• Non ci sono risultati.

Mass spectrometry in clinical chemistry: the case of newborn screening

N/A
N/A
Protected

Academic year: 2021

Condividi "Mass spectrometry in clinical chemistry: the case of newborn screening"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Review

Mass

spectrometry

in

clinical

chemistry:

the

case

of

newborn

screening

Giancarlo

la

Marca

DepartmentofNeurosciences,Psychology,PharmacologyandChildHealth,UniversityofFlorence,NewbornScreening,BiochemistryandPharmacology laboratory,MeyerChildren’sUniversityHospital,Florence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received27March2014 Accepted28March2014 Availableonlinexxx Keywords: Newbornscreening LC–MS/MS

Tandemmassspectrometry Inbornerrorsofmetabolism Clinicalchemistry

a

b

s

t

r

a

c

t

Newbornscreening(NBS)programisacomplexandorganizedsystemconsistingoffamilyandpersonnel education,biochemicaltests,confirmatorybiochemicalandgenetictests,diagnosis,therapy,andpatient followup.Theprogramidentifiestreatablemetabolicdisorderspossiblywhenasymptomaticbyusing driedbloodspot(DBS).Duringthelast20yearstandemmassspectrometry(TMS)hasbecometheleading technologyinNBSprogramsdemonstratingtobeversatile,sensitiveandspecific.Thereisconsistent evi-denceofbenefitsfromNBSformanydisordersdetectedbyTMSaswellasforcongenitalhypothyroidism, cysticfibrosis,congenitaladrenalhyperplasiabyimmune-enzymaticmethods.

RealtimePCRtestshavemorerecentlybeenproposedforthedetectionofsomeseverecombined immunodeficiences(SCID)alongwiththeuseofTMSforADAandPNPSCID;afirstevaluationoftheir cost-benefitratioisstillongoing.Avoidingfalsenegativeresultsbyusingspecificbiomarkersandreducing thefalsepositiveratebyusingsecondtiertests,isfundamentalforasuccessfulNBSprogram.Thefully integrationofNBSanddiagnosticlaboratorieswithclinicalserviceiscrucialtohavethebesteffectiveness inacomprehensiveNBSsystem.

©2014ElsevierB.V.Allrightsreserved.

Contents

1. Introduction... 00

2. Materialsandmethods... 00

2.1. Samplecollection... 00

2.2. Bloodcollectioninprematureinfantsandinnewbornsonparenteralnutritionortransfused... 00

2.3. Transportofsamplesandworkflowonlab... 00

3. NBSbyMS/MS... 00

3.1. Standardsandkits... 00

3.2. AnalysisbyMS... 00

4. ExpandingtheNBSpanelbyMS... 00

5. Diseasesincludedintheneonatalscreeningprogram... 00

5.1. Secondtiertests ... 00

5.2. Maternaldiseases... 00

5.3. Outcomemanagementprocedures... 00

6. Conclusions... 00

Acknowledgments ... 00

References... 00

∗ Correspondenceto:DepartmentofNeurosciences,Psychology,PharmacologyandChildHealth,UniversityofFlorence,VialePieraccini6,50139Florence,Italy. Tel.:+390555662988;fax:+390555662489.

E-mailaddresses:g.lamarca@meyer.it,giancarlo.lamarca@unifi.it http://dx.doi.org/10.1016/j.jpba.2014.03.047

(2)

1. Introduction

Newbornscreening(NBS) is knowntobea biochemical test enablingtheidentificationofmanyinbornerrorsofmetabolism (IEM)few daysafter birth. Iftheyare notdiagnosed and early treated,mostofthemcancausementaland/orgrowthretardation, severepermanentsequelaeandinsomecasedeath.Considering thatNBSrequiresexpertlabtechnicians,chemists,biologists, nutri-tionists,medicalspecialistsformetabolicdisorders,itcannotbe consideredonlyanusefulbiochemicaltest,butitshouldbe con-sideredasacomplexandintegratedprogram.Theobjectiveofa newbornscreeningprogramistodetectsomeIEMbeforethe clin-icalmanifestationoftheassociatedsymptoms.Asaconsequence, medicaldoctorscanstartthebestavailabletreatmentandhave thebest prognosisby modifyingthe natural courseof the dis-ease.ThehistoryofNBSaspopulation-basedtestdatesbackfrom thebeginning of1960swhenthemicrobiologistRobertGuthrie developedasimpleandinexpensivebacterialinhibitionassay(DBS based)abletoidentifythemostfrequentaminoacidopathia:the phenylketonuria[1].Inthefollowingdecade,someotherclinical labsbothintheUnitedStatesandinEurope,addedthe congen-italhypothyroidism(CH)totheirpanel,againbyusing asingle dropofwholebloodonpaper.Thefollowingdevelopmentof elec-trospraytandemmassspectrometryinmorerecentyears(1990s) haspermittedtheintroductionofthisnewtechnologyinclinical chemistrylaboratories,inparticularfornewbornscreening pur-poses[2].MS/MSisaversatile,specificandsensitivetechnology givingtechniciansthepossibilitytomeasuremanybiomarkersina singleandfastanalyticalrun.Peopleworkinginnewbornscreening fieldunderstoodthepossibilitytopassfromoneDBSforonetest andonedisordertooneDBSforonemultiplextestformany dis-orders.In fact,today MS/MScaneasilyidentifyand quantifyin a 2or less minutes’run – severalmetabolitessuchas acylcar-nitines,aminoacids,succinylacetone[3,4]andmorerecentlysome purines[5–8].Nowadays,includingpilotprojectsregionallyruled andstructurednationalNBSprograms,manylabsallaroundthe worldscreenfor morethan 30or moreIEM witha singletest. Thenumberofpotentialidentifiabledisordersisnota technolog-icalhamperbutitdependsonregionalornationalpublichealth strategies.

Some expanded newborn screening programs are now screening notonly for PKU, CH,more recentlyfor cystic fibro-sis(CF),congenitaladrenalhyperplasia(CAH)andgalactosemia, butalsofor othersaminoacidopathias,betaoxidation fattyacid defects,organicacidurias,ureacycledefectsand since2011for someseverecombinedimmunodeficiences (SCID).Onethe fun-damentalworldwide-approvedcriterion isthat oneIEM canbe screenedonlyifarelatedtreatmentisavailable.Foralldisorders includedinthenewbornscreeningprogramsatherapyshouldbe possibleevenif,insomecases,notcompletelycurative.Theterm “notcompletely”isonerelevantreasonwhynewbornscreening panelsarenotallthesameworldwide.

Theopinionofthiswriteristhatevenifatherapyisnot com-pletelycurative,theearlydetectionofthedisorderandafollowing immediatecorrecttreatmentshouldgivebabiesthepossibilityto havebetter qualityof life, toextendlifeexpectancy and when required, to allow a suitable geneticcounseling (especially for futureprenataldiagnoses).Moreover,anearlydiagnosisrelieves familieswithasevereillchildfromdifficultdiagnosticiter.These simplecriteriarepresentthebasalevaluationreportedfromWilson andJungnerin1963toWorldHealthOrganization[9].

