• Non ci sono risultati.

Acclimation improves salt stress tolerance in Zea mays plants

N/A
N/A
Protected

Academic year: 2021

Condividi "Acclimation improves salt stress tolerance in Zea mays plants"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Journal

of

Plant

Physiology

j o u r n a l ho me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j p l p h

Physiology

Acclimation

improves

salt

stress

tolerance

in

Zea

mays

plants

Camilla

Pandolfi

a,b,∗

,

Elisa

Azzarello

b

,

Stefano

Mancuso

b

,

Sergey

Shabala

a

aSchoolofLandandFood,UniversityofTasmania,PrivateBag54,Hobart,Tas7001,Australia

bDepartmentofAgrifoodandEnvironmentalScience,UniversityofFlorence,VialedelleIdee30,50019SestoFiorentino,FI,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6March2016

Receivedinrevisedform15June2016 Accepted16June2016

Availableonline23June2016 Keywords: Acclimation Ionchannels Primingsalinity Zeamays Vacuolarsequestration

a

b

s

t

r

a

c

t

Plantsexposuretolowlevelsalinityactivatesanarrayofprocessesleadingtoanimprovementofplant stresstolerance.Althoughthebeneficialeffectofacclimationwasdemonstratedinmanyherbaceous species,underlyingmechanismsbehindthisphenomenonremainpoorlyunderstood.Inthepresentstudy wehaveaddressedthisissuebyinvestigatingionicmechanismsunderlyingtheprocessofplant acclima-tiontosalinitystressinZeamays.Effectofacclimationwereexaminedintwoparallelsetsofexperiments: agrowthexperimentforagronomicassessments,sapanalysis,stomatalconductance,chlorophyll con-tent,andconfocallaserscanningimaging;andalabexperimentforinvivoionfluxmeasurementsfrom roottissues.Beingexposedtosalinity,acclimatedplants(1)retainmoreK+butaccumulatelessNa+in

roots;(2)havebettervacuolarNa+sequestrationabilityinleavesandthusarecapableofaccumulating

largeramountsofNa+intheshootwithouthavinganydetrimentaleffectonleafphotochemistry;and

(3)relymoreonNa+forosmoticadjustmentintheshoot.Atthesametime,acclimationaffectwasnot

relatedinincreasedrootNa+exclusionability.Itappearsthateveninasuchsalt-sensitivespeciesas

maize,Na+exclusionfromuptakeisofamuchlessimportancecomparedwiththeefficientvacuolarNa+

sequestrationintheshoot.

©2016ElsevierGmbH.Allrightsreserved.

1. Introduction

Saltstressinplantsisoneofthemaincauseslimiting

agricul-turalproductivityintheworld’sirrigatedland.Awaytotacklethe

problemistotrytoenhanceplanttolerancetosaltstressby

under-standingbasicnaturalmechanismsthatnaturallyoccurinplants

underchangingenvironmentalconditions.Assuch,acclimationto

externalenvironmentalchangesoccursinplantsthanksto

inter-naladjustmentswithintissuesandcells,enablingcellmetabolism

toproceedunderthesesomewhatalteredconditions(

Demmig-Adamsetal.,2008).Itwasreportedthatsalttoleranceofmany

plant species can be increased by previousexposure to a low

levelofstressforacertainperiodoftime(Amzallagetal.,1990;

BethkeandDrew,1992;Umezawaetal.,2000;Silveiraetal.,2001; Djanaguiramanetal.,2006).Reportedbeneficialeffectsincluded

improvedsurvival,growthrateandyield(Amzallagetal.,1990;

Abbreviations:DW,dryweight;EK,equilibriumpotential;FW,freshweight;Gs, stomatalconductance;KOR,outwardlyrectifyingpotassiumchannel;MIFE, micro-electrodeionfluxestimationtechnique;NHX,vacuolarNa+/H+antiporters;NSCC, non-selectivecation;SOS1,saltoverlaysensitiveantiporters1;PM,plasma mem-brane;PCD,programmedcelldeath.

∗ Correspondingauthorat:DepartmentofAgrifoodandEnvironmentalScience, UniversityofFlorence,VialedelleIdee30,SestoFiorentino,FI,50019,Italy

E-mailaddress:camilla.pandolfi@unifi.it(C.Pandolfi).

