• Non ci sono risultati.

Evidence of rescattering effect in Pb–Pb collisions at the LHC through production of K(892)0⁎ and ϕ(1020) mesons

N/A
N/A
Protected

Academic year: 2021

Condividi "Evidence of rescattering effect in Pb–Pb collisions at the LHC through production of K(892)0⁎ and ϕ(1020) mesons"

Copied!
14
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Evidence

of

rescattering

effect

in

Pb–Pb

collisions

at

the

LHC

through

production

of

K

(

892

)

0

and

φ (

1020

)

mesons

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received21November2019

Receivedinrevisedform10January2020 Accepted13January2020

Availableonline16January2020 Editor:L.Rolandi

MeasurementsofK∗(892)0andφ(1020)resonanceproductioninPb–Pbandppcollisionsats NN=5.02

TeV withthe ALICEdetector attheLargeHadronColliderare reported. The resonancesare measured at midrapidity (|y| < 0.5) via their hadronic decay channels and the transverse momentum (pT)

distributionsareobtainedforvariouscollisioncentralityclassesupto

p

T=20 GeV/c. The

p

T-integrated

yield ratio K∗(892)0/K in Pb–Pb collisions shows significant suppression relative to pp collisions and decreases towards more central collisions. In contrast, the φ(1020)/K ratio does not show any suppression. Furthermore, the measured K∗(892)0/K ratio in central Pb–Pb collisions is significantly

suppressedwithrespecttotheexpectationsbasedonathermalmodelcalculation,whiletheφ(1020)/K ratio agrees with the model prediction. These measurements are an experimental demonstration of rescatteringofK∗(892)0 decayproductsinthe hadronicphaseofthecollisions.The K(892)0/Kyield

ratios in Pb–Pb and pp collisions are used to estimate the time duration between chemical and kinetic freeze-out,which is found to be ∼ 4–7fm/c for central collisions. The pT-differential ratios

of K∗(892)0/K, φ(1020)/K, K(892)0/

π

, φ(1020)/

π

, p/K(892)0 and p/φ (1020) are also presented

for Pb–Pb and pp collisions at √sNN = 5.02 TeV. These ratios show that the rescattering effect is

predominantlyalow-pTphenomenon.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Several measurements in high-energy heavy-ion collisions at theLarge HadronCollider (LHC) [1–3] andthe Relativistic Heavy Ion Collider (RHIC) [4–9] have shown that a strongly-coupled Quark-GluonPlasma(QGP)isformedthatsubsequentlyhadronizes. Resonances,shortlivedhadronsthatdecayviastronginteractions, playanimportantroleincharacterizingthepropertiesofhadronic matterformedinheavy-ioncollisions [10–16].Severalresonances havebeenobservedinppandnuclearcollisions [10–19]: f2

(

1270

)

,

ρ

(

770

)

0,

(

1232

)

++, f0

(

980

)

,K∗

(

892

)

0,±,

(

1385

)

,

(

1520

)

and

φ (

1020

)

with lifetimes of the order of 1.1 fm

/

c, 1.3 fm

/

c, 1.6 fm

/

c,2.6fm

/

c,4.16fm

/

c,5.5fm

/

c,12.6fm

/

c and 46.3fm

/

c, re-spectively [20]. The wide range oftheir lifetimes allows them to be good probes of the dynamics of the system formed in ultra-relativisticheavy-ioncollisions [21–27].

In the hadronicphase of the evolution of the system formed inheavy-ioncollisions,therearetwoimportanttemperaturesand corresponding timescales: the chemical freeze-out, when the in-elastic collisions among the constituents are expected to cease, and the later kinetic freeze-out, when all (elastic) interactions

 E-mailaddress:alice-publications@cern.ch.

stop [28–30]. If resonances decay before kinetic freeze-out,then theirdecayproductsaresubjecttohadronicrescatteringthatalters their momentum distributions. This leads to inability to recon-struct the parent resonance using the invariant mass technique, resulting ina decreasein themeasured yield relative to the pri-mordialresonanceyield, i.e.the yieldatchemicalfreeze-out.The fraction of resonances that cannot be recovered dependson the lifetimeofthehadronicphase(definedasthetimebetween chem-icalandkinetic freeze-out),thehadronicinteractioncrosssection of resonancedecayproducts, the particle densityinthe medium andtheresonancephase spacedistributions.Forexample,a pion fromaK∗

(

892

)

0 mesondecaycould scatter withanother pionin the medium as

π

π

+

ρ

0

π

π

+. At the same time, after

thechemical freeze-out,pseudoelastic interactionscould regener-ateresonancesinthemedium,leadingtoanenhancementoftheir yields. Forexample, interactions like

π

K

K∗

(

892

)

0

π

K and K−K+

→ φ(

1020

)

K−K+couldhappenuntilkineticfreeze-out. Hence,resonancesareprobesoftherescatteringandregeneration processesduringtheevolutionofthefireballfromchemicalto ki-neticfreeze-out.Indeed,transport-basedmodelcalculationsshow that both rescattering andregeneration processes affectthe final resonance yields [31,32]. Thermal statistical models, which have successfullyexplaineda hostofparticleyields inheavy-ion colli-sions acrossawide rangeofcenter-of-massenergies [33–36],are

https://doi.org/10.1016/j.physletb.2020.135225

0370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

abletoexplainthemeasuredresonanceyieldsonlyafterincluding rescatteringeffects [37,38].

Inthispaper,the measurementofthe productionofK∗

(

892

)

0

and

φ (

1020

)

vector mesons atmidrapidity inPb–Pb and pp col-lisions at

sNN

=

5.02 TeV is presented. Although both vector

mesons have similar masses, their lifetimediffers by a factorof largerthan10.Thisaspectisexploitedtoestablishthedominance of rescattering in central Pb–Pb collisions at the LHC. The kaon andpion daughters of the short-lived K∗

(

892

)

0

K

π

rescatter withotherhadronsinthemedium.Themagnitudeoftheeffectis mainlydeterminedbythepion-pioninteractioncrosssection [39], whichismeasuredtobesignificantlylarger(factor 5)thanthe to-talkaon-pioninteractioncrosssection [40].Thelatterdetermines themagnitudeoftheregenerationeffect [41].Thuswith rescatter-ing dominatingoverregeneration, theobservable K∗

(

892

)

0 yields should decrease compared to the primordial yields, and there-fore, a suppression of the K∗

(

892

)

0

/

K yield ratio is expected in heavy-ioncollisionsrelativeto ppcollisions.Furthermore,this ra-tioisexpectedtodecreasewithincreaseinsystemsize,which is determinedbythecollisioncentrality(maximumforcentral colli-sions).Incontrast,becauseofalargerlifetimecomparedtothatof the hadronic phase, the

φ (

1020

)

meson yields are not expected to be affected by rescattering [14,32]. The

φ (

1020

)

mesons are also expectednot to be affectedby the regeneration dueto sig-nificantlylower KK crosssection compared to K

π

and

π π

cross sections [39,40].Hence theindependenceofthe

φ (

1020

)/

Kyield ratio ofthe systemsize will act as a baseline for corresponding K∗

(

892

)

0

/

Kmeasurements,therebysupportingthepresenceofthe rescattering effect in heavy-ion collisions. The lower K∗

(

892

)

0

/

K yieldratioinPb–Pb collisions comparedtopp atthesame

sNN

can then be used to estimate the time span between chemical andkineticfreeze-outinheavy-ioncollisions.Furthermore,dueto thescatteringofthedecayproducts,thelow-pT K∗

(

892

)

0 areless

likelyto escapethe hadronicmedium beforedecaying,compared tohigh-pT K∗

(

892

)

0 [32].ThiscouldaltertheK∗

(

892

)

0 pT spectra

in Pb–Pb collisions compared to pp, while no such effect is ex-pectedfor

φ

mesons.Therefore, studying pT-differential ratios of

K∗

(

892

)

0 and

φ (

1020

)

mesons withrespectto other non-strange (

π

) and strange (K) mesons, and baryons (p) in Pb–Pb and pp collisions will help to establish the pT dependence of

rescatter-ingeffectsanddisentanglethemfromotherphysicsprocesseslike radialflowthatmodifiestheshapesofthe pT distributionsatlow

andintermediate transverse momenta. Inaddition, the measure-ments at

sNN

=

5.02 TeV are compared to results fromPb–Pb

collisions at

sNN

=

2.76TeV [14,42]. Since productionof

parti-clesandantiparticlesisequalatmidrapidityatLHCenergies,the averageoftheyieldsofK∗

(

892

)

0andK∗

(

892

)

0ispresentedinthis paper andis denoted by the symbol K∗0 unless specified other-wise.The

φ (

1020

)

isdenotedbythesymbol

φ

.