Therefore,theNBScannotbeconsideredonlyanefficientand isolatedlabtestofpreventivemedicinebutitisamoreintegrated publichealthsysteminvolvingmanydifferentcategoriessuchas labtechnicians,chemists,biologists,biochemicalgeneticists(for bothprimaryand confirmatorytests),administrativepersonnel,

nurses,dieticiansand/orpharmacologists,medicaldoctorsexpert inmetabolicdisordersandpediatricians.Asconsequence,onlyif laboratoryNBSprocedures,laboratoryconfirmatoryprocedures, clinicalserviceandcontinueeducationarefullyintegrated,areal effectivenessofaNBSprogramwillbereached.

2. Materialsandmethods

2.1. Samplecollection

Bloodsampleswerenormallyobtainedbyheelstickor hand-prick,spottedonfilterpaper(903,Whatmann,Milan,Italyor226 gradepaper,Ahlstrom,Helsinki,Finland)oftenreferredas“Guthrie cards”,driedatroomtemperatureandsentdailybycourierormail tothenewbornscreeninglaboratory. In mostpartof European countriesaswellasintheUSAandAustraliaaformalguideline forthesamplingprocedureisavailable.Inabouthalfthecountries theseguidelineshavebeendevelopedbyhealth authoritiesand intheotherhalfbyprofessionalgroups,eitherlocallyor nation-ally.

Thenumberofdropsisvariable(minimum3–4,maximum12) anditisgenerallydependingonthenumberoftests(bothfirstand secondtiertests).

Theexpansionofbloodonthepaperdependsonhaematocrit levelanddryingconditions.

Blood collectionfor newbornscreening in Italy (as in most partofcountries)isrecommendedbetween48and72hoflife.In Europe,thecollectionrangesfromthe36hinAustriaandCroatia to168hofGreece,NetherlandsandLuxembourg[10].Timingof thecollectionisacriticalissuebecausemarkerlevelscouldvary physiologicallyintheneonatalperiod[11].

Insomecountries,suchasFinlandandMalta,cordblood samp-ling is used for newborn screening testing according to early maternalandnewborndischarge[12,13],butithasbeen evalu-atedthat betterresultsare obtainedfromsamplescollectedby heel/handprickatalaterstage[14,15].

Useofurine collectedontoanabsorbentpaperplacedinthe baby’snappycouldbeaveryusefultoolasadditionalbutnot alter-nativeNBStest.Evenifnotcommon,someNBSprogramscontinued thepracticeofurinescreening[16]andinsomecasestheurineDBS hassignificantlycontributedtotheIEMdetectionupto44%oftotal cases[17].

Animportantparameterforthequalityoftheprogramisthe completenessofsampling,preferably100%butreachingthisvalue ispracticallyimpossiblebecauseinmostcountriesitshouldbe pos-sibleforparentstorefuse participationof theirchildrentoNBS programs.Ifinformedconsentistakenseriously,theoptiontostay outwillsometimestakeplace.

2.2. Bloodcollectioninprematureinfantsandinnewbornson parenteralnutritionortransfused

Prematurity,birthweight,parenteralnutrition,transfusionsand typeoffeedscanallpotentiallyinfluenceNBSresults.

In orderto decreaseparental stressrelated toretesting and toensurethatimportantinformation for interpretingscreening resultsisgiven,establishedprotocolsareuseful.Theseprotocols shouldproviderepeatedtestsduringtheearlypostnatalperiodfor infantrequiringblood/plasmatransfusion,for prematurebabies or term/preterm babies onparenteral nutrition at the time of screeningsamplecollection.

Insomecountries[18,19]forprematureinfants(birthweight <1800g),thefirstDBSsampleiscollectedonthe3rd–5thdayof life,thentwoadditionalsamplesat15and30days.Forbabieson parenteralnutrition,includingprematurebabies,asecondsample at48haftertheendingofparenteralnutritioniscollected.Inall

(3)

transfusednewborns,anewsampleistakenbetween7and15days aftertheendoftransfusion.

2.3. Transportofsamplesandworkflowonlab

Somemarkersarerelativelyunstableandheat,humidityand delaysintransportcancausedegradationandpotentialfalse neg-ativesresults. Therefore, whenmail service is notefficient,the samplesshouldbesenttothelabbycourier.

For the same reason the best practical workflow is seven days/weekand24h/daybutitisquiterare.Atypicallaboratory activityis5/6daysperweekand12hbasedshiftworks.

Test turnaround time within the laboratory should be kept short;amaximumof48hisrecommended.

3. NBSbyMS/MS

3.1. Standardsandkits

Labeledinternalstandards ofacylcarnitinesand aminoacids areavailablefromdifferentmanufactureslikeCambridgeIsotope Laboratories,Andover,MA,USA;a typicalstocksolutionis pre-pared in methanol. The standard concentrations may vary but normallyitisintherange500–2500␮mol/Lforaminoacids,and 7.6–152␮mol/Lforacylcarnitines.Allchemicalsandsolventsmust beofthehighestpurityavailablefromcommercialsourcesandthey arenormallyusedwithoutanyfurtherpurification.Some laborato-riesusecommerciallyIVDkitssuchasNeoGram®/NeoBase®from PerkinElmer(Waltham,MA,USA)andMassChrom®from Chrom-systems(Munich,Germany).Itisimportanttohighlightthat“useof certifiedkitmaterial”doesnotmeanthatamassspectrometercan beusedwithoutanyknowledgeorspecificeducation,especiallyfor newbornscreeningordiagnostictests.Amassspectrometerisnota commonbenchtopmachinenormallyusedinagenerallaboratory ora“blackbox”.Trainingandeducationinmassspectrometryfor newbornscreeninglabpeopleisafundamentalissue,itcannotbe delayedanditcannotbeoverruledbyusingcertifiedkitmaterial. 3.2. AnalysisbyMS

Screeninganalysesisworldwide performedaccordingtothe conventionalmethodaspreviouslyreported[2,20]withsome mod-ifications.

Originally,itwasfoundthatcarnitineandacylcarnitineswere easilymeasuredfromplasmasamplesbyfastatombombardment orthermospray[21,22]forthedetectionoffattyaciddisorders.

Lateron,advancementsinMS/MSandresearchdemonstrated thattheanalysisofacylcarnitinescouldbeusedtoidentifyfatty acidoxidationdefectsinaneonatalpopulation.Carnitineandits esterswereperfectcandidatesforaMS/MSscreeningtechnique sincetheyallpresentedacommonproduction.Regardlessofthe attachedfattyacidester,acommonfragment(85Th)that con-tainsthequaternaryammoniumfunctioncouldbedetectedwith highsensitivityandspecificity(Fig.1).Thesestructural character-isticsenabledthedetectionofapanelofsaturated,unsaturatedand hydroxylateacylcarnitinesinaneasyandcheapway.

Theadditionofaminoacidstonewbornscreeningpaneldates backtothebeginningofnineties’withthefirstendeavorto mea-surephenylalanineusingfastatombombardment(FAB)[20].The procedurerequiredesterification(asbutylesters)toenhance sur-faceionizationinaglycerolmatrix.Thebutylation“quenched”the negativechargeontheacidmoietyof phenylalanineincreasing ionizationefficiencyandsensitivity.

