• Non ci sono risultati.

Nonylphenol deca-ethoxylate removal from wastewater by UV/H2O2: Degradation kinetics and toxicity effects

N/A
N/A
Protected

Academic year: 2021

Condividi "Nonylphenol deca-ethoxylate removal from wastewater by UV/H2O2: Degradation kinetics and toxicity effects"

Copied!
7
0
0

Testo completo

(1)

Maurizio

Carotenuto

a

,

Giovanni

Libralato

b,∗

,

Hatice

Gürses

a

,

Antonietta

Siciliano

b

,

Luigi

Rizzo

c

,

Marco

Guida

b

,

Giusy

Lofrano

d

aDipartimentodiChimicaeBiologia“AdolfoZambelli”,Università,degliStudidiSalerno,viaGiovanniPaoloII132,84084,Fisciano,SA,Italy bDepartmentofBiology,UniversityofNaplesFedericoII,ComplessoUniversitariodiMonteS.Angelo,ViaCinthiaed.7,80126,Naples,Italy cDepartmentofCivilEngineering,UniversityofSalerno,viaGiovanniPaoloII132,84084,Fisciano,SA,Italy

dCentroServiziMetrologicieTecnologiciAvanzati(CeSMA),UniversityofNaplesFedericoII

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17December2018

Receivedinrevisedform28January2019 Accepted30January2019

Availableonline3February2019 Keywords:

Nonylphenolethoxylates Wastewater

Advancedoxidationprocesses Radicalscavengers

Ecotoxicology

a

b

s

t

r

a

c

t

Nonylphenolethoxylated(NPEOs)nonionicsurfactantshavebeenincreasinglyusedindifferent indus-trial,commercialanddomesticapplications.Unfortunately,theyareclassifiedasendocrinedisrupting chemicals(andalsoconsideredascontaminantsofemergingconcern)havingadverseeffectsonanimal andhumanreproduction.Thetreatmentofnonylphenol-decaethoxylated(NP-10)viaH2O2/UV-C

pro-cessatdifferentreactiontimes(5,10,20,40,80min)andH2O2concentrationswasinvestigated.After

80mintreatmenttheremovalratesofNP-10solution(initialconcentration100mg/L)indeionizedwater were88%,97%and98%for10,20and100mg/LofH2O2respectively.Thesameexperimentalconditions

wereappliedtorealwastewaterspikedwith100mg/LofNP-10showingthefollowingremovalrates: 84%,98%and99%,respectively.ThepossiblecontributionofdifferentradicalstoNP-10degradationby H2O2/UV-Ctreatmentwasinvestigatedbyevaluatingtheeffectofdifferentradicalscavengers(namely

NO3−,NaCl,Na2SO4,Na2CO3,KH2PO4andphatalate).Toxicitydata(Aliivibriofischeri,Raphidocelis

sub-capitataandDaphniamagna)ontreatedsolutionsandwastewaterhighlightedthepresenceofresidual toxicityinallsamplesevidencingthatnocompletemineralizationoccurred.

©2019InstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

1. Introduction

Nonylphenol ethoxylates (NPEOs) are surface active agents

(surfactants)thatarepartofthebroadercategoryofsurfactants

knownasalkylphenolethoxylates(APEs).Dependingonthedegree

ofethoxylation,NPEOspresentoctanol-waterpartitioning

coeffi-cients(logKow)rangingfrom4.20to4.50changingitssuitability

for the specific use, generally, at relatively low cost (Mcleese

etal.,1981;Ciabattietal.,2009).Thesecharacteristicsmakethem

suitablefordifferentindustrial,commercialanddomestic

applica-tionsinsurfacecleaner,lubricant,shampoo,anddetergents(CEPA,

1999).NPEOscanreachfromtenstohundredsofmg/Linindustrial

effluents(ZhouandZhang,2017;Chokweetal.,2017).

∗ Correspondingauthorat:DepartmentofBiology,UniversityofNaplesFederico II,ComplessoUniversitariodiMonteS.Angelo,ViaCinthiaed.7,80126,Naples,Italy.

E-mailaddresses:mcarotenuto@unisa.it(M.Carotenuto),

giovanni.libralato@unina.it(G.Libralato),gurses.hatice90@gmail.com(H.Gürses), antonietta.siciliano@unina.it(A.Siciliano),l.rizzo@unisa.it(L.Rizzo),

marguida@unina.it(M.Guida),glofrano@unisa.it(G.Lofrano).