The paperis organized asfollows: In section 2, the detectors usedintheanalysisarebrieflydescribed.Insection3,thedataset, theanalysistechniques,theprocedureforextractionoftheyields ofK∗0 and

φ

mesons andthe studyofthesystematic

uncertain-ties are presented.In section 4, the yields obtained by invariant massreconstruction ofK∗0 and

φ

mesonsasa functionof

trans-versemomentuminPb–Pb andppcollisions at

sNN

=

5.02TeV,

the pT-integrated ratios of K∗0 and

φ

relative to chargedkaons,

andpT-differentialratiosrelativetocharged

π

,Kandprotonsare

reported.Finally,insection5thefindingsaresummarized.

2. Experimentalapparatus

Themeasurements of K∗0 and

φ

meson productioninpp and Pb–Pbcollisions havebeenperformedusingthedatacollected by theALICEdetectorintheyear2015. Thedetails oftheALICE

de-tector can be found in Refs. [43–45]. So we briefly focus on the following main detectors used for this analysis. The forward V0 detector,a scintillatordetectorwitha timing resolutionlessthan 1ns,isusedforcentralityselection,triggering andbeam-induced background rejection. The V0 consists oftwo sub-detectors, V0A andV0C,placedatasymmetricpositions,oneoneach sideofthe interaction point with full azimuthal acceptance and cover the pseudorapidity ranges 2.8

<

η

<

5.1 and -3.7

<

η

<

-1.7, re-spectively.ThecentralityclassesinPb–Pbcollisionsaredetermined fromthesumofthemeasuredsignalamplitudesinV0AandV0C, asdiscussedinRefs. [46,47].Thecollisiontimeinformationis pro-vided by T0 which consist of two arrays of Cherenkov counters T0AandT0C,positionedonbothsidesoftheinteractionpoint [48]. TheZeroDegreeCalorimeter(ZDC)consistsoftwotungsten-quartz neutron andtwo brass-quartzprotoncalorimeterplacedata dis-tanceof113monbothsidesof theinteractionpoint.Itisusedto rejectthebackgroundeventsandtomeasurethespectator nucle-ons.

In the central barrel, the Inner Tracking System(ITS) andthe TimeProjectionChamber(TPC)areusedforcharged-particle track-ingandprimarycollisionvertexreconstruction.TheITSconsistsof three sub-detectors of two layers each, covering a central pseu-dorapidity range

|

η

| <

0.9: Silicon Pixel Detector (SPD), Silicon Drift Detector (SDD) andSilicon Strip Detector (SSD).The TPC is themainchargedparticletrackingdetector,andhasfullazimuthal coverage inthe pseudorapidity range

|

η

| <

0.9. Alongwithtrack reconstruction,it alsoprovides ameasurementofthemomentum and excellent particle identification (PID). The TPC provides the measuredspecificenergyloss(dE

/

dx)toidentifytheparticles, es-pecially inlowmomentumrange(p

<

1GeV/c)wherethedE

/

dx ofparticlesarewellseparated.Toextendtheparticleidentification tohigher pT,theTimeofFlight(TOF)detectorisusedinaddition

totheTPCinformation.TheTOFisbasedontheMultigapResistive PlateChamber(MRPC) technologyandmeasures thearrivaltimes of particles with a resolution of the order of 80 ps. It covers a pseudorapidityrange

|

η

| <

0.9andprovidesexcellentPID capabil-ities intheintermediate pT rangeby exploitingthetime-of-flight

information.

3. Datasampleandanalysisdetails

Theppdatawerecollectedusingaminimumbias(MB)trigger. The logic for MB trigger requiresat leastone hit in V0Aor V0C andonehitinthecentralbarreldetectorSPDincoincidencewith theLHCbunch crossing[49,50].Inppcollisions,a criterionbased on the offline reconstruction of multiple primary vertices in the SPD [45] isappliedtoreduce thepileup,whichiscausedby mul-tiple interactionsinthesamebunch crossing.Therejectedpileup events arelessthan 1% ofthetotal events.ThePb–Pb datawere also collectedusing aMB trigger withalogic thatrequires a co-incidenceofsignalsinV0AandV0C.TheMB-triggeredeventsare analyzed ifthey havea reconstructed collision vertexwhose po-sition alongthe beamaxis(Vz, z is thelongitudinal direction)is within 10cmfromthe nominalinteractionpoint inboth ppand Pb–Pb collisions.Backgroundeventsare rejectedusingthetiming informationfromtheZeroDegreeCalorimeters(ZDCs)andV0 de-tectors.

ThePb–Pb analysisisperformedin8centralityclassesdefined in Ref. [46]: 0–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70% and 70–80%. The 0–10% class corresponds to the most central Pb–Pb collisions, with smallimpact parameter, while the 70–80%classcorrespondstoperipheralPb–Pbcollisions,withlarge impact parameter. The total number of events that are analyzed after passingthe eventselectioncriteriaare

110million forpp and

30millionforPb–Pb collisions.Charged tracksare selected

(3)

foranalysisbasedontrackselectioncriteriathatensuregoodtrack quality,asdoneinpreviouswork [42].Inparticular,atrackinthe TPCisrequestedtohaveaminimumof70crossedrows (horizon-tal segments along the transverse readout plane of the TPC) out of a maximum possible 159 [51]. A pT-dependent selection

cri-terionon the distanceof closest approachto the collisionvertex inthetransverse(xy)plane(DCAxy)andalongthelongitudinal di-rection(DCAz)isusedtoreducethecontaminationfromsecondary chargedparticlescomingfromweakly decayinghadrons. In addi-tionto these selection criteria, tracks are requiredto have pT

>

0.15GeV

/

c inbothppandPb–Pbcollisions.Charged particlesare acceptedinthe pseudorapidity range

|

η

| <

0.8, which ensures a uniformacceptance.

The particle identificationexploits both the TPCand the TOF. ForK∗0 and

φ

reconstruction in Pb–Pb collisions, charged

parti-clesareidentifiedaspionorkaonifthemeanspecificenergyloss (



dE

/

dx



) measured by the TPC fallswithin two standard devia-tions(2

σ

TPC)fromtheexpecteddE

/

dx valuesfor

π

orKoverthe

entire momentum range. If the TOF information is available for thetrack, inaddition to the TPC, a TOF-based selection criterion 3

σ

TOF isappliedoverthemeasuredmomentumrange,where

σ

TOF

is the standard deviation from the expected time-of-flight for a givenspecies.Theserequirementshelpinreducingthebackground underthe signalpeakover alargemomentum rangeandprovide a better separation between signal and backgroundwith respect toTPCPID only.ForK∗0 reconstructioninpp collisions,thesame

PID selection criteriaare applied to identify pion andkaon can-didatesas are usedin Pb–Pb collisions. Forthe

φ

reconstruction inppcollisions, thekaoncandidatesare identifiedusinga 6

σ

TPC,

4

σ

TPCand2

σ

TPC selectiononthemeasureddE

/

dx distributionsin

themomentumrangesp

<

0.3GeV

/

c,0.3

<

p

<

0.4GeV

/

c andp

>

0.4GeV

/

c,respectively. Ontop ofthis, theTOF-basedselection criterionof3

σ

TOF isappliedovertheentiremeasuredmomentum

rangeinppcollisionsiftheTOFinformationisavailable.

3.1.Yieldextraction,correctionsandnormalization

TheK∗0 and

φ

resonancesarereconstructedbycalculatingthe invariantmassoftheirdecayproductsthroughthehadronicdecay channelsK∗0

(

K∗0

)

K+

π

(

K

π

+

)

(BranchingRatio,BR=66.666

±

0.006% [20])and

φ

K+K− (BR =49.2

±

0.5% [20]), respec-tively.OppositelychargedKand

π

(orK)fromthesameeventare paired to reconstruct the invariant mass distributions of K∗0(

φ

). TheK

π

andKK pairsareselectedintherapidity range

|

y

| <

0.5 inboth pp and Pb–Pb collisions. The invariant mass distribution exhibits a signal peak and a large combinatorial background re-sulting from the uncorrelated K

π

(KK) pairs. The combinatorial background is estimated using a mixed-event technique in both collision systems.The mixed-event background is constructed by combiningkaonsfromoneeventwiththeoppositelycharged

π

(K) fromdifferenteventsforK∗0

(φ)

.The eventswhicharemixedare

requiredto havesimilar characteristics.In Pb–Pb, twoevents are mixedifthey belong to the same centralityclass andthe differ-encebetween the collision vertex position is

|

Vz

| <

1 cm. In ppcollisions, two eventsare mixedwitha condition of

|

Vz

| <

1cm and a difference in charged-particle densityat midrapidity (

|

y

|

<

0

.