Inafirststage,methylesterification wasusedpreviouslyfor analysisofacylcarnitinesinplasma[23]butlateronthemostpart oflaboratoriesswitchedofftobutylation.

Duringthefirsttestsbyusingphenylalaninebutylesterforthe detectionofPKUotheraminoacidswereidentified,deducingthat acommonneutralproduct,butylformatepresentingwithamass of102Da.Sincethen,thecommonneutral lossof102Dais the basisfortheMS/MSassayofseveralkeyaminoacidsinnewborn screening(Fig.1)[24].

Whilebutylesterificationassaysbecomeroutine,inthelastten yearsnewmethodsweredevelopedabletodetectAAsandACsas theirnativefreeacids(underivatized)tosimplifyanalytical opera-tionsandtominimizetheuseofcorrosivecompounds.

Thecollisioninduceddissociationofaminoacidsand acylcar-nitinesasbutylestersandfreeacidsisreportedinFig.1.

Nowadaysclassical routine MS/MSanalysisis performed on one/two(dependingonthenumberofthesamples)instruments normallytriplequadrupolesandoneadditionalforback-up. Quan-titationisperformedbyusingthe“isotopicdilution”technique.The analyte concentrationsarecalculated automaticallyusing prop-ertysoftware.TuscanyregionsasanexampleuseABISciex(API 4000,3200(ABSciex,FosterCity,CA,USA))orShimadzu(8040, Kyoto,Japan)LC-MS/MSsystemsandChemoview(ABSciex, Fos-terCity,CA,USA)orNeonatalSolution(Shimadzu,Kyoto,Japan). Other similar and equally efficient systems are commercially available.

4. ExpandingtheNBSpanelbyMS

Newmethodsarenowavailableandtheysupplementthe cur-rentscreeningpanel.Theclassicalunderivatizedandderivatized samplepreparationprocedureswerefurthermodifiedtoquantify succinylacetone(specificmarkerfortyrosinaemiatypeI)byadding anewcomponent:hydrazineoritsderivatives.Thesample prepa-rationcanbeperformedincludingtheextractionofsuccinylacetone ashydrazonederivative,alongwithothermetabolitesinasingle stepsince2008[3].Lateronalternativemethodsrequiringtwo dif-ferentextractionprocedures[4]andcleaningsteps[25]havebeen developed.

In 2011and 2014two newcheapmethods abletoquantify somepurinesalongwithothermetaboliteshavebeendeveloped [5,26].Themeasurementsofthesenewmetabolitesvia underiva-tizedmethod,allowthedetectionofadenosinedeaminase(ADA) andpurinenucleosidephosphorylase(PNP)deficienciesatbirth. Somewidelyusedsamplepreparationproceduresaredescribedin Fig.2.

ADAandPNParefatalautosomalrecessiveformsofSCIDcaused by an inherited disorder of purine metabolism. Both ADA and PNP-SCIDcomplywithallthecriteriaforinclusioninanewborn screeningprogram.TheSecretary’sAdvisoryCommitteeon Heri-tableDisordersinNewbornsandChildrenin2010andtheEuropean EUtenderin2011recommendtheinclusion ofallSCIDsin the newbornscreeningpanels.Since2008apolymerasechain reac-tion(PCR)basedtestisavailableforthedetectionofallT-SCID. Thismethodpresentstheindubitableadvantagetoscreenforall theT-SCIDpanelbutitisquiteexpensive(RT-PCRmachines,kits andmolecularbiologistsareneeded)withrespecttoMS; more-overithasbeenrecentlydemonstratedthatitisnotsensitivefor late/delayedADA-SCIDforms andthatitcandetectsome disor-dersnotrespondingtothefuturestobeincludedinaNSpanel [6,27,28].

Some methods were developed for thedetection of lysoso-mal storage disorders (LSDs) and even if for some of them a reliableandrelativelysimpletestisavailable,areasonable asso-ciatedtherapy couldbestillnot available[29–38].It isnot the taskofthiswritertoproducea statementthattheLSDsshould be included in newborn screening panels, but some of these disordersseemtomeetthecriteriaforinclusion,includingbasal availabilityofasimpletest,acombinationtherapythatmodifies

(4)

Fig.1. SchematicrepresentationoffragmentationinMSMSofbutylatedandunbutylatedacylcarnitine(panelA)andaminoacidresidues(panelB).

thenaturalcourseofthedisease,earlydiagnosisthatallowsgenetic counselingandprenataldiagnosisinfamilieswithanaffectedbaby.

5. Diseasesincludedintheneonatalscreeningprogram

Thepanelusedforneonatalscreeningisdifferentfromregion toregionandfromcountrytocountry.

TheAmericanCollegeforMedicalGeneticsinthe2012decided foranationalandcommonNBSpanelfortheUSAnewborns.It con-tains55disorders(includingtestsbyimmune-enzymaticsystems): 30IEMforthenamedcorepaneland25assecondarytarget.

AnationalscreeningprogramdoesnotexistinCanada.Health careandscreeningprogramsfallunderprovincialandterritorial

jurisdiction.Thereisawidespectruminthenumberofdisorders for which screening is offered,rangingfrom 5 disorders to38, dependingonthejurisdiction.TheAustralianNewbornScreening PolicyandGuidelinesDocumentin2011reportedon25disorders detectedbymeansofNS(evenif“otherdisorderscouldbedetected duringthetest,includingmaternaldisorders”).InJapan,wherea nationalpilotprojectisfinishedin2012,thebeginningofanational NSprogrambyMSwillstartthenextApril2014.TheEuropean situationisthemorecomplicatedandevenifcommon recommen-dationsareavailable,manyrelevantdifferencesarestillpresent. Themostrelevantdifferencesarethetimeofthedrawingofthe bloodperiod(between36 and168hafterbirth),thenumberof newbornscreeningcenterspercountryrangingfrom1tomorethan

(5)

Fig.2.Schematicrepresentationsofsamplepreparationprocedures.PanelAshowsderivatizedprocedurefortheassayofacylcarnitines,aminoacidsandsuccinylacetone andunderivatizedprocedurefortheassayofacylcarnitines,aminoacids,succinylacetoneandpurines.PanelBshowsthe2stepproceduresfortheassayofacylcarnitines, aminoacidsasbutylestersandsuccinylacetoneandpurinesinnaïveforms

20.MoreoverandprobablymostlyimportantacommonNSpanel doesnotexistduetopublichealthsystemsfallingunderregional jurisdictions.

InItalytheexpandedNBSbyMSisregionallyruledevenifa nationallawhasbeenpromulgatedattheendofDecember2013. Anationalexpertcommissionisnowevaluatingthediseasepanel andtheminimalnumberofnewbornscreeningcenters.