Djanaguiraman et al., 2006). However,the physiological

mech-anisms beyond this acquired resistance have not been clearly

elucidated.Umezawaetal.(2000)relatedthebetterperformance

ofacclimatedsoybeantoareducedaccumulationofNa+inplant

leaves,whereasSahaetal.(2010)andOttowetal.(2005)relatedit

toanimprovementintheabilitytowithstandosmoticstress.Ata

cellularlevel,salinitystresscanbedistinguishedbetweenitsionic

andosmoticcomponentthankstotheworkofMunns(1993)who

developedamodelforthewhole-plantlevel.Inourrecentwork

onpeas(Pandolfietal.,2012)wehaveshownthatacclimationin

non-ionic(iepolyethyleneglycol)isotonicmediawasnotas

effi-cientasinNaCl,suggestingthatacclimationtosalinityisrelated

totheion-specificrather thantheosmoticcomponent.

Further-more,metabolicacclimationviapreviousexposuretoalowlevel

ofsalinitywasinducedprimarilyinrootsandwasrelatedtoabetter

regulationofxylemionloading(Pandolfietal.,2012).

Oneofthehallmarksofdetrimentaleffectsofsalinity atthe

tissuelevelisK+effluxfromplantroots(ShabalaandCuin,2008;

Cuinetal.,2012;Wuetal.,2013)viabothdepolarization-activated

outward-rectifyingK+(KOR;Chenetal.,2007)andROS-activated

non-selectivecation(NSCC;Boseetal.,2014)channels.Thisefflux

disturbscytosolicK+ homeostasis(Cuinetal.,2003),withmajor

implicationstocellmetabolismanditsfate(e.g.transitionto

pro-grammedcelldeath;Shabalaet al.,2007;ShabalaandPottosin,

2014).For this reason, a strongcorrelation betweenplant’s K+

http://dx.doi.org/10.1016/j.jplph.2016.06.010 0176-1617/©2016ElsevierGmbH.Allrightsreserved.

(2)

retentionabilityandsalttolerancehasbeenobservedinbothroot (Chenetal.,2007;Cuinetal.,2008;Smethurstetal.,2008)andleaf

(Wuetal.,2013)tissuesinseveralspecies.Anotherkey

determi-nantofsalinitytoleranceisNa+exclusionfromthecytosol.Na+/H+

antiportersare thoughttodrivetheactivetransport ofNa+ out

ofplantcells(ApseandBlumwald,2007),eitherbacktoexternal

media,orintovacuole.Overexpressionoftheplasmamembrane

Na+/H+antiporterSOS1hasbeenfoundtoreduceNa+

accumula-tionandimprovesalinitytoleranceintransgenicArabidopsis(Shi

etal.,2003),whileefficientsequestrationofNa+inthevacuolesby

meansofNa+/H+antiportersfromtheNHXfamilywasalsoessential

toconfersalinitytoleranceinarangeofplantspecies(Apseetal.,

1999).Inthelattercase,inadditiontoavoidingaccumulationof

toxicNa+inthecytosol,vacuolarNa+sequestrationalsocontributes

totheturgormaintenance(Zhangetal.,2001;Yokoietal.,2002).

Compartmentalizationofsodiuminthevacuolehasbeenreported

asoneofthecluetosaltadaptation(MunnsandTester,2008).

Vac-uolarNHXproteins(NHX1andNHX2;NHX=Na+/H+exchanger)

areconsideredthemainplayersinsodiumcompartmentalization

inthevacuoles(Apseetal.,1999,2003;Blumwald,2000).More

recently,vesicletraffickinghasbeendescribedasacontributorfor

sodiumcompartmentation(Liuetal.,2007;Hamajietal.,2009;

Qiu,2012).ControlofNa+-permeableslow(SV)andfast(FV)

vac-uolarchannelsisalsoessentialforeffectiveNa+retentioninvacuole

(Bonales-Alatorreetal.,2013).