5) of less than 5. To minimize the statistical fluctua-tionsinthebackgrounddistribution,eacheventismixedwithfive otherones. Theinvariant massdistributionfromthemixed-event isnormalizedtothesame-eventoppositely-chargedpair distribu-tion in the mass region 1.1–1.3 (resp. 1.04–1.06) GeV

/

c2 for K∗0 (resp.

φ

), whichisaway fromthemasspeak (6

forK∗0 and7

for

φ

,

is the width ofthe resonance). Afterthe combinatorial background subtraction, the signal peak is observed on top of a residualbackground.ThelatterisduetothecorrelatedK

π

orKK

pairsthatoriginatefromjetsandfromthemisidentificationof par-ticles.It isshowninRef. [42] that theresidualbackgroundhasa smooth dependenceonmassandthe shapeofthebackground is well described by a second order polynomial [14,42]. The invari-ant mass distributions after mixed-event background subtraction arefittedwithaBreit-Wigner(resp.Voigtian)functionforthe sig-nal peakof K∗0 (resp.

φ

) plus asecond order polynomial forthe

residual background [42]. The Voigtian function is a convolution of a Breit-Wigner distribution and a Gaussian, where the width

σ

of theGaussian accountsforthe massresolution. Thelatter is

pT-dependentandvariesbetween1and2MeV

/

c2.Therawyields

are measured as a functionof pT for K∗0 and

φ

in pp collisions

andinvariouscentralityclassesinPb–Pbcollisions.Adetailed de-scriptionoftheyieldextractionprocedureisgiveninRef. [42].

The measured yields are affected by the detector acceptance andreconstructionefficiency( A

×

ε

rec).Thisisestimatedbymeans

ofdedicatedMonteCarlosimulationsusingthePYTHIA(PYTHIA6 Perugia 2011tune andPYTHIA8Monash2013tune) [52,53] and HIJING [54] eventgenerators forpp andPb–Pbcollisions, respec-tively. The generated particles are then propagated through the detectormaterialusingGEANT3 [55].The A

×

ε

rec iscalculatedas

a function of pT andis definedasthe ratioof thereconstructed

K∗0(

φ

) to the generated K∗0(

φ

), both within

|

y

|

<

0.5. For the

reconstructionofresonances,thesametrackandPIDselection cri-teriaare appliedtothesimulationsasusedintheanalysisofthe measured data. The A

×

ε

rec is calculated for K∗0(

φ

) that decay

throughthehadronicchannelK±

π

∓(K+K−),henceitdoesnot in-cludethecorrectionforBR.InPb–Pbcollisions,the A

×

ε

rechasa

weakcentralitydependenceandtherawyieldsarecorrectedusing the A

×

ε

recoftherespectivecentralityclass.

Theproceduretocorrecttherawyieldsisgivenby

1 Nevent d2N d ydpT

=

1 Naccevent d2Nraw d ydpT

ε

trig

.

ε

vert

.

ε

sig

(

A

×

ε

rec

) .

BR

.

(1)

The rawyields are normalizedto thenumberof acceptedevents (Neventacc ) andcorrectedfor A

×

ε

rec,triggerefficiency(

ε

trig),vertex

reconstructionefficiency(

ε

vert),signalloss(

ε

sig)andtheBRofthe

decaychannel.The yieldsinpp arenormalizedto thenumberof inelasticcollisionswithatriggerefficiencycorrection,

ε

trig=0.757

±

0.019 [56]. Thevertexreconstructionefficiencyinppcollisions isfound to be

ε

vert = 0.958.The signal losscorrection factor

ε

sig

is determined based on MC simulations as a function of pT and

accountsfortheresonancesignallostduetotriggerinefficiencies. The

ε

sig(pT) correctionisonlysignificantfor pT

<

2.5GeV

/

c and

has a value of lessthan 5% both forK∗0 and

φ

in pp collisions.

In Pb–Pb collisions, theyields of K∗0 and

φ

in a givencentrality class are normalized by the number of events in the respective V0M(sum ofV0AandV0Camplitude)eventcentralityclass.The correctionfactors

ε

trig,

ε

vertand

ε

sig(pT)arecompatiblewithunity

inthereportedcentralityclassesinPb–Pbcollisionsandhenceare notused.

3.2. Systematicuncertainties

The systematic uncertainties in the measurement of K∗0 and

φ

yields in pp and Pb–Pb collisions are summarized in Table 1. Thesourcesofsystematicuncertaintiesarerelatedtotheyield ex-traction method, PID and track selection criteria, global tracking efficiency,theknowledgeoftheALICEmaterialbudgetandofthe interaction crosssection of hadronsinthe detectormaterial.The uncertaintiesare reportedforthreetransversemomentumvalues, low,midandhighpT.ForPb–Pbcollisions allthesystematic

un-certaintiesexcepttheonerelatedtotheyieldextractionare com-mon inthevarious centralityclassesandthe valuesgiveninthe

(4)

Table 1

SystematicuncertaintiesinthemeasurementofK∗0and

φ

yieldsinppandPb–Pbcollisionsats

NN=5.02TeV.These

un-certaintiesareshownfor threetransversemomentumvalues,low,midandhighpT.ForPb–Pbcollisionsallthesystematic

uncertaintiesexceptyieldextractionarecommoninvariouscentralityclassesandthevaluesgiveninthetableareaveraged overallcentralityclasses.

Systematicvariation Pb–Pb pp

K∗0 φ K∗0 φ

pT(GeV/c) pT(GeV/c) pT(GeV/c) pT(GeV/c)

0.6 4.5 18 0.5 4.25 18 0.1 4.25 18 0.5 4.25 18 Yield extraction (%) 7.3 7.5 10.1 4.4 1.9 4.9 11.8 7.9 8.2 2.4 3.5 3.5 Track selection (%) 2.7 1.4 3.0 3.0 1.3 1.0 1.4 1.0 1.9 4.0 2.0 5.5 Particle identification (%) 5.4 3.0 5.0 1.0 1.5 2.4 2.1 3.2 6.9 0.3 1.7 6.5 Global tracking efficiency (%) 4.7 7.4 4.0 4.7 8.2 3.1 2.0 3.1 3.4 2.0 3.2 2.4

Material budget (%) 1.4 0 0 5.7 0 0 3.4 0 0 5.7 0 0

Hadronic Interaction (%) 2.4 0 0 1.3 0 0 2.8 0 0 1.3 0 0

Total (%) 10.9 11.0 12.3 9.2 8.6 6.4 13.0 9.1 11.4 7.7 5.4 9.5

Fig. 1. ThepTdistributionsof(a)K∗0and(b)

φ

mesonsinppcollisionsandvariouscentralityclassesinPb–Pbcollisionsat√sNN=5.02TeV.Thevaluesareplottedatthe

centerofeachbin.Thestatisticalandsystematicuncertaintiesareshownasbarsandboxes,respectively.

tableareaveragedoverallcentralities.Theyieldextractionmethod includes the uncertainties due to variations of the fitting range, thechoiceofcombinatorialbackgroundestimationtechnique, nor-malization range and residual background shape. The uncertain-tiesduetoyield extractionareestimatedto be7.9–11.8% forK∗0

(resp.2.4–3.5% forthe

φ

)in ppand7.3–10.1% (resp. 1.9–4.9%) in Pb–Pbcollisions. The PIDsystematicuncertainties variesbetween 2.1–6.9% (0.3–6.5%) for K∗0 (

φ

) in pp and Pb–Pb collisions. The contributiontotheuncertaintyfromtheglobaltrackingefficiency iscalculatedfromthecorrespondingvaluesforsinglecharged par-ticles [51] andresultsina2.0–8.2%uncertaintybycombiningthe two charged tracks used in the invariant mass reconstruction of K∗0 and

φ

. The contribution from variation of the track

selec-tion criteria is 1.0–5.5%. The systematic uncertainties due to the hadronic interaction cross section are estimated to be less than 2.8%andcontributeonlyatlow pT (

<

2GeV

/

c).Theuncertainties

in the description of the material budget of ALICEdetector sub-systems inGEANT3 (see Ref. [57] fordetails)give a contribution lowerthan5.7% ontheyields ofK∗0 and

φ

inpp andPb–Pb

col-lisions. The material budget uncertainty is significant only at pT

<

2 GeV

/

c and negligible at higher pT. The total pT-dependent

systematicuncertainties ontheK∗0(

φ

)yields are estimatedtobe 9.1–13.0% (5.4–9.5%) in pp collisions and 10.9–12.3% (6.4–9.2%) inPb–Pb collisions.Thecommonsystematicuncertainties for dif-ferent particles (global tracking efficiency, material budget and

hadronicinteraction)are canceled outincalculatingparticleyield ratioslikeK∗0

/

Kand

φ/

K.