Table1liststhesuspecteddiseaseincludedinTuscanyregion NBS panel in the presence of one or more changes, the cut-offvaluesandtheratiosforeachanalyte.Twenty-fourdisorders consistofprimarypanel,22secondarypanel.Somediseases iden-tifiableby expanded newbornscreening havebeen includedin the panel as conditions that are part of the differential diag-nosis of a primary panel condition, such as IBD defect versus SCADdeficiency.Formiminoglutamicaciduria,whichmayappear asafalse butyrrylcarnitine(C4)alteration[39]byusing deriva-tizedsamplepreparationprocedures,isnolongersubjecttorecall becauseitisconsidereda benigncondition.Someauthorshave

consideredretaining3-methyl-crotonylglycinuriainthescreening panel,despiteitbeingconsideredabiochemicalconditionrather thanadisease[40,41].Recentlysomeauthorsreporteddata con-firmingthatMCCdeficiency,despitelowpenetrance,mayleadto asevereclinicalphenotyperesemblingclassicalorganicacidurias [42].

Someauthorsbelieveit mayberelevanttomaintainglycine inthescreeningpanelbecauseitisasecondarymarkerinsome organic acidaemias[43]. Moreover,even ifonly in somecases [44],glycinecouldpermitthediagnosisofnonketotic hyperglyci-naemia[45]which,althoughthediseaseiscurrentlynottreatable, allows appropriate genetic counseling and possible prenatal diagnosis.

Tyrosineisananalytefrequentlyresponsibleforlargenumberof recalls.TyrosinecanbeelevatedintyrosinaemiatypesI,IIandIII, butitalsocanbetransientlyincreasedinmanynewborns, espe-cially thoseborn prematurely.In thecase of tyrosinaemiatype I, false-negatives mayoccur if thecut-off is toohigh or if the

(6)

Table1

ConditionstestedintheTuscany/Umbrianewbornscreeningprogram,primaryandsecondaryrelatedbiomarkers,andusedratios.

Disorders Primarymarkers

(cutoff␮mol/L)

Secondarymarkers (cutoff␮mol/L)

Ratios Diagnoses

Corepanel

ClassicPKU Phe↑(n.v.<100) Tyrn/↓(n.v.10–250) Phe/Tyr 18

HPAtypeIIandIII Phe↑(n.v.<100) Tyrn/↓(n.v.10–250) Phe/Tyr 47

TyrosinemiatypeI SA↑(n.v.<2) Tyrn/↑(n.v.10–250) 3

CitrullinemiatypeI Cit↑(n.v.3–30) 7

Argininosuccinicaciduria Asa↑(n.v.<1) Cit↑(n.v.3–30) 2

Homocystinuria(cystathionine␤synthasedeficiency) Met↑(n.v.6–36) Maplesyrupurinedisease Val↑(n.v.<170);

Ile/Leu↑(n.v.<237)

Propionicacidaemia C3↑(n.v.<3.3) Gly↑(n.v.<260) C3/C0;C3/C4;C3/C16 3 Metylmalonicaciduriamut C3↑(n.v.<3.3) Gly↑(n.v.<260) C3/C0;C3/C4;C3/C16 8 MetylmalonicaciduriaCblAandB C3↑(n.v.<3.3) Gly↑(n.v.<260) C3/C0;C3/C4;C3/C16

Isovalericacidemia C5↑(n.v.<0.56) C5/C3;C5/C4;C5/C8 3

Multiplecarboxylasedeficiency C5OH↑(n.v.<0.7) C3n/↑(n.v.<3.3)

3-Methylcrotonylglycinuria C5OH↑(n.v.<0.57) 6

4maternal GlutaricacidemiatypeI C5DC↑(n.v.<0.18) C5DC/C4;C5DC/C8;

C5DC/C12;C5DC/C3DC 2 3-OH-3methylglutaryl-CoAlyasedeficiency C5OH↑(n.v.<0.57) C6DCn/↑(n.v.<0.7)

␤Ketothiolasedeficiency C5:1↑(n.v.<0.06) C5OHn/↑(n.v.<0.57) 1

Primarycarnitinedeficiency C0↓(n.v.5.5–45) Ctot↓(v.n.21–73) 2

2maternal Mediumchainacyl-CoAdehydrogenasedeficiency C6↑(n.v.<0.25);C8↑

(n.v.<0.40);C10:1↑ (n.v.<0.5)

C10↑(n.v.<0.36) C6/C8↑;C8/C10↑ 16

Verylong-chainacyl-CoAdehydrogenasedeficiency C14:1↑(n.v.<0.44) C14n/↑(n.v.<0.57; C16n/↑(n.v.0.48–5.6); C18:1n/↑(0.39–2.43)

C14:1/C4;C14:1/C5; C14:1/C8

6

Long-chainhydroxyacyl-CoAdehydrogenasedeficiency C16-OH↑(n.v.<0.1); C18:1OH↑(n.v.<0.05)

1 Trifunctionalproteindeficiency C16-OH↑(n.v.<0.1);

C18:1OH↑(n.v.<0.05)

1 Adenosinedeaminasedeficiency Ado↑(n.v.<2)

Deoxyado↑(n.v.<0.1)

1

Secondarytargets

TyrosinemiatypeIIandIII Tyr↑(n.v.<250)

CitrullinemiatypeII Cit↑(n.v.3–30) 2

Argininemia Arg↑(n.v.<34)

BH4defects Phe↑(n.v.<100) Tyrn/↓(n.v.10–250) Phe/Tyr 1

MTHFRdeficiency Met↓(n.v.6–36)

Methionineadenosyltransferasedeficiency Met↑(n.v.6–36) 2

MetylmalonicaciduriaCblCandD C3↑(n.v.<3.3) Met↑(n.v.<6) C16:1OH↑(n.v.<0.09)

C3/C0;C3/C4;C3/C16 14 19maternal MalonicAciduria C3DC↑(n.v.<0.7)

2-Methyl3-OH-butyryl-CoAdehydrogenasedeficiency C5OH↑(n.v.<0.57)

Shortchainacyl-CoAdehydrogenasedeficiency C4↑(n.v.<0.92) 10 GlutaricacidemiatypeII(MAD) C4–C18↑

Shorthydroxylacyl-CoAdehydrogenasedeficiency C4OH↑(n.v.<0.50)

3-Methylglutaconyl-CoAhydratasedeficiency C5OH↑(n.v.<0.57) 1

Isobutyryl-CoAdehydrogenasedeficiency C4↑(n.v.<0.92) 14

Carnitineacylcarnitynetranslocasedeficiency C16↑(n.v.0.48–5.6) CarnitinepalmitoyltransferaseIIdeficiency C16↑(n.v.0.48–5.6)

C18:1↑(n.v.0.39–2.43)

C2↓(n.v.6.3–48) (C16+C18:1)/C2 within10daysoflife CarnitinepalmitoyltransferaseIdeficiency C16↓(n.v.0.48–5.6)

C18↓(n.v.0.23–1.77)

C0n/↑(8–45) C0/(C16+C18)within 10daysoflife

HHHsyndrome Orn↑(n.v.25–150)

Gyrateatrophyofthechoroidsandretina Orn↑(n.v.25–150) Purinenucleosidephosphorylasedeficiency Deoxyguanosine↑

(n.v.<0.09) Deoxyinosine↑ (n.v.<2.85)

Guanosine↑(n.v.<1.7) Inosine↑(n.v.<33)

screeningisperformedinthefirst2–5daysoflife.However,the

useofalowcut-offlevelincreasesthefalse-positiverate.Inrecent

years,theuseofsuccinylacetoneasnewbiomarkerhasallowed

peopleworkinginNSfieldtoavoidfalse-negativeresultsfor

tyrosi-naemiatypeI.