Althoughthe toxicity ofNPEOs varies,rangingfrom

moder-atelytoxictotoxictofishandaquaticorganismsonanacutebasis

and increasingas thelengthoftheethoxylatechain(molecular

weight)decreases,agrowingconcernisposedbytheirby-products,

mainly nonylphenol (NP), because of theirpotential estrogenic

effecttotheaquaticbiota(Chenetal.,2007).Accordingto

NP-10safetydatasheetandPAN-Pesticedatabase(2019),onlyacute

toxicityeffectsareavailablesuggestinglow-mediumtoxicity

lev-els,neverthelessitspotentialactivityasendocrinedisruptor(i.e.

variousbacteriamedianeffectconcentration(EC50)>1000mg/L;

EC50=17mg/LforScenedesmusquadricaudaand15mg/LforLemna

minor; lethal median concentration (LC50)=9.3–21.4mg/L and

20.9mg/LforDaphniamagnaandGammaruspulex(48h),

respec-tively;fishLC50=3.8-7.7mg/LforPimephalespromelas(96h)and

16.4mg/LforPoeciliareticulata(48h)).

NPisapriorityhazardoussubstance(PHS)undertheEU’sWater

FrameworkDirective(WFD)andisconsideredanemergingorganic

pollutantthatmimicsthenaturalhormone17␤-estradiol

interfer-ingwithorganisms’reproduction(LeeandLee,1996;Soléetal.,

2000;Reisetal.,2014).InviewofNPEO’stoxicity,theEuropean

UnionunderDirectiveNo.,2003/53/ECprohibitedtheuseofNPand

https://doi.org/10.1016/j.psep.2019.01.030

(2)

Fig.1.a)Verticalreactorconfiguraton;b)Horizontalreactorconfiguration.

NPEO’sandrecommendedtheirreplacementwithcostlyalcohol

ethoxylates.Currently,manufacturerswithintheEUcannot

pro-ducetextilesorclothingcontainingNPorNPEO,butthisdoesnot

meanthattheycanbefoundinwastewatergeneratedfromthe

wash-offofextra-UEmanufacturedclothes(Lofranoetal.,2016a,b).

TheEU 2004ban onmanufactureof textiles and clothing

con-tainingNP(EOs)ledtoafallinNPinUKwaterbodies,butupto

20%oftheNPlevelsfoundinUKwaterbodiescomesfrom

wash-offfromimportedtextilesandclothing(UKEnvironmentAgency,

2013).

Moreover,NPstilloccursintheaquaticenvironmentwith

con-centrationsvaryingwidelyinsurfacewaterfromtensofng/L(Brix

etal.,2010)todozensofmg/L(Pengetal.,2008).Duetolowcostand

higefficiency,NPEOarestillinuseindevelopingcountrieswhere

significantlyhighconcentrations(uptosometensofmg/L)are

detectedintheeffluentofindustrialwastewatertreatmentplants

(WTPs)(Maoetal.,2012).Theyarebeingdischargedcontinuously

intotheenvironmentandthusapropermanagementofsuchkind

ofwastewateris urgentlyrequired.Unfortunately,conventional

biological(such asactivatedsludge)processes arenot effective

inthetreatmentofsohigh(tensofmg/L)NPEOconcentrations,

thereforeasuitableadditionaltreatmentisnecessarytoimprove

theirreduction/removal.Accordingly,variousprocesseshavebeen

investigatedsuchasozonation(Lenzetal.,2004;Ledakowiczetal.,

2005),adsorption(Fanetal.,2011)andadvancedoxidation

pro-cesses(AOPs).AmongAOPs,dfferentmethodshavebeenstudied

inNPEOdegradation,namelygammaradiation/H2O2(Abbasetal.,

2015),UVC/H2O2,photo-Fenton(Karcietal.,2013),(S2O28−

)/UV-C(Olmez-Hancietal.,2013),heterogeneousFenton-likeprocess (Shahbazietal.,2014),heterogeneousphotocatalysis,

eletrochem-icaloxidation andphoto-assisted electrochemicaloxidation (Da

Silvaetal.,2015).However,althoughAOPsareknowntoaffect

water/wastewatertoxicity(Rizzo,2011;Lofranoetal.,2017),only

infewcasesthefinaleffluentwascheckedforresidual

ecotoxic-ity(Lenzetal.,2004;Ledakowiczetal.,2005;Karcietal.,2013;da Silvaetal.,2015),and,frequently,onlyonebiologicalmodelwas

usedlimitingdatainterpretationforecologicalriskassessmentof

NPEOs(Karcietal.,2013).

AmongstAOPs,H2O2/UV-Cisa well-establishedprocess,not

sensiblyaffectedbypH(Parsons,2004).