4. Resultsanddiscussion

4.1. TransversemomentumspectrainppandPb–Pbcollisions

The pT distributions of the K∗0 and

φ

mesons for

|

y

|

<

0

.

5,

normalized to thenumber ofevents andcorrected forefficiency, acceptanceandbranchingratioofthedecaychannel,areshownin Fig.1.TheresultsforPb–Pb collisionsarepresentedforeight dif-ferentcentralityclasses(0–10%upto70–80%in10%wide central-ityintervals)togetherwiththeresultsfrominelasticppcollisions atthesameenergy.

The pT-integratedparticleyieldshavebeenextractedusingthe

proceduredescribedinRefs. [14,42].ThepTdistributionsarefitted

witha Lévy-Tsallisfunction [58,59] inpp anda Boltzmann-Gibbs blast-wavefunction[60] inPb–Pbcollisions.Theyieldshavebeen extracted from the data in the measured pT region and the fit

functionshavebeenusedtoextrapolateintotheunmeasured(low and high pT) region. The low-pT extrapolation covers pT

<

0.4

GeV

/

c forK∗0(

φ

)andaccountsfor8.6% (7.2%)and12.5%(12.7%)of

thetotalyieldinthe0–10%and70–80%centralityclassesinPb–Pb collisions,respectively.Inppcollisions,theK∗0ismeasuredinthe range 0

<

pT

<

20GeV

/

c.Forthe

φ

meson, thelow-pT

(5)

Fig. 2. pT-integrated particle yield ratios K∗0/K− and φ/K− as a function of

dNch/dη1/3 measuredatmidrapidityinpp,p–PbandPb–Pbcollisionsat √sNN

=5.02TeV.ForPb–Pbcollisionsat√sNN=2.76TeV,the

φ/

K− valuesaretaken

fromRef. [14] andtheK∗0

/K−valuesaretakenfromRef. [42].Theratiosforp– Pbcollisionsare taken fromRef. [17].Statisticaluncertainties (bars)areshown togetherwith total(hollowboxes) andcharged-particle multiplicity-uncorrelated (shadedboxes) systematicuncertainties.Thermalmodelcalculationswith chemi-calfreeze-outtemperatureTch=156MeVforthemostcentralPb–Pbcollisions

[34,64] arealsoshown.EPOS3modelpredictions [32] ofK∗0/K and

φ/

K ratiosin

Pb–Pbcollisionsarealsoshownasvioletlines.

yield.Theextrapolatedfractionoftheyieldisnegligiblefor pT

>

20GeV

/

c. 4.2.Particleratios

Fig. 2 shows the K∗0

/

K and

φ/

K ratios as a function of



dNch

/

d

η



1/3 [46,47,51] forPb–Pb collisions at

sNN

=

2.76[14, 42] and5.02TeV,p–Pb collisionsat

sNN

=

5.02TeV [17] andpp

collisions at

s

=

5.02 TeV. The kaon yields in Pb–Pb at

sNN

=

5.02 TeV are from Ref. [51]. The



dNch

/

d

η



1/3 measured at

midrapidity, is used here asa proxy for the systemsize. This is supported by the observation of the linear increase in the HBT radiiwith



dNch

/

d

η



1/3 [61,62].TheK∗0

/

K ratiodecreasesfor

ris-ing



dNch

/

d

η



1/3 while the

φ/

K ratio is almost independent of



dNch

/

d

η



1/3.Theratiosexhibit asmooth trendacrossthe

differ-entcollisionsystemsandcollisionenergiesstudied.TheK∗0

/

K and

φ/

K ratiosinPb–Pb collisionsat

sNN

=

2.76and5.02TeVarein

agreementwithinuncertainties.

Theresonanceyieldsaremodifiedduringthehadronicphaseby rescattering(whichwouldreducethemeasuredyields)and regen-eration(whichwouldincreasethemeasuredyields).Theobserved dependenceoftheK∗0

/

K ratioonthecharged-particlemultiplicity

isconsistentwiththebehaviorthatwouldbeexpectedif rescatter-ingisthecauseofthesuppression.Thefactthatthe

φ/

K ratiodoes notexhibitsuppressionwithcharged-particlemultiplicitysuggests that the

φ

, which has a lifetime an order of magnitude larger than that ofthe K∗0, decays predominantlyoutside thehadronic

medium. Theoretical estimates suggest that about 55% of the of K∗0 mesonswith momentum p

=

1 GeV

/

c, decaywithin 5 fm

/

c

ofproduction (a typical estimate for the time between chemical and kinetic freeze-out in heavy-ion collisions [22,32,63]), while only7% of

φ

mesons with p

=

1 GeV

/

c decaywithin that time. This supports the hypothesis that the experimentally observed decrease of the K∗0

/

K ratio with charged-particle multiplicity is

caused by rescattering. A similar suppression has also been ob-served for

ρ

0

/

π

[15] and



/

[13] in central Pb–Pb collisions

relativetoperipheralPb–Pbandppcollisionsat

sNN

=

2.76TeV.

Inaddition,theK∗0

/

K ratiofromthermalmodelcalculations with-outrescatteringeffectsandwithchemicalfreeze-outtemperature

Fig. 3. Lowerlimitonthehadronicphaselifetimebetweenchemical andkinetic freeze-outasafunctionofdNch/dη1/3inp–Pb [17] andPb–Pbcollisionsat√sNN

=5.02TeV.Thebarsandbandsrepresentthestatisticalandsystematic uncertain-ties,respectively,propagatedtothelifetimefromtheuncertaintiesassociatedwith themeasuredK∗0/KratiosinPb–Pb (p–Pb)andppcollisionsats

NN=5.02TeV. Tch

=

156 MeV for the most central Pb–Pb collisions [34,64] is

found to be higher than thecorresponding measurements, while the measured

φ/

K ratio agrees with the thermal model predic-tions.The K∗0

/

K and

φ/

K ratiosinPb–Pbcollisionsarealso com-pared to EPOS3 model calculationswithand without a hadronic cascadephasemodeled byUrQMD [32].TheEPOS3model predic-tionsshowninthefigureareforPb–Pbcollisions at

sNN

=

2.76

TeVbutnosignificantqualitativedifferencesareexpectedbetween the two energies. The EPOS3 generator withUrQMD reproduces theobservedtrendoftheK∗0

/

K and

φ/

K ratioswhichfurther

sup-portstheexperimentaldata.

The fact that K∗0

/

K− decreases with increasing



dNch

/

d

η



1/3

implies that rescattering of the decay products of K∗0 in the hadronic phase is dominantover K∗0 regeneration. This suggests that K∗0

K

π

is not in balance. Hence in Pb–Pb the K∗0

/

K

ratiocan be used toget an estimate ofthetime between chem-icalandkineticfreeze-out,

τ

,as,

[

K∗0

/

K−

]

kinetic

= [

K∗0

/

K−

]

chemical

×

eτ/τK∗0, where

τ

K∗0 is the K∗0 lifetime. Here,

τ

K∗0 is taken

as 4.16 fm

/

c ignoring any medium modification of the width of the invariant mass distribution of K∗0. Furthermore, it is

as-sumed that

[

K∗0

/

K−

]

chemical is given by the values measured in ppcollisionsandthePb–Pb collisiondataprovidesanestimatefor

[

K∗0

/

K

]

kinetic. This is equivalent to assuming that all K∗0’s that decaybeforekineticfreeze-outarelostduetorescatteringeffects and there is no regeneration effect between kinetic and chemi-cal freeze-out which issupported by AMPT simulations [31]. All theassumptions listedabove leadto anestimate of

τ

asalower limitforthetime spanbetweenchemical andkinetic freeze-outs. AdecreaseintheK∗0

/

Kratiowithincreasingmultiplicityhas pre-viously alsobeenobserved in p–Pbcollisionsat

sNN =5.02TeV

[17].Thismightindicatethepresenceofrescatteringeffectinhigh multiplicity p–Pb collisions and is suggestive of a finite lifetime ofthehadronicphase.Forcomparisonwehavealsoestimatedthe hadronicphaselifetimeinp–Pbdata.Fig.3showstheresultsfor

τ

boostedbyaLorentzfactor(

1.65forp–Pb collisionsand1.75for Pb–Pb collision) asa function of



dNch

/

d

η



1/3.Neglecting higher

order terms, theLorentz factor isestimated as



1

+ (

pT/mc

)

2.