Attentionshould be paid to the higher cut-off of citrulline,

capableofdiagnosingcitrullinaemiatypesIandII,and,assecond

marker,argininosuccinicaciduria.Weshouldalsotoevaluatethe

citrullinelowercut-offasapossiblesignofdefectsinthefirstand

secondstepsoftheureacycleaswellasmitochondrialdiseases

suchasNARP.

5.1. Secondtiertests

Someimportantmetabolitesinexpandednewbornscreening

(7)

Fig.3.RecallrateofexpandednewbornscreeninginTuscany,2002–2013.

specificity,causingacriticalimpactonthepopulationduetothe highnumberofrecalls.Thebestwaytodecreasetherecallrate, duetofalsepositiveresultsintheprimaryscreeningtest,is rep-resentedbytheintroduction ofthesecondtier test,performed onthesameNBSspecimenwithnonecessitytoadditionally con-tactpatient’family.Secondtiertestresultoverrulestheprimary result.

Sinceforsomemetabolitesthereisanoverlapbetween con-trolsandpatientsranges,secondtiertestproveditssuperiority indiscriminatingthetwopopulationsthankstothehigh speci-ficity.

ThechoiceofreferencevaluesforNBStestshouldbeagood compromisebetweensensitivityandspecificity;agoodsensitivity couldresultinahighfalsepositiveratewhilehavinghighspecificity couldcausefalsenegativeresults.Adjustingcutoffvaluesforeach metaboliteshouldconsidertheavailabilityofasecondtiertest;if itisavailable,primarytestcut-offshouldbereducedtocapture presumptivepositivecases[46].

SecondtiertestsareusuallyperformedbyHPLC–MS/MSbut in recent years a second tier genetic testing couldbe used to detectcysticfibrosis[47].ForCAHscreening,theprimarytestis performedbyimmunoassayandpositiveresultsareretestedby HPLC–MS/MStoobtainamorespecificanddetailedsteroidprofile [48].

Someauthorsreportedabouttheuseofsuccinylacetoneonly assecondtiertesttoimprovetherelativelypoorspecificityofthe primaryscreeningusingtyrosine[49,50].

In2011inTuscanyregion,ADASCIDbiomarkerswereincluded inthepanelofexpandedNBS;alsointhiscaseasecondtiertestcan beperformedwhenelevatedconcentrationofpurinesmetabolites aredetected[51].

Howeversecondtiertestusuallyidentifyadditionalanalytes, notdetectableattheprimaryNBStest,forbetterinterpretationof abnormalfindings.

Thiskindofapproachiswellrepresentedbypropionylcarnitine (C3),primarymarkerformethylmalonicacidurias(MMA)and pro-pionicacidurias(PA).Inaretrospectivestudyourgroupshowed thaton564totalrecalls,124(22%)wereforC3ofwhomonly5 (4%)weretrulyaffected:3methylmalonicaciduriasand2PAs.The developmentofasecondtiertesttodetectfreediagnosticacids allowedtodistinguishingtruepositivesfromfalsepositivesrising thepositivepredictivevalueforC3to100%[51].

Theintroductionofsecond-tiertestsprovedtobeanexcellent strategytocopewithfalsepositiveproblem.Forthisreason,todate, anincreasingnumberofpublicationsrelatetothedevelopmentof second-tiertestisreported[52–56].

Fig.3illustratestherecallratetrendfrom2002toFebruary2014 inTuscany.Atthebeginning,duringthepilotproject,cut-offsof mean±2SDforallanalyteswereestablished.Recallrateincreased in2004withtheincreaseinthenumberofanalytesconsidered. Cut-offvaluesweremodifiedforspecificanalytes,upto4.5SDto minimizethefrequencyoffalse-positiveresults.Adjustmentof cut-offs,theintroductionofspecificratios,theuseofthe“postanalytical tools”ofR4Scollaborativeprojectandthedevelopmentofsome second-tiertestallowedareductionintherecallrateinrecentyears from1.47%to0.3%).Thepositivepredictivevalueincreasedfrom 3.5%in2004upto19.4%in2013.

5.2. Maternaldiseases

Insomenewborns,screeningresultscanbefalselypositivefor maternaldefects,resultingintransplacentalpassageof metabo-lites.Inourexperience,outof400000babies,weobservedlow valuesofC0,C2andtotalcarnitinesassociatedwithamaternal pri-marycarnitinedefect;twotwinswithhighvaluesofC5OHwithan asymptomaticmotheraffectedby3-methylcrotonylglycinuria;an infantwithhighC3andmethylmalonicaciddetectedby second-tiertestingwithamotherwithadefectofgastrin;andtwoinfants withelevatedlevelsofphenylalaninewithamotheraffectedby undiagnosedmildhyperphenylalaninaemia.

5.3. Outcomemanagementprocedures

Whenapositivescreening(firstscreeningandsecondtiertest, ifavailable)resultoccurs,twodifferentsubsequentproceduresare followed:

(a)In thecase of disorders that are at risk of acute metabolic decompensationduringtheneonatalperiod,ametabolic spe-cialist immediately recalls the baby; clinical examinations, confirmatorytests,includingplasmaaminoacid,plasma acyl-carnitineandurineorganicacidprofilesareperformed; (b)Inthecaseofallotherdisorders,thenurseryiscontactedto

provideforaseconddriedbloodspot.Iftherepeatedtestshows apositiveresult,clinicalexaminationsandconfirmatorytests areperformed(seeFig.4).

Inbothcases,ifresultsfromtheconfirmatorytestsare posi-tive,themetaboliccliniciansprovidemanagement,counselingand follow-up.

(8)

Fig.4. TuscanyNewbornScreeningalgorithmformetabolicdisorders.AfteranabnormalconcentrationsofC3isdetectedasecondtiertestforMMA/PAisperformed toidentifytruepositivenewbornsaffectedbymethylmalonicorpropionicacidurias.Anothersecond-tiertest,tomeasurehomocysteine(HCY)levelsisperformedifthe initialscreeningshowsMETlevelbeloworabovenormalcutofftoidentifyMTHFRdefectorhomocysteinuria,respectively.Abnormalscreeningresultsarere-analyzedfor confirmationbeforerequiringnewspecimen.

6. Conclusions

MShasbeenusedinexpandedNBSprogramsforover20years andit hasbeenshownbeneficial impactsonpublichealth care comparedtotraditionalprograms.CurrenttrendsinNBSaimed atexpandingtestingpanelscoveringawiderangeofconditions. ResearchtoincludemoretestsinNBShavemadehugesteps for-wardinimprovingsurvivalandinpreventinglong-termpermanent damageinaffectedpatients.However,theexpansionofNBSraises someethicalimplicationsrelating tovariabilityamongstates in conditionsincluded,informedconsentforstorageanduseof resid-ualDBS,whetherornot maybeappropriate toidentifycarrier statusoradultonsetconditions.