Inthepresent study,thedegradationofthenonionic

surfac-tantTergitolTMtypeNP-10(CASnumber:127087-87-0),usedin

cleanersanddetergents,paperandtextileprocessing,paintsand

coatings,agrochemicalsandmetalworkingfluidwasinvestigated

byusingH2O2/UV-Cprocess.Experimentswerecarriedoutintwo

reactorconfigurationstoevaluatetheeffectofi)deionizedwater

andspikedrealwastewater,ii)scavengers(CO3−andphtalates)

andintereferringsubstances(NO3−andSO4−).Theecotoxicityof

untreatedandtreatedsampleswasinvestigatedconsideringa

bat-teryoftoxicitytests(Aliivibriofischeri,Raphidocelissubcapitata,and

Daphniamagna).

2. Materialsandmethods

2.1. Chemicalsandanalyticaltechniques

TergitolTMtypeNP-10(C

35H64O11)waspurchasedfrom

Sigma-Aldrich(USA).Theformulationwasacolourlessandhighlywater

soluble.Ultrapurewater(UW)(Milli-Q®systemElix10,Merck

Mil-lipore,Billarica,MA,USA)wasusedforpreparationoftestsolutions.

AstocksolutionofH2O2 (30%w/w;SigmaAldrich,St.Louis,MO,

USA,)wasused.

A high-performance liquid chromatography (HPLC) system

equippedwitha module pump(Thermo SpectraSystem P2000)

and an UV–vis detector (Thermo SpectraSystem) was used for

TergitolTMdetermination.TergitolTMseparationwasachievedby

HypersilODSC18(150mm×4.6mm,5␮mparticlesizeThermo

FisherScientific,Waltham,MA,USA)reversedphasecolumnusing

amobilephaseofmethanol:water(90:10,v/v) ataflowrateof

1.0mL/min.Injectionvolume,absorbancewavelength,excitation

andemissionwavelengthsweresetat30␮L,275nm,230nmand

310nm, respectively. TergitolTM concentration was determined

accordingtothecalculationofpeakareasbyexternalcalibration.

Thelimitofdetectionwasidentifiedassignal-to-noiseratio(S/N)

equalto0.050mg/L.

Wastewater, originate from a municipal wastewater

treat-mentplant(WWTP),locatedinCampaniaregion(Italy)receiving

wastewater collected from urban households, agro-industries,

zootechnicalactivities,hospicesandotherfacilities.TheWWTPhad

anaveragecapacityof300,000p.e.,andanaverageflowrate

rang-ingof45,000m3d−1.Thetreatmentprocessincludes:i)Mechanical

pre-treatment (screening and pumping stations, grit and oil

removal);ii)Rainwatersection(primarysedimentationand

aer-atedstorage);iii)Secondarytreatment(nitrification-denitrification

andfinalsettling);andiv)Tertiarytreatment(gravityfiltrationon

sand),anddisinfectionwithperaceticacid.Wastewatersamples

werecharacterisedforbiologicaloxygendemand(BOD5),

chemi-caloxygendemand(COD),totalsuspendedsolids(TSS),nitrogen

asammonia(N-NH3),nitrate(NO3−),andnitrite(NO2−),andtotal

phosphorus(TotalP)accordingtoAPHA(2012).

2.2. Experimentalset-up

H2O2/UV-Cadvancedoxidationexperimentsincludedtwo

con-figurations:a)UV-Clamp,encasedinaquartztube,axiallycentered

respecttothereactorandimmersedintothesolution(vertical

con-figuration,VC);b)UV-Clamphorizontallypositioned10cmabove

(3)

trations(10,20,100mg/L)andreactiontimes(5,10,20,40,80min)

lookingforthebestoperativeconditionsofH2O2/UV-Cprocessin

deionizedwater(DW),comparingVCandHCconfigurationsforthe

degradationofTergitolTMconcentration(100mg/L).TheH

2O2

/UV-C process wascarried out atroom temperature(25±2◦C) and

naturalsolutionpH(5.5).Controlexperimentswerealsoconducted

toobserveTergitolTMdegradationintheabsenceofeitherUV-Cor

H2O2.

Thesecondexperimentalscenarioincludedtheserialaddition

totestingsolutionofcompoundsusuallyworkingasscavengers

ofhydroxyl radicals: (NaCl (1000mg/LCl–); Na2CO3 (300mg/L

CO32–), KH2PO4 (10mg/L PO43), NaNO3 (50 and 500mg/LNO3),

852mg/Lofphthalate(correspondingto1000mgO2/LofCOD)as

wellasinterferingsubstancesNa2SO4(500mg/LSO42–),inorderto

evaluatetheirpotentialeffects.

