireland 13Sezione INFN di Bari, Bari, Italy

14

Sezione INFN di Bologna, Bologna, Italy 15Sezione INFN di Cagliari, Cagliari, Italy

16

Sezione INFN di Ferrara, Ferrara, Italy 17Sezione INFN di Firenze, Firenze, Italy 18

Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy 19Sezione INFN di Genova, Genova, Italy

20

Sezione INFN di Milano Bicocca, Milano, Italy 21Sezione INFN di Milano, Milano, Italy 22

Sezione INFN di Padova, Padova, Italy 23Sezione INFN di Pisa, Pisa, Italy 24

Sezione INFN di Roma Tor Vergata, Roma, Italy 25Sezione INFN di Roma La Sapienza, Roma, Italy 26

Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland 27AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,

Kraków, Poland

28National Center for Nuclear Research (NCBJ), Warsaw, Poland 29

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania 30Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

31

Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia 32Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia 33

Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia 34Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia

35

Institute for High Energy Physics (IHEP), Protvino, Russia 36Universitat de Barcelona, Barcelona, Spain 37

Universidad de Santiago de Compostela, Santiago de Compostela, Spain 38European Organization for Nuclear Research (CERN), Geneva, Switzerland

39

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 40Physik-Institut, Universität Zürich, Zürich, Switzerland

41

Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands 42Nikhef National Institute for Subatomic Physics and VU University Amsterdam,

Amsterdam, The Netherlands

43NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine 44

Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine 45University of Birmingham, Birmingham, United Kingdom

46

H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom 47Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

48

Department of Physics, University of Warwick, Coventry, United Kingdom 49STFC Rutherford Appleton Laboratory, Didcot, United Kingdom 50

School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 51School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

52

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

(9)

53Imperial College London, London, United Kingdom 54

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 55Department of Physics, University of Oxford, Oxford, United Kingdom

56

Massachusetts Institute of Technology, Cambridge, MA, United States 57University of Cincinnati, Cincinnati, OH, United States 58

University of Maryland, College Park, MD, United States 59Syracuse University, Syracuse, NY, United States 60

Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)

61

Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China) 62

Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia (associated with LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France) 63

Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)

64

National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

65

Yandex School of Data Analysis, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

66

Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain (associated with Universitat de Barcelona, Barcelona, Spain)

67

Van Swinderen Institute, University of Groningen, Groningen, The Netherlands (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)

Deceased.

aAlso at Università di Firenze, Firenze, Italy b

Also at Università di Ferrara, Ferrara, Italy

cAlso at Università della Basilicata, Potenza, Italy d

Also at Università di Modena e Reggio Emilia, Modena, Italy

eAlso at Università di Milano Bicocca, Milano, Italy f

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain

gAlso at Università di Bologna, Bologna, Italy h

Also at Università di Roma Tor Vergata, Roma, Italy

iAlso at Università di Genova, Genova, Italy j

Also at Scuola Normale Superiore, Pisa, Italy

kAlso at Università di Cagliari, Cagliari, Italy l

Also at Politecnico di Milano, Milano, Italy

mAlso at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil n

Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland

o

Also at Università di Padova, Padova, Italy

pAlso at Hanoi University of Science, Hanoi, Viet Nam q

Also at Università di Bari, Bari, Italy

rAlso at Università degli Studi di Milano, Milano, Italy s

Also at Università di Roma La Sapienza, Roma, Italy

tAlso at Università di Pisa, Pisa, Italy u

Also at Università di Urbino, Urbino, Italy

vAlso at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia

Figura

FIG. 1 (color online). Distribution of ΔM for B þ → J=ψK þ π þ π − candidates. The fit of the Xð3872Þ signal is displayed
FIG. 2 (color online). Likelihood-weighted distribution of the D-wave fraction. The distribution is normalized to unity.
FIG. 5 (color online). Background-subtracted distribution of cos θ X for candidates with j cos θ ρ j &gt; 0.6 for the data (points with error bars) compared to the expected distributions for various Xð3872Þ J PC assignments (solid histograms) with the B

Riferimenti

Documenti correlati

A similar approach inves- tigated genome-wide gene re-expression/up-regulation following combined treatment with 5-AZA-CdR and the HDAC inhibitor (HDACi) Trichostatin A (TSA), to

In summary, the microbiota plays a key role in the development and modulation of the immune system throughout the life, and at the same time the immune system contributes to

By leveraging on a population-based approach, we (i) identified and quantified ancestry components of three representative Brazilian populations at a previously unmatched

Le OTA hanno ottenuto una popolarità molto ampia (come d’altronde anche le altre fonti statistiche confermano) da parte dei viaggiatori (il 100% del campione

Starting from these hypothesis, we will build a three stage model where a local politician who is in charge in the first period must choose among three different

1.1 La causa della violenza di genere: due teorie a confronto 4 1.2 Nascita e sviluppo della società patriarcale 7 1.3 Il corpo femminile: dal debitum

8 1.3 Orientamenti dottirnali e giurisprudenziali della seconda.. metà

L'Università di Pisa propone, per favorire il trasferimento tecnologico, il programma PhD+ &#34;Creatività, innovazione, spirito imprenditoriale&#34;, un percorso formativo