Datacollectedfrompilotstudiescanbeusedtocreate guide-linesthatcansignificantlyhelpdevelopNBSprogramsandcreate opportunities.

NBSprogramisacomplexprocessdependingona multidisci-plinaryteamincludingpediatricians,IEMspecialists,geneticists, dieticiansaswellasbiologistsandchemistswithexpertiseinmass spectrometry.Thecollaborationofalltheseprofessionalshas con-tributedtothissuccess.

Acknowledgments

IthankDrSabrinaMalvagia,DrSilviaFunghini,DrElisa Gio-caliere,DrDanielaOmbroneandDrGiuliaFornifromtheNewborn Screening,BiochemistryandPharmacologyLabofMeyerchildren’s UniversityHospitalofFlorenceforconstructivediscussion,for typ-ingthemanuscriptandfortheartwork.

References

[1]R.Guthrie,A.Susi,Asimplephenylalaninemethodfordetecting phenylke-tonuriainlargepopulationsofnewborninfants,Pediatrics32(1963)338–343. [2]D.S.Millington,N.Kodo,D.L.Norwood,C.R.Roe,Tandemmassspectrometry: anewmethodforacylcarnitineprofilingwithpotentialforneonatalscreening forinbornerrorsofmetabolism,J.Inherit.Metab.Dis.13(1990)321–324.

[3]G.laMarca,S.Malvagia,E.Pasquini,M.Innocenti,M.R.Fernandez,M.A.Donati, E.Zammarchi,Theinclusionofsuccinylacetoneasmarkerfortyrosinemiatype Iinexpandednewbornscreeningprograms,RapidCommun.MassSpectrom. 22(2008)812–818.

[4]C.Turgeon,M.J.Magera,P.Allard,S.Tortorelli,D.Gavrilov,D.Oglesbee,K. Ray-mond,P.Rinaldo,D.Matern,Combinednewbornscreeningforsuccinylacetone, aminoacids,andacylcarnitinesindriedbloodspots,Clin.Chem.54(2008) 657–664.

[5]C. Azzari,G. laMarca,M.Resti,Neonatalscreening forseverecombined immunodeficiencycausedbyanadenosinedeaminasedefect:areliableand inexpensivemethodusingtandemmassspectrometry,J.AllergyClin.Immunol. 127(2011)1394–1399.

[6]G.laMarca,C.Canessa,E.Giocaliere,F.Romano,M.Duse,S.Malvagia,F.Lippi, S.Funghini,L.Bianchi,M.L.DellaBona,C.Valleriani,D.Ombrone,M.Moriondo, F.Villanelli,C.Speckmann,S.Adams,B.H.Gaspar,M.Hershfield,I. Santiste-ban,L.Fairbanks,G.Ragusa,M.Resti,M.deMartino,R.Guerrini,C.Azzari, Tandemmassspectrometry,butnotT-cellreceptorexcisioncircleanalysis, identifiesnewbornswithlate-onsetadenosinedeaminasedeficiency,J.Allergy Clin.Immunol.131(2013)1604–1610.

[7]C.Speckmann,C.Neumann,S.Borte,G.laMarca,J.O.Sass,E.Wiech,P.Fisch, K.Schwarz,B.Buchholz,M.Schlesier,K.Felgentreff,B.Grimbacher,I. San-tisteban,P.Bali,M.S.Hershfield,S.Ehl,Delayed-onsetadenosinedeaminase deficiency:strategiesforanearlydiagnosis,J.AllergyClin.Immunol.130(2012) 991–994.

[8]G.laMarca,E.Giocaliere,S.Malvagia,S.Funghini,D.Ombrone,M.L.DellaBona, C.Canessa,F.Lippi,F.Romano,R.Guerrini,M.Resti,C.Azzari,Theinclusionof ADA-SCIDinexpandednewbornscreeningbytandemmassspectrometry,J. Pharm.Biomed.Anal.88(2014)201–206.

[9]J.M.G.Wilson,G.Jungner,PrinciplesandPracticeofScreeningforDisease, WHO,Geneva,1968,Availablefrom:http://www.who.int/bulletin/volumes/ 86/4/07-050112BP.pdf

[10]J.G.Loeber,P.Burgard,M.C.Cornel,T.Rigter,S.S.Weinreich,K.Rupp,G.F. Hoff-mann,L.Vittozzi,NewbornscreeningprogrammesinEurope;argumentsand effortsregardingharmonization.Part1.Frombloodspottoscreeningresult,J. Inherit.Metab.Dis.35(July(4))(2012)603–611.

[11]B.Wilcken,V.Wiley,Newbornscreening,Pathology40(2008)104–115. [12]L.L.Wu,B.S.Sazali,N.Adeeb,B.A.Khalid,Congenitalhypothyroidscreening

usingcordbloodTSH,SingaporeMed.J.40(1999)23–26.

[13]M.Abduljabbar,A.AlShahri,A.Afifi,Isumbilicalcordbloodtotalthyroxin mea-surementeffectiveinnewbornscreeningforhypothyroidism?J.Med.Screen. 16(2009)119–123.

[14]J.D.Hardy,R.Zayed,I.Doss,G.S.Dhatt,Cordbloodthyroxineandthyroid stimu-latinghormonescreeningforcongenitalhypothyroidism:howusefularethey? J.Pediatr.Endocrinol.Metab.21(2008)245–249.

[15]J.H.Walter,A.Patterson,J.Till,G.T.Besley,G.Fleming,M.J.Henderson, Blood-spotacylcarnitineandaminoacidanalysisincordbloodsamples:efficacy andreferencedatafromalargecohortstudy,J.Inherit.Metab.Dis.32(2009) 95–101.

(9)

[16]C.Auray-Blais,D.Cyr,R.Drouin,Quebecneonatalmassurinaryscreening pro-gramme:frommicromoleculestomacromolecules,J.Inherit.Metab.Dis.30 (2007)515–521.

[17]M.L.Couce,D.E.Casti ˜neiras,M.D.Bóveda,A.Ba ˜na,J.A.Cocho,A.J.Iglesias,C. Colón,J.R.Alonso-Fernández,J.M.Fraga,Evaluationandlong-termfollow-up ofinfantswithinbornerrorsofmetabolismidentifiedinanexpandedscreening programme,Mol.Genet.Metab.104(2011)470–475.

[18]P.Rinaldo,S.Zafari,S.Tortorelli,D.Matern,Makingthecaseforobjective per-formancemetricsinnewbornscreeningbytandemmassspectrometry,Ment. Retard.Dev.Disabil.Res.Rev.12(2006)255–261.

[19]G. la Marca, S. Malvagia, B. Casetta, E. Pasquini, M.A.Donati, E. Zam-marchi,Progressinexpandednewbornscreeningformetabolicconditions byLC–MS/MSinTuscany:updateonmethodstoreducefalsetests,J.Inherit. Metab.Dis.31(2008)S395–S404.