In the third experimental scenario, real wastewater (WW)

taken from a wastewater treatment plant (BOD5=18mg/L;

COD=48.5mg/L;TSS=46mg/L;N-NH3=1.42;N-NO3−=0.25mg/L;

N-NO2-=3.34mg/L;totalP=1.23mg/L)wasspikedwith100mg/L

TergitolTMevaluatingtheinfluenceofmatrixonthebehaviourof

theprocess.

Analysiswascarriedoutatleastinduplicateandreportedas

meanandsemi-dispersion.

Afterwithdrawalofthesamples,theresidualH2O2was

imme-diately quenched with few mL of catalase at 0.1g/L to allow

subsequenttoxicityanalysis.

2.4. Ecotoxicity

ToxicitytestswithA.fischeri,R.subcapitata,andD.magnawere

carriedoutontreated(100mg/LofTergitolTMindeionizedwater

andrealwastewaterspikedwith100mg/lofTergitolTMafter80min

ofphoto-oxidationtreatment)anduntreatedwastewatersamples

TergitolTM.Accordingtoqualityassuranceandqualitycontrol

pro-cedures,bioassaysincludedtheassessmentofnegativeandpositive

controlsaccordingtothecorrespondingstandardmethod.In

par-ticular,theacutebioluminescenceinhibitionassaywascarriedout

usingA.fischeri(NRRL-B-11177)accordingtoISO(2007).The

lumi-nescencewasmeasuredwitha Microtox® analyser(Model500,

AZUREnvironmental)after5and15minat15◦C.Testswerecarried

outintriplicate.DatawereanalysedwithMicrotoxOmnisoftware

andtheresultexpressedaspercentageofbioluminescence

inhibi-tion.

The chronic growth inhibition test with R. subcapitata was

carriedoutaccordingtoISO(2012).Cultureswerekeptin

Erlen-meyer flasks. The initial inoculum contained 104 cell/mL. The

specificgrowthinhibitionratewascalculatedconsidering6

repli-catesexposedat20±1◦Cfor72hundercontinuousillumination

(6000lx).Effectdatawereexpressedaspercentageofgrowth

inhi-bition.

Newborndaphnids(<24hold)wereexposedtosample

accord-ingtotheISO6341method.Daphnidsweregrownat 20±1◦C

revealedsignificantdifferencesamongtreatments,post-hoctests

werecarriedoutwithTukey’stest.Statisticalanalyseswere

per-formedusing Microsoft® Excel 2013/XLSTAT©-Pro(Version 7.2,

2003,Addinsoft,Inc.,Brooklyn,NY,USA).

Finally, toxicity datawere integrated accordingto Persoone

etal. (2003)and Lofranoet al.(2016a,b). Thehazard

classifica-tionsystemisbothbasedonPEorTU50includesaClassIforPE

b20%(score0)(orTU50<0.4),ClassIIfor20%PEb50%(score

1)(or0.4<TU50<1),ClassIIIfor50%≤PEb100%(score2)(or

1<TU50<10),ClassIVwhenPE=100%inatleastonetest(score

3)(10<TU50<100)andaClassVwhenPE=100%inallbioassays

(score4)(TU50>100).Finally,theintegratedclassweightscorewas

determinedbyaveragingthevaluescorrespondingtoeach

micro-biotestclassnormalisedtothemostsensitiveorganism(highest

score).

3. Resultsanddiscussion

3.1. Kineticstudies

ExperimentsonTergitolTMat100mg/Lcarriedoutunderdark

(100mg/LofH2O2)provedthattheuseofH2O2appliedalonedid

notallowanyreduction inNP-10concentration(Fig.2a,b).

Pre-liminarymeasurementsofUVabsorbancespectra(200–400nm)

ofuntreatedTergitolTMindicatedtwodistinctabsorbancebands<

300nm:i)apeakat224nmandii)anotherpeakat275nm

charac-teristicofmanyphenoliccompounds(Kimetal.,2005),evidencing

thatTergitolTM absorbslightintheUV C region.Thephotolysis

of100mg/Lof TergitolTM resultedin 20%and30%removal

effi-ciencyafter80mininHCandVC,respectively(Fig.2a,b).InKarci

etal.(2013),theUV Cphotolysisof100mg/LNP-10wasevaluated

ina3250mL-capacity,horizontallypositionedandbatch-operated

cylindricalphotoreactorwiththeUV Clightsource(40Wlamp,

1.4×10−5 EinsteinL−1 s−1at253.7nm)locatedinthecenterof

thephotoreactorina quartzsleeve.Accordingtotheirresultsa

removalrateof92%wasobtainedafter120min,evidencingthat

theefficiencywasstronglyaffectedbylamppower,geometryand

reactiontime.