Theaimofthisstudywastorevealtheroleandrelative

contribu-tionoftheionicmechanismsthatplayaroleinplantacclimationto

salinity.Thiswasachievedbyawhole-plantphysiological

assess-mentofplantspre-treatedwithNaClandbystudyingpatternsof

ionfluxacrosscellularmembranesinsalt-exposedacclimatedand

non-acclimatedroots.Inaddition,weaimedtoseeifacclimation

effectreportedearlierforC3Pisumsativumspecies(Pandolfietal.,

2012)couldbealsoobservedinmoretolerantC4Zeamaysplants,

whereNa+isconsideredtobeabeneficialnutrient(Subbaraoetal.,

2003).Our resultssuggestthat exposing Zeamays tomoderate

salinityactivatesasetofphysiologicaladjustmentsenablingplants

towithstandseveresalineconditions,andthatitistheacclimation

totheiontoxicitycomponentofsaltstressthatplayamajorrole

inplantacclimation.Thisacclimationtakesplaceinbothrootand

shoottissues.Atarootlevel,itinvolvesbetterpotassiumretention

and,asaresult,abettercontrolofintracellularK/Naratio.Inleaves,

acclimationresultsinabettersequestrationofsodiuminthe

vac-uoles.Theimplicationsforthisresultswillbediscussedtheinthe

followingparagraphs.

2. Materialsandmethods

2.1. Growthexperiment

Maizeplants(ZeamaisLcvB73;akindgiftofDrTrevor

Gar-nett,UnivAdelaide)weregrownfromseedsbetweenNovember

andDecember2010.Seedswereplacedin4lplasticpots,4seeds

foreachpot,inastandardpottingmixture(70%compostedpine

bark;20%coarsesand;10%sphagnumpeat;Limilat18kgm−3;and

dolomiteat18kgm−3).Plantnutrientbalancewasmaintainedby

addingtheslowreleaseOsmocotePlusTMfertilizer (at6kgm−3)

plus ferrous sulphate (at 500gm−3).Plants were grown under

ambientlightinatemperature-controlledglasshouse(day/night

temperature26◦C/19◦C;averagehumidityat65%)atthe

Univer-sityof Tasmania(Hobart, Australia).Plants werehand watered

onadailybasistoachievefullwater-holdingcapacityandleach

outanypossiblesaltaccumulatinginrootrhizospheretoensure

uniformandconstant ECvaluesin soilsolution(testedby

peri-odicmeasurementsofsoilelectricconductivity;datanotshown).

Seedlingswereestablishedundercontrolconditions(nosalt)until

Fig.1. Experimentalprocedurefortheacclimationexperiment.Seedlingswere establishedundercontrolconditions(nosalt)until10daysold;thenafourpots wereirrigatedwitha25mMNaClsolutionforoneweek(A25)andafteroneweek, wereirrigatedwithasolutioncontaining100mMNaCl,fortwoweeks,alongside withnon-acclimatedpots(NA).Theremainingpotswereirrigateddailywithwater andusedascontrol.

10daysold;then4ofthe12potswereirrigated witha 25mM

NaClsolutionforoneweek(Fig.1).Theseplantsarereferredas

“acclimated”inthisstudy.Afteroneweekofacclimationperiod,

thesepotswereirrigatedwithasolutioncontaining100mMNaCl,

fortwoweeks,alongsidewith4non-acclimatedpots.Theplants

wereirrigatedwiththefinalconcentrationof100mMNaCl

with-outanyprogressiveincrements,tomimicconditionsobservedin

thefield brought byraising salinewater tables. Theremaining

potswereirrigateddailywithwaterandusedascontrol.Atthe

beginningofacclimationplants’heightwas12–15cm,and they

hadthreefullydevelopedleaves.Thethreedifferentsetsofplants

weretermedasfollow:Control(non-acclimated,non-stressed),NA

(non-acclimated,stressed),A(25)(acclimated,stressed).The

salin-itylevelswerechosenonthebaseofthefollowingconsideration.

Pre-treatmentwith25mMwasselectedtoexcludethepossibility

of(i)astrongreductionofgrowthduringtheacclimationperiod,in

ordertohaveacclimatedandnot-acclimatedplantsofcomparable

sizesatthestartofthesalinitytreatment;and(ii)onthebasisofour

previousexperimentofthesalt-sensitivePisumsativum(Pandolfi

etal.,2012),inwhichtwopre-treatmentsweretested(10mMand

25mM)andonlytheloweronetriggeredabeneficialreactioninthe

acclimatedplants.Thefinalsalinitytreatmentwassetat100mMto

ensureasignificantreductionofthegrowthasreportedinprevious

experiments(e.g.Rodríguezetal.,1997).

2.2. Agronomicalassessment

Eightplantswereharvestedforeachtreatmentattheendof

acclimation(day17)andattheendofNaClstressperiod(day31).

Plantsweredividedintoleavesandroots,andtheirfreshweight

(FW)wasmeasured.Sampleswerethendriedat70◦Cfor72h,and

theirdryweight(DW)thendetermined.