[20]D.H.Chace,D.S.Millington,N.Terada,S.G.Kahler,C.R.Roe,L.F.Hofman,Rapid diagnosisofphenylketonuriabyquantitativeanalysisforphenylalanineand tyrosineinneonatalbloodspotsbytandemmassspectrometry,Clin.Chem.39 (1993)66–71.

[21]A.L.Yergey,D.J.Liberato,D.S.Millington,Thermosprayliquid chromatogra-phy/massspectrometryfortheanalysisofl-carnitineanditsshort-chainacyl derivatives,Anal.Biochem.139(1984)278–283.

[22]D.S.Millington,C.R.Roe,D.A.Maltby,Characterizationofnewdiagnostic acyl-carnitinesinpatientswithbeta-ketothiolasedeficiencyandglutaricaciduria typeIusingmassspectrometry,Biomed.Environ.MassSpectrom.14(1987) 711–716.

[23]D.Millington,N.Kodo,N.Terada,D.Roe,D.Chace,Theanalysisofdiagnostic markersofgeneticdisordersinhumanbloodandurineusingtandemmass spectrometrywithliquidsecondaryionmassspectrometry,Int.J.Mass Spec-trom.IonProcess.111(1991)211–228.

[24]D.H.Chace,Massspectrometryinnewbornandmetabolicscreening:historical perspectiveandfuturedirections,J.MassSpectrom.44(2009)163–170. [25]D.H.Chace,T.Lim,C.R.Hansen,V.R.DeJesus,W.H.Hannon,ImprovedMS/MS

analysisofsuccinylacetoneextractedfromdriedbloodspotswhencombined withaminoacidsandacylcarnitinebutylesters,Clin.Chim.Acta407(2009) 6–9.

[26]G.laMarca,C.Canessa,E.Giocalier,F.Romano,S.Malvagia,S.Funghini,M. Moriondo,C.Valleriani,F.Lippi,D.Ombrone,M.DellaBona,C.Speckmann, S.Borte,N.Brodszki,A.R.Gennery,K.Weinacht,F.Celmeli,J.Pagel,M.de Martino,R.Guerrini,H.Wittkowski,I.Santisteban,P.Bali,M.Hershfield,L.D. Notarangelo,M.Resti,C.Azzari,Diagnosisofimmunodeficiencycausedby PNPdefectusingtandemmassspectrometryondriedbloodspots,J.Allergy Clin.Immunol.(2014),http://dx.doi.org/10.1016/j.jaci.2014.01.040,pii S0091-6749(14)00265-6[Epubaheadofprint].

[27]A.Kwan,J.A.Church,M.J.Cowan,R.Agarwal,N.Kapoor,D.B.Kohn,D.B.Lewis, S.A.McGhee,T.B.Moore,E.R.Stiehm,M.Porteus,C.P.Aznar,R.Currier,F.Lorey, J.M.Puck,Newbornscreeningforseverecombinedimmunodeficiencyand T-celllymphopeniainCalifornia:resultsofthefirst2years,J.AllergyClin. Immunol.132(2013)140–150.

[28]J.Mallott,A.Kwan,J.Church,D.Gonzalez-Espinosa,F.Lorey,L.F.Tang,U. Sun-deram,S.Rana,R.Srinivasan,S.E.Brenner,J.Puck,Newbornscreeningfor SCIDidentifiespatientswithataxiatelangiectasia,J.Clin.Immunol.33(2013) 540–549.

[29]Z.Spacil,H.Tatipaka,M.Barcenas,C.R.Scott,F.Turecek,M.H.Gelb, High-throughputassayof9lysosomalenzymesfornewbornscreening,Clin.Chem. 59(2013)502–511.

[30]B.J.Wolfe,S.Blanchard,M.Sadilek,C.R.Scott,F.Turecek,M.H.Gelb,Tandem massspectrometryforthedirectassayoflysosomalenzymesindriedblood spots:applicationtoscreeningnewbornsformucopolysaccharidosisII(Hunter syndrome),Anal.Chem.83(2011)1152–1156.

[31]T.Khaliq,M.Sadilek,C.R.Scott,F.Turecek,M.H.Gelb,Tandemmass spectrom-etryforthedirectassayoflysosomalenzymesindriedbloodspots:application toscreeningnewbornsformucopolysaccharidosisIVA,Clin.Chem.57(2011) 128–131.

[32]T.A.Duffey,M.Sadilek,C.R.Scott,F.Turecek,M.H.Gelb,Tandemmass spectrom-etryforthedirectassayoflysosomalenzymesindriedbloodspots:application toscreeningnewbornsformucopolysaccharidosisVI(Maroteaux–Lamy syn-drome),Anal.Chem.82(2010)9587–9591.

[33]S.Blanchard,M.Sadilek,C.R.Scott,F.Turecek,M.H.Gelb,Tandemmass spec-trometryforthedirectassayoflysosomalenzymesindriedbloodspots: applicationtoscreeningnewbornsformucopolysaccharidosisI,Clin.Chem. 54(2008)2067–2070.

[34]M.H. Gelb,F.Turecek,C.R.Scott,N.A.Chamole,Directmultiplexassayof enzymesindriedbloodspotsbytandemmassspectrometryforthe new-bornscreeningoflysosomalstoragedisorders,J.Inherit.Metab.Dis.29(2006) 397–404.

[35]D.Ombrone,S.Malvagia,S.Funghini,E.Giocaliere,M.L.DellaBona,G.Forni, A.DeLuca,F.Villanelli,B.Casetta,R.Guerrini,G.laMarca,Screeningof lyso-somalstoragedisorders:applicationoftheonlinetrapping-and-cleanupliquid chromatography/massspectrometrymethodformucopolysaccharidosisI,Eur. J.MassSpectrom.19(2013)497–503.

[36]G.laMarca,B.Casetta,S.Malvagia,R.Guerrini,E.Zammarchi,New strat-egyforthescreeningoflysosomalstoragedisorders:theuseoftheonline trapping-and-cleanupliquidchromatography/massspectrometry,Anal.Chem. 81(2009)6113–6121.

[37]T.P.Mechtler,S.Stary,T.F.Metz,V.R.DeJesús,S.Greber-Platzer,A.Pollak,K.R. Herkner,B.Streubel,D.C.Kasper,Neonatalscreeningforlysosomalstorage dis-orders:feasibilityandincidencefromanationwidestudyinAustria,Lancet379 (2012)335–341.

[38]X.K.Zhang,C.S.Elbin,W.L.Chuang,S.K.Cooper,C.A.Marashio,C.Beauregard, J.M.Keutzer,Multiplexenzymeassayscreeningofdriedbloodspotsfor lyso-somalstoragedisordersbyusingtandemmassspectrometry,Clin.Chem.54 (2008)1725–1728.

[39]S.Malvagia,G.laMarca,B.Casetta,S.Gasperini,E.Pasquini,M.A.Donati, E. Zammarchi, Falsely elevated C4-carnitine as expression of glutamate formiminotransferase deficiency in tandem mass spectrometry newborn screening,J.MassSpectrom.41(2006)263–265.