Chen etal. (2007)evaluated thephotolysis of200mg/L

NP-10usinga125Whigh-pressuremercurylampwiththeprimary

wavelength of 365nm; an absorbance peak at 270nm

corre-sponding to the broken benzene ring was observed after 6h

irradiation.

H2O2/UV-CprocessresultedinaTergitolTMremovalof87,90

and 99%in VCconfiguration after80mintreatment, whereas a

removalof79,87and95%wasachievedinHCconfigurationafter

thesametreatmenttime,with10,20and100mg/LofH2O2,

respec-tively.

The rather poor NP-10 removal kinetics (k

NP-10=0.046±0.0007min−1)andefficienciesobtainedviaphotolyisis

(4)

concentra-Fig.2.KineticcurvesofTergitolTM(initialconcentration100mg/L)underdifferent processes:a)verticalconfiguration;b)horizontalconfiguration.

Table1

Kineticconstants±standarddeviationsforTergitolTMdegradationbyH

2O2/UV-Cin VCandHCconfigurations,respectively.

H2O2dose(mg/L) kVC(min−1) kHC(min−1)

10 0.024±0.002 0.024±0.003

20 0.051±0.003 0.030±0.003

100 0.150±0.007 0.074±0.008

tioninaccordancewiththefindingsofKarcietal.(2013)which

reportedthat thehighest NP-10removal ratecoefficient(k

NP-10=0.59±0.030min−1)wasachievedwithH2O2/UV-Cprocessat

aH2O2concentrationof340mgL−1

AsshowninTable1,TergitolTMabatementratesincreasedupon

increasingtheinitialH2O2 concentrationsfrom10 to100mg/L,

showingkineticconstantshigherinVCcomparedtoHC,except

ataninitialoxidantconcentrationof20mg/L.Thepositiveeffect

ofincreasingH2O2concentrationshasalreadybeenevidencedin

formerrelatedstudies(Arslan-Alaton,2010)andwasattributedto

theenhancedHO•production.

Inthepresentstudyafter20minofphotoxidationwith100mg/L

ofH2O2theremovalof100mg/LNP-10inVCandHCsetupreactor

was89%and82%,respectively.

3.2. Intereferingcompounds

Under the operating conditions described above (100mg/L

TergitolTMand100mg/LH

2O2),noneoftheintereferingsubstances

Fig.3.Effectsof:a)phatlatesandb)nitrateonphotoxidationrateofTergitolTMin VCreactor,overthetime.

(NaCl, Na2CO3, KH2PO4, Na2SO4) showeda significanteffect at

theinvestigatedconcentrations,butphthalatesandonlypartially

nitrate.Asmatteroffact,17%ofremovalofTergitolTMwasachieved

after80minofphotoxidationinpresenceof852mg/Lofphthalate

(Fig.3a).

The irradiation of nitrate-rich water leads to nitrite

forma-tionwithareactionquantumyielddependentontheexcitation

wavelength,temperature,pHandnitrateconcentration(Mackand

Bolton,1999).Photolysisofnitrateandnitriteresultsinthe

forma-tionofreactivespeciessuchasthe·OHradicalbutalsoNO·,NO2·,

ONOO·.AsshowninFig.3b,theremovalkineticsslightlyimproved

byincreasingthenitrateconcentration.

ItispossiblyduetotheOHradicalproductionfromtheNO3−

absorptionofUVaccordingtothefollowingreaction:

NO−3+h+H+→·NO2+·OH

Assumingthatthemolarratiobetweennitrateandhydroxyl

radicalswas1:6.6and1:0.65for50mg/Land500mg/Lofnitrate

respectively,itcanbestatedthatinthefirstcasethereisaslight

scanvengereffectofnitrate,whereasinthesecondonethereis

acontributionofradicalnitritetotheoxidationreactionatshort

time.

Unlikeofourresults,thepresenceofnitrate(5mg/L)affected

removal of bisphenol A (BPA) in previous experiments with

UV/H2O2(Parketal.,2014).However,itworthtonoticethatthe

(5)

Fig.4.a)Comparisonbetweenphotoxidationremovalof100mg/LTergitolTMfrom DWandWWinVCandHCreactoratthedifferentvaluesofH2O2concentrations; b)comparisonbetweenphotoxidationkineticcurvesof100mg/LofTergitolTMfrom DWandWW,inVCreactor.DashedlinesarethecurvefitforDWsampleswhereas dotlinesarethecurvefitofWWsamples.