2.3. SapanalysisforK+,Na+andosmolarity

Foreachplant,thethirdfromthebottom(fullyexpandedbutnot

senescing)leafwascollectedattheendofacclimationand

treat-mentperiods.Rootsampleswerealsocollectedbyrinsingthem

thoroughlyin10mMCaCl2 for2mintoremoveapoplasticNaCl

andthenblottingthemdrywithpapertowels.Sampleswere

col-lectedinFalcontubesandstoredat−20◦C.Leafandrootsapwas

extractedusingthefreeze-thawmethodasdescribedin(Cuinetal.,

2010)anditsosmolaritywasdeterminedusingavapourpressure

osmometer(Vapro,WescorIncLogan,Utah,USA).Forthe

(3)

measuredusingaflamephotometer(PFP7,Jenway,Felsted

Dun-mow,Essex,England).Thecontributionofcompatiblesoluteswas

estimatedbycalculatingthecontributionofthreemajorinorganic

osmolytes(Na+,Cl,andK+)measuredindirectexperiments,and

thensubtractingthisvaluefromthemeasuredoverallosmolality,

asdescribedelsewhere(Shabalaetal.,2012).

2.4. SPADandGsmeasurements

Leaf chlorophyll content was measured indirectly using

SPAD-502chlorophyllmeter(MinoltaCameraCoLtd,Japan).

Mea-surementsweretakenfromthesecondtopmostfullyexpanded

leavesofalltheplantsatweeklyintervals.Concurrently,stomatal

conductance(Gs)wasmeasuredusingaDelta-TMK3porometer

(Delta-Tdevices,Cambridge,UK).

2.5. Growthconditionforlaboratoryexperiments

Aseparatesetofseedlingswasgrownforionfluxmeasurements

underlaboratoryconditions.Seedsweresurfacesterilizedwith3%

H2O2for10minandthoroughlyrinsedwithdistilledwater.Seeds

weregerminatedinadarkgrowthcabinetat24◦C.Uniformly

ger-minatedseedlingswereselectedandgrowninhydroponicsinthree

plasticcontainerslocatedinthesamegrowthcabinet.Seedlings

weresuspendedonaplasticgridsothattheirrootswerecompletely

immersedinoneofthefollowingsolutions:(1)controlsolution

(0.5mMKCland0.1mMCaCl2);(2)acclimationsolution(05mM

KCl;01mMCaCl2;25mMNaCl);and(3)salinesolution(0.5mM

KCl;0.1mMCaCl2;100mMNaCl);Aerationwasprovidedbythe

aquariumairpumpsviaflexibleplastictubing.Seedlingswere

accli-matedforeitherone(abbreviatedA(1D))orthree(A(3D))days.All

theseedlingswere6daysoldatthetimeofthemeasurements.

2.6. Ionfluxmeasurements

NetK+,Na+andH+fluxesweremeasuredusingthenon-invasive

microelectrodeionfluxestimation(MIFE)technique(UTas

Inno-vationLtd,Hobart,Tasmania)asdescribedelsewhere(Chenetal.,

2007;Boseetal.,2014).Theelectrodetravelrangewas100m,

between50and150␮mfromtherootsurface.Duringexperiments,

maizeseedlingswereplacedina10mlmeasuringchamber.Their

rootswereimmobilizedinahorizontalpositionasdescribed

else-where(Chenetal.,2007;Cuinetal.,2011)andpre-incubatedina

BSMsolution(0.5mMKCland0.1mMCaCl2)for1h.Themeasuring

chamberwastransferredintotheFaradaycageandimmobilizedon

thecomputer-driven3Dhydraulicmanipulator.Electrodeswere

positionedneartheroot surface,andnetfluxes ofspecificions

weremeasuredforabout10min.Then100mM NaCltreatment

wasgiven,followedbyanother25minofrecording.Measurements

wereperformedinthematurezone(20mmfromtherootapex)of

intactroots.

2.7. MeasuringnetNa+effluxin“recovery”experiments

Rootsoffivedays-day-oldseedlingswereexposedto100mM

NaClfor 24h. One hour prior to measurement, a seedlingwas

transferredtoa10mlmeasuringchambercontainingthebathing

medium,stillinthepresenceof100mMNaClAfter1h,this

solu-tionwaspouredoffandtherootwasquicklyrinsedthreetimes

in10mMCaCl2 toremove surfaceNaCl.Thechamberwasthen

filled withthe standard bathingmedium, minus NaCl,and net

K+andNa+fluxesweremonitoredconcurrentlyforupto30min.