Here m is the rest mass of the resonance and



pT is used as anapproximation forp forthemeasurementsatmidrapidity.The time interval between chemical and kinetic freeze-out increases withthe systemsize asexpected. Forcentral Pb–Pb collisionsat

(6)

Fig. 4. Particleyieldratios(K∗0+K∗0)/(K++K)inpanel(a)and(2φ)/(K++K)inpanel(b),bothasafunctionofpTforcentralityclasses0–10%and70–80%inPb–Pb collisionsat√sNN=5.02TeV.Forcomparison,thecorrespondingratiosarealsoshownforinelasticppcollisionsat√s=5.02TeV.Thestatisticaluncertaintiesareshown

asbarsandsystematicuncertaintiesareshownasboxes.Inthetext(K∗0+K∗0),(K++K)aredenotedbyK∗0andK,respectively.

Fig. 5. Particleyieldratios(K∗0+K∗0)/(π++π)inpanel(a)and(2φ)/(π++π)inpanel(b),bothasafunctionofpTforcentralityclasses0–10%and70–80%inPb–Pb collisionsat√sNN=5.02TeV.Forcomparison,thecorrespondingratiosarealsoshownforinelasticppcollisionsat√s=5.02TeV.Thestatisticaluncertaintiesareshown

asbarsandsystematicuncertaintiesareshownasboxes.Inthetext(K∗0+K∗0),(π++π)aredenotedbyK∗0andπ,respectively.

kinetic freeze-out is about 4–7 fm

/

c. This is of the same order of magnitude asthe K∗0 lifetime, but aboutan order of magni-tude shorter than the

φ

lifetime. A smooth increase of

τ

with systemsizefromp–Pb toPb–Pb collisionsisobserved.TheEPOS3 generatorwithUrQMDreproduces theincreasingtrendof

τ

with multiplicity qualitatively [32]. If a constant chemical freeze-out temperatureisassumed, then the increase of

τ

withmultiplicity inPb–Pb collisionscorrespondstoadecreaseofthekinetic freeze-outtemperature.Thisisinqualitativeagreementwithresultsfrom blast-wave fits to identified particle pT distributions [51], which

are interpreted asdecrease inthe kinetic freeze-out temperature fromperipheraltocentralcollisions.

Further,to quantify the pT-dependenceofthe rescattering

ef-fect observed in Pb–Pb collisions, a set of pT-differential yield

ratios was studied: K∗0

/

K,

φ/

K,K∗0

/

π

,

φ/

π

, p

/

K∗0 and p

as

showninFigs.4,5and6.Thechoiceoftheratiosismotivatedby thefollowingreasons:(a)theratioofresonanceyieldsrelativeto theonesofkaonsandpionscanshedlightontheshapesofthepT

distributionsofmesonswithdifferentmassandquarkcontent,and (b)theratiosoftheprotonyieldwithrespecttotheyields ofthe

resonancesallowcomparisonsamonghadronsofsimilarmass,but differentbaryon numberandquark contentto bemade. Forcase (a), ratiosin0–10%, 70–80%Pb–Pb collisions andpp collisions at

sNN

=

5.02TeVarecompared.Forcase(b),ratiosin0–10%Pb–

Pbcollisions andpp collisions at

sNN

=

5.02TeVare compared

with0–5%inPb–Pb collisionsat

sNN

=

2.76TeV.Theratiosfor

70–80%inPb–Pbcollisionsareclosertothecorrespondingresults inpp collisions.Noticeably,therearedistinct differencesbetween centralandperipheral(pp)collisionsintheratiosforpT below

2 GeV

/

c and intermediate pT (between 2 and 6 GeV

/

c) but the

ratiosareconsistentathigher pT[42].

Atlow pT,theK∗0

/

KandK∗0/

π

forcentralcollisionsarelower

than in peripheral (pp) collisions, while the corresponding yield ratios for

φ

meson arecomparable within theuncertainties. This observation is consistent with the suppression of K∗0 yields due

torescatteringinthehadronicphase.Itdemonstratesthat rescat-tering affects low momentum particles. At intermediate pT, both

ratios show an enhancement forcentral Pb–Pb collisions relative toperipheralandppcollisions,whichismoreprominentfor

φ/

K,

(7)

Fig. 6. Particleyieldratios(p+p)/(K∗0+K∗0

)inpanel(a)and(p+ ¯p)/(2φ)inpanel(b),bothasafunctionofpT for0–10%centralPb–Pb collisionsandinelasticpp

collisionsat√sNN=5.02 TeV.Forcomparison,similarratiosarealsoshownfor0–5%centralPb–Pb collisionsat√sNN=2.76 TeV [42].Thestatisticaluncertaintiesare

shownasbarsandsystematicuncertaintiesareshownasboxes.Inthetext(K∗0+K∗0

)and(p+p)aredenotedbyK∗0andp,respectively.

radialflowincentralcollisions relativetoperipheralandpp colli-sions [51].GiventhatthemassesofK∗0 and

φ

mesonsarelarger

thanthose ofthe chargedkaonandpion,the resonances experi-encea largerradialfloweffect.IncentralPb–Pb collisions,for pT

below5 GeV

/

c, the p

ratiois observed to be independent of

pTandthe p

/

K∗0 ratioexhibitsaweak pT-dependencewithinthe

uncertainties, in contrast to the decrease of both ratios with pT

observedinppcollisions. Inturn,thissuggeststhattheshapesof the pT distributionsaresimilarforK∗0,

φ

and p inthis pT range.

Although the quark contents are different, the masses of these hadrons are similar, indicating that this is the relevant quantity indeterminingspectrashapes.Thisisconsistentwithexpectations fromhydrodynamic-based models [65,66]. Within the uncertain-ties,the p

/

K∗0 andp

ratiosforcentralPb–Pb collisionsat

sNN

=5.02TeVand2.76TeV [42] areconstantatintermediate pT.This

isconsistent with theobservation ofsimilar order radial flow at bothenergies, obtained fromthe analysisof pT spectra ofpions,

kaonsandprotons [51].ForpT

>

6GeV

/

c,theK∗0

/

K,

φ/

K,K∗0

/

π

,

φ/

π

,p

/

K∗0 andp

yieldratiosincentralcollisionsaresimilarto peripheral andpp collisions, indicating that fragmentationis the dominanthadronproductionmechanisminthis pT region.Thisis

consistentwithpreviousmeasurementsat

sNN =2.76TeV [42]. 5. Summary

Thetransverse momentum distributionsof K∗0 and

φ

mesons havebeenmeasuredatmidrapidity(

|

y

|

<

0

.

5)forvariouscollision centralities in Pb–Pb and inelastic pp collisions at

sNN

=

5.02

TeV using the ALICE detector. The K∗0 yields relative to charged

kaonsin Pb–Pb collisionsshow a suppression withrespectto pp collisions, which increases with the system size, quantified us-ing



dNch

/

d

η



1/3 measured at midrapidity. In contrast, no such

suppression is observed for the

φ

mesons. The lack of suppres-sionfor the

φ

meson can be attributed to the fact that mostof themdecayoutsidethefireballbecauseofitslongerlifetime(

τ

φ = 46.3

±

0.4 fm

/

c). Because of a shorter lifetime (

τ

K∗0 = 4.16

±

0.05 fm

/

c), a significant number of produced K∗0 decays in the

hadronicmedium.Thedecayproduct(s)undergointeractionswith otherhadrons inthemedium resultingin asignificant changein their momentum, and no longer contributing to the K∗0 signal reconstructed in the experiment. Althoughboth rescatteringand regenerationarepossible,theresultspresentedhererepresentan

experimental demonstration of the predominance of rescattering effects in the hadronic phase of the system produced in heavy-ioncollisions.Theeffectofrescatteringincreaseswiththesystem size.Furthermore,theK∗0

/

K yieldratiosincentralPb–Pb collisions aresignificantlylowercomparedtothevaluesfromthermalmodel calculationswithoutrescatteringeffects,whilethemeasured

φ/

K yieldratioagreeswiththemodelcalculation.Thisfurther corrob-orates the hypothesis that rescatteringaffects the measured K∗0

yields in Pb–Pb collisions. A lower limit for the lifetime of the hadronicphaseisdetermined byusingtheK∗0

/

KratiosinPb–Pb andpp collisions at

sNN

=

5.02 TeV.The lifetime, asexpected,

increaseswithsystemsize.ForcentralPb–Pb collisions,itisabout 4–7fm

/

c.