1:23and1:46correspondingto150mg/land300mg/lofhydrogen

peroxiderespectively.

3.3. Realwastewater

Accordingtotheresultsachieved withdeionized water,the

removalofTergitolTMinVCreactorwashighercomparedtoHC

reactorinrealwastewaterforalltheH2O2concentrations(Fig.4a).

Therefore,thekineticstudyfortheevaluationoftheinfluenceof

thewatermatrixwascarriedonlyinVC.Asexpectedthe

kinet-ics contant in DW (0.0184±0.0013min−1, 0.024±0.004min−1,

0.072±0.004min−1 for 10, 20 and 100mgL−1 of H2O2

respec-tively) were higher than in WW (0.0096±0.0003min−1,

0.0156±0.0011min−1, 0.045±0.002min−1 for 10, 20 and

100mgL−1ofH2O2respectively).ByincreasingtheH2O2

concen-tration from10 to 100mg/L, after 80min of photoxidationthe

TergitolTMremovalwasabout76.97%,85.76%,99.69%and53.43%,

71.31%, 97.28% in DWand WW, respectively. After50min,the

treatmentwith100mg/lofH2O2carriedoutinDWachievedabout

97% ofTergitolTM removal,30minmore of photoxidationwere

requiredtoachievethesamevalueofTergitolTMremovalinWW.

Fig.5. Toxicity(asTU50)ofTergitolTMsolutions(100mg/L)treatedwithUV-C (VC)atthreeincreasingconcentrationsofH2O2(NP-10=0mg/L;C-10=10mg/L; C-20=20mg/L;andC-100=100mg/L)assessedconsideringA=A.fischeri,B=R. sub-capitata,andC=D.magna;datawithdifferentletters(a–b)aresignificantlydifferent (Tukey’s,p<0.05).

3.4. Ecotoxicologytests

3.4.1. Deionizedwater-basedsolutions

ToxicitydataonDW-basedsolutionsspikedwith100mg/Lof

NP-10andafter80minofphotoxidationtreatmentwithUV-C(VC)

atincreasingH2O2concentrations(NP-10=0mg/L;C-10=10mg/L;

C-20=20mg/L;andC-100=100mg/L)weresummarizedinFig.5

(A–C).Resultsshowedspecies-specificeffectswithincreasinglevel

oftoxicitydisplayedbyR.subcapitata<A.fischeri<D.magna.

Bac-teria(Fig.5A)didnotshowanysignificanttoxicityremovalafter

C-20andC-100,andaslighttoxicityincreaseafterC-10.Microalgae

(Fig.5B)presentedrelativelylowtoxicityeffectswithasignificant

reductionoftoxicityfrom31%(TergitolTM)to1%(C-10),while

toxi-cityincreasedinC-20(8%)andC-100(39%).InthecaseofD.magna

(Fig.5C),thetoxicitywassignificantlyhighercomparedtoFig.5A

andB,especiallyafterC-100treatment.Nosignificantreduction

oftoxicitywasdetectedafterTergitolTMtreatment,nevertheless

itwassignificantlyremoved(>90%).AccordingtoLofranoetal.

(2016a,b)andPersooneetal.(2003),toxicitydatawereintegrated.

Samplesweredeemedaspresentingbetween“slightacute

toxi-city”and“acutetoxicity”withahazardclassificationscoreof1.3

(6)

Fig.6.Toxicityeffects(as%ofeffect)ofwastewatersamplesspikedwith100mg/L ofNP-10andtreatedwithUV-CatthreeincreasingconcentrationsofH2O2 (C-10=10mg/L;C-20=20mg/L;andC-100=100mg/L)assessedconsideringA=A. fischeri,B=R.subcapitata,andC=D.magna;datawithdifferentletters(a–b)are significantlydifferent(Tukey’s,p<0.05).

Resultsstatedthat TergitolTM mineralizationwasnot complete,

andby-productscanstillexertanadverseeffectontarget

biolog-icalmodels.Similarly,itwasobservedinKarcietal.(2013)were

acutetheH2O2/UV-Cprocessultimatelyresultedinahigheracute

inhibitoryeffect(27%inhibition)thantheoriginalNP-10solution.