[40]S.C.Stadler,R.Polanetz,E.M.Maier,S.C.Heidenreich,B.Niederer,P.U. May-erhofer,F. Lagler,H.G.Koch, R.Santer,J.M.Fletcher,E.Ranieri,A.M.Das, U.Spiekerkötter,K.O.Schwab,S.Pötzsch,I.Marquardt,J.B.Hennermann,I. Knerr,S.Mercimek-Mahmutoglu,N.Kohlschmidt,B.Liebl,R.Fingerhut,B. Olgemöller,A.C.Muntau,A.A.Roscher,W.Röschinger,Newbornscreening for3-methylcrotonyl-CoAcarboxylasedeficiency:populationheterogeneity ofMCCAandMCCBmutationsandimpactonriskassessment,Hum.Mutat. 27(2006)748–759.

[41]O.A.Bodamer,G.F.Hoffmann,M.Lindner,Expandednewbornscreeningin Europe2007,J.Inherit.Metab.Dis.30(2007)439–444.

[42]S.C.Grünert,M.Stucki,R.J.Morscher,T.Suormala,C.Bürer,P.Burda,E. Chris-tensen,C.Ficicioglu,J.Herwig,S.Kölker,D.Möslinger,E.Pasquini,R.Santer,K.O. Schwab,B.Wilcken,B.Fowler,W.W.Yue,M.R.Baumgartner, 3-methylcrotonyl-CoAcarboxylasedeficiency:clinical,biochemical,enzymaticandmolecular studiesin88individuals,OrphanetJ.RareDis.7(2012)31.

[43]M.Nizon,C.Ottolenghi,V.Valayannopoulos,J.B.Arnoux,V.Barbier,F.Habarou, I.Desguerre,N.Boddaert,J.P.Bonnefont,C.Acquaviva,J.F.Benoist,D.Rabier, G. Touati, P. de Lonlay,Long-term neurological outcome of a cohortof 80patientswithclassicalorganicacidurias,OrphanetJ.RareDis.8(2013) 148–160.

[44]E.S.Tan,V.Wiley,K.Carpenter,B.Wilcken,Non-ketotichyperglycinemiais usuallynotdetectablebytandemmassspectrometrynewbornscreening,Mol. Genet.Metab.90(2007)446–448.

[45]F.Ciani,E.Pasquini,A.Ciardetti,M.A.Donati,E.Zammarchi,Hyperglycinemia inclinical-laboratorypractice,Pediatr.Med.Chir.19(1997)109–112. [46]D.H.Chace,W.H.Hannon,Clin.Chem.56(2010)1653–1655.

[47]J.Calvin,S.L.Hogg,D.McShane,S.A.McAuley,R.Iles,R.Ross-Russell,F.M. MacLean,M.E.Heeley,A.F.Heeley,Norfolk,SuffolkandCambridgeshire pae-diatriccysticfibrosisnetwork,Arch.Dis.Child.97(2012)1043–1047. [48]J.Y.Seo,H.D.Park,J.W.Kim,H.J.Oh,J.S.Yang,Y.S.Chang,W.S.Park,S.Y.Lee,

Steroidprofilingforcongenitaladrenalhyperplasiabytandemmass spec-trometryasasecond-tiertestreducesfollow-upburdensinatertiarycare hospital:aretrospectiveandprospectiveevaluation,J.Perinat.Med.42(2014) 121–127.

[49]O.Y.Al-Dirbashi, M.S.Rashed,M.Jacob,L.Y.Al-Ahaideb,M.Al-Amoudi,Z. Rahbeeni,M.M.Al-Sayed,Z.Al-Hassnan,M.Al-Owain,H.Al-Zeidan,Biomed. Chromatogr.22(2008)1181–1185.

[50]G.laMarca,S.Malvagia,S.Funghini,E.Pasquini,G.Moneti,R.Guerrini,E. Zam-marchi,Thesuccessfulinclusionofsuccinylacetoneasamarkeroftyrosinemia typeIinTuscanynewbornscreeningprogram,RapidCommun.MassSpectrom. 23(2009)3891–3893.

[51]G.laMarca,S.Malvagia,E.Pasquini,M.Innocenti,M.A.Donati,E.Zammarchi, Rapid2nd-tiertestformeasurementof3-OH-propionicandmethylmalonic acidsondriedbloodspots:reducingthefalse-positiveratefor propionylcarni-tineduringexpandednewbornscreeningbyliquidchromatography–tandem massspectrometry,Clin.Chem.53(2007)1364–1369.

[52]T.Cloppenborg,N.Janzen,H.Wagner,U.Steuerwald,M.Peter,A.Das, Appli-cationofasecond-tiernewbornscreeningassayforC5isoforms,JIMDRep. (2013).

[53]X.Fu,Y.K.Xu,P.Chan,P.K.Pattengale,Simple,fast,andsimultaneous detec-tion ofplasmatotal homocysteine,methylmalonic acid,methionine, and 2-methylcitricacid usingliquid chromatography and mass spectrometry (LC/MS/MS),JIMDRep.10(2013)69–78.

[54]C.Wang,H.Zhu,W.Zhang,F.Song,Z.Liu,S.Liu,Second-tiertestfor quantifi-cationofunderivatizedaminoacidsindrybloodspotformetabolicdiseasesin newbornscreening,AminoAcids44(2013)661–671.

[55]A.Gucciardi, P.Pirillo, I.M.Di Gangi, M.Naturale, G. Giordano,Arapid UPLC–MS/MSmethodforsimultaneousseparationof48acylcarnitinesindried bloodspotsandplasmausefulasasecond-tiertestforexpandednewborn screening,Anal.Bioanal.Chem.404(2012)741–751.

[56]A.Alodaib,K.Carpenter,V.Wiley,K.Sim,J.Christodoulou,B.Wilcken,An improvedultraperformanceliquidchromatography–tandemmass spectrom-etrymethodforthedeterminationofalloisoleucineandbranchedchainamino acidsindriedbloodsamples,Ann.Clin.Biochem.48(2011)468–470.

Riferimenti

Documenti correlati

Dallo studio risulta come nelle aziende pubbliche si sia sperimentato un nu- mero maggiore di forme di assunzione di ruoli gestionali contendibili da parte degli infermieri che

Eine neue methode zur differenzierung in der r¨ ontgenographie (planigraphie). Image super-resolution using deep convolutional networks. A deep learning reconstruction framework

We performed a genetic association study using polymorphisms of five serotonin metabolism-related genes: serotonin transporter (5HTT), serotonin receptor 1A (5-HT1A), serotonin

We pre- sent a case of sarcoidosis in which inorganic dust particles (silicate) were detected in biopsy material by means of scanning electronic microscopy (ESEM) tan- dem

[r]

After phase identification, each outlined inclusion was associated to the mineralogical phase of the corresponding cluster (i.e. all the cluster 1 inclusions were identified

Una volta affermatosi, nella configurazione del nuovo modello proces- suale, il principio della separazione tra la fase delle indagini preliminari – affi- data al pubblico ministero

The exergy analysis method has been contemplated to evaluate the energy impact on the environment of an urban district.. The second Law analysis evaluates rational energy use from