The pT-differentialyieldratiosofK∗0

/

π

andK∗0

/

Karestudied

incentralPb–Pb,peripheralPb–Pb andppcollisionstounderstand the pT-dependence of the rescattering effect. It is observed that

rescatteringdominantly affectsthe hadronsat pT

<

2 GeV

/

c. At

intermediate pT (2–6 GeV

/

c), the

φ/

K,

φ/

π

, K∗0

/

π

, p

/

K∗0 and p

yieldratiosareenhancedincentralPb–Pb collisionsrelativeto peripheralPb–Pb andppcollisions.Inaddition,thespectralshapes ofK∗0,

φ

andp,whichhavecomparablemasses,aresimilarwithin

theuncertaintiesfor pT below5GeV

/

c inPb–Pb collisions. These

measurementsdemonstratetheeffectofhigherradialflowin cen-tralPb–Pb collisionsrelativetoperipheralPb–Pb andppcollisions. Acomparisonofthe p

/

K∗0 andp

ratiosforcentralPb–Pb

col-lisions at

sNN

=

5.02and2.76TeV showstheconstancyof the

ratios with pT.Thisis consistentwiththeobservation of

compa-rable radial flow at

sNN

=

5.02 TeV and2.76 TeV. For higher pT, above 6 GeV

/

c, all the ratios agree within the uncertainties

forcentralandperipheralPb–Pb,andppcollisions,indicatingthat particleproductionviafragmentationathightransversemomenta isnotsignificantlymodifiedinthepresenceofamedium.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechniciansfortheir invaluablecontributions tothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance ofthe LHC complex.The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcenters andtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the

(8)

followingfundingagencies fortheirsupport inbuildingand run-ningtheALICEdetector:A.I.AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation(ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS),Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria; MinistryofCommunicationsandHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho Nacionalde DesenvolvimentoCientífico e Tecnológico (CNPq), Fi-nanciadorade Estudose Projetos(Finep), Fundação de Amparoà Pesquisa doEstado de São Paulo (FAPESP)andUniversidade Fed-eraldoRioGrandedoSul(UFRGS),Brazil;MinistryofEducationof China (MOEC), MinistryofScience& Technology ofChina(MSTC) andNational NaturalScience Foundation ofChina (NSFC), China; Ministry of Science and Education andCroatian Science Founda-tion,Croatia;CentrodeAplicacionesTecnológicasyDesarrollo Nu-clear(CEADEN), Cubaenergía, Cuba; Ministry ofEducation, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Villum Fonden and Danish National Research Foundation (DNRF), Den-mark;Helsinki Instituteof Physics(HIP),Finland; Commissariatà l’ÉnergieAtomique (CEA), Institut Nationalde Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) andGSIHelmholtzzentrumfürSchwerionenforschungGmbH, Ger-many;GeneralSecretariatforResearchandTechnology,Ministryof Education,Research andReligions,Greece; NationalResearch De-velopmentandInnovationOffice,Hungary; DepartmentofAtomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Com-mission,GovernmentofIndia(UGC)andCouncilofScientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia;CentroFermi- MuseoStoricodellaFisicaeCentroStudi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucle-are (INFN), Italy; Institute forInnovativeScience and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and JapanSocietyforthePromotionofScience(JSPS)KAKENHI,Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through FondodeCooperaciónInternacionalenCienciayTecnología (FON-CICYT)andDirección GeneraldeAsuntos delPersonalAcademico (DGAPA), Mexico;Nederlandse Organisatievoor Wetenschappelijk Onderzoek(NWO), Netherlands;The ResearchCouncil ofNorway, Norway; Commission on Science andTechnology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Uni-versidad Católica del Perú, Peru; Ministry of Science and Higher EducationandNationalScience Centre, Poland;Korea Institute of Science andTechnology InformationandNationalResearch Foun-dation of Korea (NRF), Republic of Korea; Ministry of Education andScientificResearch,InstituteofAtomicPhysicsandMinistryof ResearchandInnovationandInstituteofAtomicPhysics,Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre KurchatovInstitute,RussianScienceFoundationandRussian Foun-dation for Basic Research,Russia; Ministry of Education,Science, ResearchandSportofthe SlovakRepublic, Slovakia; National Re-searchFoundationofSouthAfrica,SouthAfrica;SwedishResearch Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden;EuropeanOrganizationforNuclearResearch,Switzerland; Suranaree University of Technology (SUT), National Science and TechnologyDevelopmentAgency(NSDTA)andOfficeoftheHigher Education Commission under NRU project of Thailand, Thailand; Turkish AtomicEnergy Agency (TAEK), Turkey;NationalAcademy ofSciences ofUkraine,Ukraine; Science andTechnologyFacilities

Council (STFC), United Kingdom; National Science Foundation of theUnitedStatesofAmerica(NSF)and(DOENP),UnitedStatesof America.

References

[1]ALICECollaboration,K.Aamodt,etal.,EllipticflowofchargedparticlesinPb– Pbcollisionsat2.76TeV,Phys.Rev.Lett.105(2010)252302,arXiv:1011.3914 [nucl-ex].

[2]ALICECollaboration,K.Aamodt,etal.,Suppressionofchargedparticle produc-tionatlargetransversemomentumincentralPb–Pbcollisionsat√sN N=2.76 TeV,Phys.Lett.B696(2011)30–39,arXiv:1012.1004 [nucl-ex].

[3]ALICECollaboration,K.Aamodt,etal.,Higherharmonicanisotropicflow mea-surementsofchargedparticlesinPb–Pbcollisionsat √sN N=2.76TeV,Phys. Rev.Lett.107(2011)032301,arXiv:1105.3865 [nucl-ex].

[4]STARCollaboration,J.Adams,etal.,Experimentalandtheoreticalchallengesin thesearchforthequarkgluonplasma:theSTARCollaboration’scritical assess-mentoftheevidencefromRHICcollisions,Nucl.Phys.A757(2005)102–183, arXiv:nucl-ex/0501009 [nucl-ex].

[5]PHENIXCollaboration, K. Adcox,et al., Formation ofdensepartonicmatter inrelativisticnucleus-nucleuscollisionsat RHIC:experimentalevaluationby thePHENIXcollaboration,Nucl. Phys.A757(2005)184–283,arXiv:nucl-ex/ 0410003 [nucl-ex].

[6]BRAHMSCollaboration, I.Arsene,etal.,Quarkgluonplasmaandcolorglass condensateatRHIC?ThePerspectivefromtheBRAHMSexperiment,Nucl.Phys. A757(2005)1–27,arXiv:nucl-ex/0410020 [nucl-ex].

[7]PHOBOSCollaboration,B.B.Back,etal.,ThePHOBOSperspectiveondiscoveries atRHIC,Nucl.Phys.A757(2005)28–101,arXiv:nucl-ex/0410022 [nucl-ex]. [8]M.Gyulassy,L.McLerran,NewformsofQCDmatterdiscoveredatRHIC,Nucl.

Phys.A750(2005)30–63,arXiv:nucl-th/0405013 [nucl-th].

[9]E.Shuryak,Physicsofstronglycoupledquark-gluonplasma,Prog.Part.Nucl. Phys.62(2009)48–101,arXiv:0807.3033 [hep-ph].

[10]STARCollaboration,M.M.Aggarwal,etal.,K∗0productioninCu+CuandAu+Au

collisionsat√sN N =62.4GeVand200GeV,Phys.Rev.C84(2011)034909, arXiv:1006.1961 [nucl-ex].

[11]STARCollaboration,J.Adams,etal.,K(892)0resonanceproductioninAu+Au

andp+pcollisionsat√sNN=200GeVatSTAR,Phys.Rev.C71(2005)064902,

arXiv:nucl-ex/0412019 [nucl-ex].

[12]STAR Collaboration,B.I.Abelev,etal.,Strangebaryonresonanceproductionin

sN N =200-GeVp+pandAu+Aucollisions,Phys.Rev.Lett.97(2006)132301, arXiv:nucl-ex/0604019 [nucl-ex].