3.4.2. Wastewaterbasedexperiments

ToxicitydataonrealWWspikedwith100mg/LofTergitolTMand

after80minofphotoxidationtreatmentUV-C(atincreasingH2O2

concentrations (NP-10=0mg/L; C-10=10mg/L; C-20=20mg/L;

andC-100=100mg/L)inVCreactor,after80min,were

summa-rizedinFig.6(A–C)expressedaspercentageofeffect.Thetoxicity

ofwastewaterperse,beforespiking,induceda12%,10%and15%

effectinA.fischeri,R.subcapitataandD.magna,respectively.These

backgrounddatawereusedtonormalizethevaluesreportedin

Fig.6(A–C).AfterthephotoxidationtreatmentinpresenceofH2O2

increasingconcentrations,toxicityvalueswereonlyslightlyhigher

thaninDW(Fig.5)forA.fischeri(Fig.6A)andR.subcapitata(Fig.6B),

whiletoxicityinD.magna(Fig.6C)wasreducedespeciallyfor

C-10andC20,whileresidualtoxicitycanbedetectedforC-100(i.e.

thetoxicityinFig.6wasexpressedas%ofeffectandnotasTU50

likeinFig.5).Inallcases,thebestperformancewasobtainedwith

10mg/LofH2O2.AccordingtoLofranoetal.(2016a,Lofranoetal.,

2016bandPersooneetal.(2003),toxicity datawereintegrated.

Samplesweredeemedaspresentingbetween“acutetoxicity”and

“highacutetoxicity”withahazardclassificationscoreof2.7(2(A.

fischeri)+3(R.subcapitata)+3(D.magna)]/3(D.magna)).

4. Conclusions

Promisingremovalefficiency(upto99%)wasobservedafter

UV-C/H2O2 processconsideringtheverticalconfigurationofthe

reactorafter80minofreactiontimeofTergitolTM spiked

deion-izedwater.Similarly,inTergitolTMspikedwastewaters,theremoval

efficiencywasupto96%afterUV-C/H2O2processconsideringthe

verticalconfigurationofthereactorafter80min.InbothTergitolTM

spikeddeionizedwaterandrealwastewater,theefficiencyof

post-treatmenttoxicityreduction/removalremainedpoor,mainlydue

toreactionby-productsevidencingmedium-highlevelsofresidual

toxicity.Thus,furtherresearchisneededtooptimizethetreatment

processschemetoimprovethefinalecotoxicologicalqualityofthe

effluent.

Thecharacterizationofthedegradationproductscouldhelpto

theestimationoftheircontributiontotheoveralltoxicity.Ifthe

degradationproductsofTergitolwouldbebiodegradables,a

subse-quentbiologicaltreatmentstepcouldbeintegratedfortheremoval

of organicmatterand residualtoxicity after80min-H2O2/UV-C

treatment.

References

Abbas,W.,Bokhari,T.H.,Bhatti,I.A.,Iqbal,M.,2015.Degradationstudyofdisperse redF3BSbygammaradiation/H2O2.AsianJ.Chem.27(1),282.

APHA,2012.In:Rice,E.W.,Baird,R.B.,Eaton,A.D.,Clesceri,L.S.(Eds.),Water Envi-ronmentFederation,StandardMethods,2012.,editors.AmericanPublicHealth Association,AmericanWaterWorksAssociation.

Arslan-Alaton,I.,Akin,A.,Olmez-Hanci,T.,2010.Anoptimizationandmodeling approachforH2O2/UV-Coxidationofacommercialnon-ionictextilesurfactant

usingcentralcompositedesign.J.Chem.Technol.Biotechnol.85,493–501. Brix,R.,Postigo,C.,González,S.,Villagrasa,M.,Navarro,A.,Kuster,M.,deAlda,

M.J.,Barceló,D.,2010.Analysisandoccurrenceofalkylphenoliccompoundsand estrogensinaEuropeanriverbasinandanevaluationoftheirimportanceas prioritypollutants.Anal.Bioanal.Chem.396(3),1301–1309.

CEPA—CanadaEnvironmantalProtectionAct,1999.PrioritySubstancesList Assess-mentReport-NonylphenolandItsEthoxylates.EnvironmentCanada,Health Canada.

Chen,C.Y.,Wen,T.Y.,Wang,G.S.,Cheng,H.W.,Lin,Y.H.,Lien,G.W.,2007. Determin-ingestrogenicsteroidsinTaipeiwatersandremovalindrinkingwatertreatment usinghigh-flowsolid-phaseextractionandliquidchromatography/tandem massspectrometry.Sci.TotalEnviron.378(3),352–365.

Chokwe,T.B.,Okonkwo,J.O.,Sibali,L.L.,2017.Distribution,exposurepathways, sourcesandtoxicityofnonylphenolandnonylphenolethoxylatesinthe envi-ronment.WaterSa43,529–542.