Thefirst20minofmeasurementswerediscardedtoaccountfor

possibleapoplasticcontribution(seeCuinetal.,2011forallthe

methodologicalaspectsandvalidationoftheprotocol).The

mea-surednetNa+effluxreflectedthefunctionalactivityofSOS1-like

Na+/H+exchanger,asprovenindirectpharmacologicalandgenetic

experimentsusingArabidosissosmutants(Cuinetal.2011).

2.8. K+leakagein24h

Acclimated(A(3D))andnon-acclimatedseedlings(NA)uniform

seedlingsweregroupedintotwogroups (5seedlingseach)and

transferredintwoFalcontubescontaining7mlof50mMofNaCl.

Fivemorenon-acclimatedseedlingsweretransferredintodistilled

waterasadditionalcontrol.Afterthe24hexposuretosaline

solu-tion,solutionwassampledandK+concentrationwasassessedby

theflamephotometerasdescribedbefore.

2.9. Confocallaserscanningimaging

ConfocalimagingwasperformedusinganuprightLeicaLaser

ScanningConfocalMicroscopeSP5(LeicaMicrosystems,Germany)

equippedwitha40oilimmersionobjectiveessentiallyasdescribed

inCuinetal.(2011).Leafdisks5mmindiameterswereincubatedin

Eppendorftubesin500mlofthe10mMCoronaGreen(Molecular

Probes,USA).After2hofincubation,thesampleswererinsedin

abufferedMESsolutionandexaminedusingconfocalmicroscopy

followingthestandardprotocol(Cuinetal.,2011).Theexcitation

wavelengthwassetat488nm,andtheemissionwasdetectedat

510−520nm.

2.10. Statisticalanalysis

Statisticalanalysisofdatawasprocessedusinganalysisof

vari-ancet-testandone-wayANOVAanddifferencesbetweencolumns

wereassessedusingTukey’sMultipleComparisonTestwiththe

software Graph-PadPrism(Ver 50afor MAC OS X).Differences

betweentreatmentswereconsideredsignificantatP<0.05.

3. Results

3.1. Plantgrowth

Oneweekofacclimationhadnosignificant(P<0.05)effecton

freshanddryweightsofacclimatedplantsorinthebiomass

distri-butionbetweenrootandshoot(datanotshown).Nochangeswere

alsorecordedintherootandshootKcontent,stomatalconductance

(Gs),andSPADunits(datanotshown).Therefore,inphysiological

termstheacclimatedplantswerecomparablewithuntreatedones,

beforetheonsetofthesaltstress.Oneweekofacclimationin25mM

NaClhassignificantlyreduceddetrimentaleffectsofsalt.Asaresult,

freshweightofacclimated(A(25))plantswascomparableto

con-trolsafterplant’sexposureto100mNNaClfor2weeks(Table1),

andwhereastheshootsofbothstressedplants(NAandA(25))were

comparable,rootapparatuswasmoredevelopedinA(25)thanin

NA.The100mMNaClstresscausedadecreaseinSPADunitsin

not-acclimated(NA)plants,whereasthisdeclinewaslesspronounced

inA(25)plants.Thesametrendwasobservedforstomatal

conduc-tance(Gs)(Table1).Theroot/shootratioofacclimatedplantswas

alsosignificantly(P<0.05)higherthanbothNAandcontrolplants.

TheseresultsareconsistentwithourpreviousfindingsonPisum

sativumforwhichacclimationmechanismsaremainlynoticedin

roots(Pandolfietal.,2012).

3.2. Effectsofacclimationonplantionicrelationsandosmolarity

Oneweekofacclimationtreatmentsignificantlyincreasedthe

rootandshootNa+content(Fig.2C,I)andosmolarity(Fig.2E,K).

Atthesametime,nosignificant(atP<0.05)changesintissueK+

(4)

Table1

Indirectmeasureofchlorophyllcontent(measuredbychlorophyllmeterSPAD),stomatalconductance(Gs),roottoshootratio,watercontents(WC),freshanddryweights after2weeksofsaltstressMean±SE(n=6).