[13]ALICECollaboration,S.Acharya,etal.,Suppressionof(1520)resonance pro-ductionincentralPb–Pbcollisionsat√sNN=2.76TeV,Phys.Rev.C99(2019)

024905,arXiv:1805.04361 [nucl-ex].

[14]ALICECollaboration, B.Abelev,et al., K(892)0 and φ(1020)production in Pb–Pbcollisionsat√sNN =2.76TeV,Phys.Rev.C91(2015)024609,arXiv:

1404.0495 [nucl-ex].

[15]ALICECollaboration,S.Acharya,etal.,Productionoftheρ(770)0mesoninpp

andPb–Pbcollisionsat√sNN=2.76TeV,Phys.Rev.C99 (6)(2019)064901,

arXiv:1805.04365 [nucl-ex].

[16]STARCollaboration,B.I.Abelev,etal.,Energyandsystemsizedependenceof

φmesonproductioninCu+CuandAu+Aucollisions,Phys.Lett.B673(2009) 183–191,arXiv:0810.4979 [nucl-ex].

[17]ALICECollaboration,J.Adam,etal.,ProductionofK∗(892)0andφ(1020)in

p–Pbcollisionsat√sNN=5.02TeV,Eur.Phys.J.C76 (5)(2016)245,arXiv:

1601.07868 [nucl-ex].

[18]ALICECollaboration,B.Abelev,etal.,ProductionofK(892)0andφ(1020)in

pp collisionsat√s=7 TeV,Eur.Phys.J.C72(2012)2183,arXiv:1208.5717 [hep-ex].

[19]STARCollaboration,B.I.Abelev,etal.,Hadronicresonanceproductionind+Au collisionsat√sN N =200-GeVatRHIC,Phys.Rev.C78(2008)044906,arXiv: 0801.0450 [nucl-ex].

[20]Particle Data Group Collaboration, M. Tanabashi, et al., Review of particle physics,Phys.Rev.D98 (3)(2018)030001.

[21]G.E.Brown,M.Rho, ScalingeffectiveLagrangiansinadensemedium, Phys. Rev.Lett.66(1991)2720–2723.

[22]M.Bleicher,J.Aichelin,Strangeresonanceproduction:probingchemical and thermalfreezeoutinrelativisticheavyioncollisions,Phys.Lett.B530(2002) 81–87,arXiv:hep-ph/0201123 [hep-ph].

[23]G.Torrieri,J.Rafelski,Strangehadronresonancesasasignatureoffreezeout dynamics,Phys.Lett.B509(2001)239–245,arXiv:hep-ph/0103149 [hep-ph]. [24]S.C.Johnson,B.V.Jacak,A.Drees,Rescatteringofvectormesondaughtersin

high-energyheavyioncollisions,Eur.Phys.J.C18(2001)645–649,arXiv:nucl -th/9909075 [nucl-th].

[25]C.Markert,R.Bellwied,I.Vitev,Formationanddecayofhadronicresonances intheQGP,Phys.Lett.B669(2008)92–97,arXiv:0807.1509 [nucl-th]. [26]A.Ilner,J.Blair,D.Cabrera,C.Markert,E.Bratkovskaya,Probingthehotand

densenuclearmatterwith K,K¯∗vectormesons,Phys.Rev.C99 (2)(2019) 024914,arXiv:1707.00060 [hep-ph].

(9)

[27]V.M.Shapoval,P.Braun-Munzinger,Yu.M.Sinyukov,K(892)andφ(1020) pro-ductionandtheirdecayintothehadronicmediumattheLargeHadron Col-lider,Nucl.Phys.A968(2017)391–402,arXiv:1707.06753 [hep-ph]. [28]R.Rapp,E.V.Shuryak,Resolvingtheanti-baryonproductionpuzzlein

high-energyheavyioncollisions,Phys.Rev.Lett.86(2001)2980–2983,arXiv:hep -ph/0008326 [hep-ph].

[29]C.Song,V.Koch,Chemicalrelaxationtime ofpionsinhothadronicmatter, Phys.Rev.C55(1997)3026–3037,arXiv:nucl-th/9611034 [nucl-th]. [30]J. Rafelski,J.Letessier, G.Torrieri, Strangehadronsand their resonances:a

diagnostictool ofQGPfreezeout dynamics,Phys. Rev.C64(2001) 054907, arXiv:nucl-th/0104042 [nucl-th];

J.Rafelski,J.Letessier,G.Torrieri,Phys.Rev.C65(2002)069902(Erratum). [31]S. Singha,B. Mohanty, Z.-W.Lin,Studying re-scatteringeffectin heavy-ion

collisionthroughK*production,Int.J.Mod.Phys.E24 (05)(2015)1550041, arXiv:1505.02342 [nucl-ex].

[32]A.G.Knospe,C.Markert,K.Werner,J.Steinheimer,M.Bleicher,Hadronic reso-nanceproductionandinteractioninpartonicandhadronicmatterintheEPOS3 modelwithandwithoutthehadronicafterburnerUrQMD,Phys.Rev.C93 (1) (2016)014911,arXiv:1509.07895 [nucl-th].

[33]A.Andronic,P.Braun-Munzinger,J.Stachel,Thermalhadronproductionin rel-ativisticnuclearcollisions:theHadronmassspectrum,thehorn,andtheQCD phasetransition,Phys.Lett.B673(2009)142–145,arXiv:0812.1186 [nucl-th]; A.Andronic,P.Braun-Munzinger,J.Stachel,Phys.Lett.B678(2009)516 (Erra-tum).

[34]A.Andronic, P.Braun-Munzinger, K.Redlich, J.Stachel,Decoding the phase structureofQCDviaparticle productionat highenergy,Nature561 (7723) (2018)321–330,arXiv:1710.09425 [nucl-th].

[35]J. Cleymans, K. Redlich, Chemical and thermal freezeout parameters from 1 AGeVto200 AGeV,Phys.Rev.C60(1999)054908,arXiv:nucl-th/9903063 [nucl-th].

[36]S.Chatterjee,S.Das,L.Kumar,D.Mishra,B.Mohanty,R.Sahoo,N. Sharma, Freeze-outparametersinheavy-ioncollisionsatAGS,SPS,RHIC,andLHC ener-gies,Adv.HighEnergyPhys.2015(2015)349013.

[37]W.Broniowski,W.Florkowski,B.Hiller,Thermalanalysisofproductionof res-onancesinrelativistic heavyion collisions,Phys. Rev.C 68(2003) 034911, arXiv:nucl-th/0306034 [nucl-th].

[38]R.Rapp,π+-π−emissioninhigh-energynuclearcollisions,Nucl.Phys.A725 (2003)254–268,arXiv:hep-ph/0305011 [hep-ph].

[39]S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman,T.A.Lasinski,G.R.Lynch,M.S.Rabin,F.T.Solmitz,π π partialwave analysisfromreactionsπ+pπ+ π++andπ+p→K+ K− ++ at 7.1-GeV/c,Phys.Rev.D7(1973)1279.

[40]M.J.Matison,A.Barbaro-Galtieri,M.Alston-Garnjost,S.M.Flatte,J.H.Friedman, G.R.Lynch,M.S.Rabin,F.Solmitz,StudyofK+ π−scatteringinthereaction

K+pK+π++at12-GeV/c,Phys.Rev.D9(1974)1872.

[41]M.Bleicher,etal.,Relativistichadronhadroncollisionsintheultrarelativistic quantummoleculardynamicsmodel,J.Phys.G25(1999)1859–1896,arXiv: hep-ph/9909407 [hep-ph].

[42]ALICECollaboration,J.Adam,etal.,K∗(892)0andφ(1020)mesonproduction athightransversemomentuminppandPb–Pbcollisionsat√sNN=2.76TeV,

Phys.Rev.C95 (6)(2017)064606,arXiv:1702.00555 [nucl-ex].

[43]ALICECollaboration,P.Cortese,etal.,ALICE:physicsperformancereport,vol. II,J.Phys.G32(2006)1295–2040.

[44]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[45]ALICECollaboration,B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[46]ALICE Collaboration, J.Adam, et al., Centrality dependenceof the charged-particlemultiplicitydensityatmidrapidityinPb–Pbcollisionsat√sNN=5.02

TeV,Phys.Rev.Lett.116 (22)(2016)222302,arXiv:1512.06104 [nucl-ex].