Ciabatti,I.,Cesaro,F.,Faralli,L.,Fatarella,E.,Tognotti,F.,2009.Demonstrationofa treatmentsystemforpurificationandreuseoflaundrywastewater.Desalination 245,451–459.

daSilva,S.W.,Klauck,C.R.,Siqueira,M.A.,Bernardes,A.M.,2015.Degradationof thecommercialsurfactantnonylphenolethoxylatebyadvancedoxidation pro-cesses.J.Hazard.Mater.282,241–248.

DIRECTIVE2003/53/ECOFTHEEUROPEANPARLIAMENTANDOFTHECOUNCILof 18June2003amendingforthe26thtimeCouncilDirective76/769/EECrelating torestrictionsonthemarketinganduseofcertaindangeroussubstancesand preparations(nonylphenol,nonylphenolethoxylateandcement).

Fan,J.,Yang,W.B.,Li,A.M.,2011.Adsorptionofphenol,bisphenolAand nonylphe-nolethoxylatesontohypercrosslinkedandaminatedadsorbents.React.Funct. Polym.71,994–1000.

Hatchard,C.G.,Parker,C.A.,1956.Anewsensitivechemicalactinometer-II. Potas-siumferrioxalateasastandardchemicalactinometer.Proc.R.Soc.Lond.A235 (1203),518–536.

Karci,A.,Arslan-Alaton,I.,Bekbolet,M.,2013.Oxidationofnonylphenolethoxylates inaqueoussolutionbyUV-Cphotolysis,H2O2/UV-C,Fentonandphoto-Fenton

processes:aretheseprocessestoxicologicallysafe?WaterSci.Technol.68(8), 1801.

(7)

processesforantibioticremoval:areview.Curr.Org.Chem.21,1–14. Mack,J.,Bolton,J.R.,1999.Photochemistryofnitriteandnitrateinaqueoussolution:

areview.J.Photochem.Photobiol.A:Chem.128(1-3),1–13.

Mcleese,D.W.,Zitko,V.,Sergeant,D.B.,Burridge,L.,Metcalf,C.D.,1981.Lethalityand accumulationofalkylphenolsinaquaticfauna.Chemosphere10,723–730. Olmez-Hanci,I.,Arslan-Alaton,B.,2013.GencBisphenolAtreatmentbythehot

persulfateprocess:oxidationproductsandacutetoxicity.J.Hazard.Mater.263, 283–290.

Park,C.G.,Choi,E.S.,Jeon,H.W.,Lee,J.H.,Sung,B.W.,Cho,Y.H.,Ko,K.B.,2014.Effectof nitrateonthedegradationofbisphenolAbyUV/H2O2andozone/H2O2oxidation

inaqueoussolution.Desalin.WaterTreat.52(4-6),797–804.

Solé,M.,Castillo,M.J.L.D.,Porte,M.C.,Pedersen,K.L.,Barceló,D.,2000.Estro-genicity determinationinsewagetreatmentplantsandsurfacewatersfromthe Catalo-nianArea(NESpain).Environ.Sci.Technol.34,5076–5083.

UKEnvironmentAgency,2013.NonylphenolEthoxylates(NPE)inImportedTextiles. ReportVersion1.

Zhou,R.,Zhang,W.,2017.Treatmentofthehighconcentrationnonylphenol ethoxy-lates(NPEOs)wastewaterbyFentonoxidationprocess.Am.J.Analyt.Chem.8 (01),72.

Riferimenti

Documenti correlati

Measured and fitted fluorescence inten- sity vs modulation frequency, using the middle excited state of an N-V with excited-state level spacings (see Fig.. These results

We present an alternate proof, much quicker and more straightforward than the original one, of the celebrated F-conjecture on the ample cone of the moduli space M 0,n of stable

Due to differences in the metallurgical technology, forms and concentration of the occurring arsenic, in the configuration of the sewage system, as well as wastewater

Though applying “NaOH+Na2CO3” soften method to treat circulating cooling waterof the power plant, this paper studied the removal efficacy of scaling ions, such as Ca 2+ , Mg 2+ ,

The experiment was divided into two groups: ① It only uses indigenous microorganisms from the Yangtze River water and Ancient Canal water for simulating restoration of

The data reported demonstrate how c-met activation in bovine mammary epithelial cells induces multiple biological responses such as proliferation, motility and morphogenesis,

The work presents a comparison of performance of three different odour measurement methods (GC-MS, dynamic olfactometry, and eNose) to characterize odour emission from

*Depurazione delle acque : tecniche ed impianti per il trattamento delle acque di rifiuto /