[47]ALICECollaboration,K.Aamodt,etal.,Centralitydependenceofthe charged-particlemultiplicitydensityatmid-rapidityinPb–Pbcollisionsat√sN N=2.76 TeV,Phys.Rev.Lett.106(2011)032301,arXiv:1012.1657 [nucl-ex].

[48]ALICECollaboration,J.Adam,etal.,Determinationoftheeventcollisiontime withtheALICEdetectorattheLHC,Eur.Phys.J.Plus132 (2)(2017)99,arXiv: 1610.03055 [physics.ins-det].

[49]ALICECollaboration,P.Cortese,etal.,ALICEtechnicaldesignreportonforward detectors:FMD,T0andV0,CERN-LHCC-2004-025,2004.

[50]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem, J.Instrum.8(2013)P10016,arXiv:1306.3130 [nucl-ex].

[51]ALICECollaboration,S.Acharya,etal.,Productionofchargedpions,kaonsand (anti-)protonsinPb-Pbandinelasticppcollisionsat√sNN=5.02TeV,arXiv:

1910.07678 [nucl-ex].

[52]P.Z.Skands,TuningMonteCarlogenerators:thePerugiatunes,Phys.Rev.D82 (2010)074018,arXiv:1005.3457 [hep-ph].

[53]P.Skands,S.Carrazza,J.Rojo,TuningPYTHIA8.1:theMonash2013tune,Eur. Phys.J.C74 (8)(2014)3024,arXiv:1404.5630 [hep-ph].

[54]X.-N.Wang,M.Gyulassy,HIJING:aMonteCarlomodelformultiplejet produc-tioninpp,pAandAAcollisions,Phys.Rev.D44(1991)3501–3516. [55] R.Brun,F.Bruyant,F.Carminati,S.Giani,M.Maire,A.McPherson,G.Patrick,

L.Urban,GEANT:DetectorDescriptionandSimulationTool,CERNProgram Li-brary.LongWriteupW5013,1993,http://cds.cern.ch/record/1082634. [56]C.Loizides,J.Kamin,D.d’Enterria,ImprovedMonteCarloGlauberpredictions

at present andfuture nuclearcolliders,Phys. Rev.C97 (5)(2018)054910, arXiv:1710.07098;

C.Loizides,J.Kamin,D.d’Enterria,Phys.Rev.C99 (1)(2019)019901(Erratum). [57]ALICECollaboration,B.Abelev,etal.,Productionofchargedpions,kaonsand protonsatlargetransversemomentainppandPb–Pbcollisionsat√sNN=2.76

TeV,Phys.Lett.B736(2014)196–207,arXiv:1401.1250 [nucl-ex].

[58]C.Tsallis,PossiblegeneralizationofBoltzmann-Gibbsstatistics,J.Stat.Phys.52 (1988)479–487.

[59]STARCollaboration,B.I.Abelev,etal.,Strangeparticleproductioninp+p col-lisions at √sNN = 200GeV, Phys. Rev.C75 (2007)064901, arXiv:nucl-ex/

0607033 [nucl-ex].

[60]E.Schnedermann,J.Sollfrank,U.W.Heinz,Thermalphenomenologyofhadrons from200AGeVS+Scollisions,Phys.Rev.C48(1993)2462–2475,arXiv:nucl -th/9307020 [nucl-th].

[61]ALICECollaboration,K.Aamodt,etal.,Two-pionBose-Einsteincorrelationsin centralPb–Pbcollisionsat√sN N=2.76TeV,Phys.Lett.B696(2011)328–337, arXiv:1012.4035 [nucl-ex].

[62]M.A.Lisa,S.Pratt,R.Soltz,U.Wiedemann,Femtoscopyinrelativisticheavyion collisions,Annu.Rev.Nucl.Part.Sci.55(2005)357–402,arXiv:nucl-ex/0505014 [nucl-ex].

[63]S.A. Bass, A. Dumitru,M. Bleicher, L. Bravina, E.Zabrodin,H. Stoecker, W. Greiner,Hadronicfreezeout followingafirstorderhadronizationphase tran-sitioninultrarelativisticheavyioncollisions,Phys.Rev.C60(1999)021902, arXiv:nucl-th/9902062 [nucl-th].

[64]J.Stachel,A.Andronic,P.Braun-Munzinger,K.Redlich,ConfrontingLHCdata withthestatisticalhadronizationmodel,J.Phys.Conf.Ser.509(2014)012019, arXiv:1311.4662 [nucl-th].

[65]C.Shen,U.Heinz,P.Huovinen,H.Song,RadialandellipticflowinPb+Pb col-lisionsattheLargeHadronColliderfromviscoushydrodynamics,Phys.Rev.C 84(2011)044903,arXiv:1105.3226 [nucl-th].

[66]V.Minissale,F.Scardina,V.Greco,Hadronsfrom coalescenceplus fragmen-tationinAAcollisionsatenergiesavailableattheBNLRelativisticHeavyIon CollidertotheCERNLargeHadronCollider,Phys.Rev.C92 (5)(2015)054904, arXiv:1502.06213 [nucl-th].

ALICECollaboration

S. Acharya

141

,

D. Adamová

94

,

A. Adler

74

, J. Adolfsson

80

,

M.M. Aggarwal

99

,

G. Aglieri Rinella

33

,

M. Agnello

30

, N. Agrawal

10

,

53

,

Z. Ahammed

141

,

S. Ahmad

16

, S.U. Ahn

76

, A. Akindinov

91

,

M. Al-Turany

106

,

S.N. Alam

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

87

, B. Alessandro

58

,

H.M. Alfanda

6

, R. Alfaro Molina

71

,

B. Ali

16

, Y. Ali

14

, A. Alici

10

,

26

,

53

,

A. Alkin

2

,

J. Alme

21

,

T. Alt

68

,

L. Altenkamper

21

,

I. Altsybeev

112

, M.N. Anaam

6

, C. Andrei

47

, D. Andreou

33

,

H.A. Andrews

110

,

A. Andronic

144

,

M. Angeletti

33

,

V. Anguelov

103

,

C. Anson

15

,

T. Antiˇci ´c

107

,

F. Antinori

56

,

P. Antonioli

53

,

R. Anwar

125

, N. Apadula

79

, L. Aphecetche

114

,

H. Appelshäuser

68

,

S. Arcelli

26

,

R. Arnaldi

58

,

M. Arratia

79

,

I.C. Arsene

20

,

M. Arslandok

103

,

A. Augustinus

33

, R. Averbeck

106

,

S. Aziz

61

, M.D. Azmi

16

,

A. Badalà

55

,

Figura

Fig. 2 shows the K ∗ 0 / K and φ/ K ratios as a function of  dN ch / d η  1 / 3 [ 46 , 47 , 51 ] for Pb–Pb collisions at √ s NN = 2.76 [ 14 , 42 ] and 5.02 TeV, p–Pb collisions at √ s NN = 5.02 TeV [ 17 ] and pp
Fig. 5. Particle yield ratios (K ∗ 0 + K ∗ 0 ) / ( π + + π − ) in panel (a) and (2 φ ) / ( π + + π − ) in panel (b), both as a function of p T for centrality classes 0–10% and 70–80% in Pb–Pb collisions at √ s NN = 5.02 TeV
Fig. 6. Particle yield ratios (p + p) / (K ∗ 0 + K ∗ 0

Riferimenti

Documenti correlati

We have considered the case of a bunched, uncooled beam and shown how the damped polarization oscillations seen with the rf solenoid operating at a fixed frequency (and on

Certo, occorrerà mettere in conto la difficoltà di innescare sui contenuti necessari e vincolati della nuova legge di bilancio una giurisprudenza costituzionale di analogo rigore

Using the previously generated data from the original cohorts of NCWS, coeliac disease and control subjects ( table 1 ), 1 we configured a discriminant function to identify

In view of the wide heterogeneity in study design, time of follow-up, neurodevelopmental tests used and the very small number of included cases further future large prospective

The experimental applications related to the fouling phenomenon and the consequent results are affected by numerous problems, summarized as follows: (i) actual conditions

The integration of RNAseq data, generated on tumors obtained from untreated and EPZ-011989-treated mice, and results from functional studies, carried out on the PDX-derived ES-1

I granuli, di forma tonda od ovale, presentavano un core elettron-denso (Fig. 22b); tra i sani e i parassitati “lontano” dal parassita non si sono registrate differenze

Therefore, small changes in endothelial cell sizes after surgery (AVG-post for group A) were related to an excellent visual outcome (BCVA &gt; 85 letters), whereas sizeable