Treatment Chlorophyll Gs Root/Shoot WC FreshWeight(g)

(SPADunits) nmolm−2s−1 Ratio (%) Shoot Root Total

Control 360±159a 758±842a 054±006b 804±048ns 242±12a 131±16ab 373±22a NA 272±086c 416±357b 054±011b 783±134ns 147±09b 78±14b 225±18b A(25) 314±081b 646±825ab 085±005a 814±086ns 169±148b 144±111a 312±239a

Fig.2.Na+andK+concentrationsandosmolarityofleafandrootsap,measuredattheendofacclimationperiod(1wk25mM)andafter2weeksofthesalinitystress(2wks

100mM)(n=6).

NaClfortwoweeks)hasfurtherincreasedrootandshootNa+

con-tent(Fig.2D,J)andosmolarity(Fig.2F,L).Nosignificanteffectof

acclimationwasreportedineitherorgan(Fig.2F,L).Atthesame

time,acclimatedplantsaccumulatedlessNa+inrootscompared

withnon-acclimatedones(Fig.2D)butmoreintheshoottissue

(Fig.2J)undersaltstressconditionsBothdifferencesaresignificant

atP<0.05.AcclimatedplantsalsoretainedmoreK+intheirroots

comparedwithNAonesafter2weeksof100mMNaClexposure

(Fig.2B).

The osmolarity of stressed plants (acclimated and

non-acclimated)wascomparable,however,potassiumandsodiumtotal

contentdiffers(Fig.3).Inshoots,inorganicionsaccountedfor75%

oftissueosmolarityinNAplantsbutto95%inacclimatedA(25)

plants(Fig.3A)Inroots,theamelioratingeffectofacclimationis

provedbyhigherK/Naratio(Fig.3B).

3.3. AcclimationimprovesrootK+retentionabilityundersaline

conditions

RootsK+retention abilitywasassessedbymeasuringnetK+

effluxtriggeredbyNaCltreatmentusingthemicroelectrodeion

fluxestimation(MIFE)technique100mMNaCltreatmentinduced

asignificantK+effluxfromepidermalcellsinthematureregion

ofmaizerootseedlings(Fig.4A).Thissalt-inducedK+effluxwas

instantaneous,reachingpeakvaluesimmediatelyafterthe

treat-ment. Neither one day – A(1D) – or three days – A(3D) – of

acclimationalteredthepeakK+ effluxobservedwithinthefirst

minutesaftersuddensaltexposure(Fig.4A).ThismassiveK+leak

followed bythegradual recoverywhich wasdifferent between

acclimated andnon-acclimatedplants. Regardless ofthelength

ofacclimation(1or3days),acclimatedrootsshowed∼50%less

K+ efflux after 20min of stress onset (Fig. 4A), showing ∼30%

higheroverallK+retentionabilityoverthefirst20min(insertin

Fig.4A).Consistent withtheseresults,theamountofK+ leaked

overthe24hperiodwassignificantly(P<005)lessinacclimated

roots(Fig.4B).

3.4. RootNa+effluxabilitywasnotaffectedbyacclimation

RootNa+effluxabilitywasevaluated(seeMaterialsand

Meth-odsfordetails)bytransferringsalt-treatedrootsinNa+-freemedia

andmeasuringthemagnitudeofNa+efflux.Asshownin

pharma-cologicalandloss-of-afunctionArabidopsistransportmutants,the

(5)

Fig.3.Relativecontributionofions(K+,Na+andCl)andcompatiblesolutestothetotalosmolarity,andK/Naratioinshootsandrootsattheendoftheexperiment.

Fig.4.(A)TransientK+fluxesmeasuredfrommaizerootsinresponseto100mM NaCltreatmentfromcontroland1and3dayacclimatedsamplesMeans±SE.The signconventionis“effluxnegative”forallMIFEmeasurements(n=6–8roots).The totalK+leakedfromtherootin20min.(B)ThetotalK+leakedfromtherootin 50mMofNaClin24htreatmentMean±SE(n=4–7).

SOS1Na+/H+exchanger(Cuinetal.,2011).Threedaysof

acclima-tionhasnosignificant(P<0.05)effectonSOS1-likeactivityinmaize

roots,withbothNAandA(3D)plantsshowingnetNa+ effluxof

around−100nmolm−2s−1(Fig.5).

Fig.5. Sodiumeffluxfrommaizerootsmeasuredimmediatelyaftertheremovalof 100mMNaCl.Six-day-oldseedlingsweretreatedwith100mMNaClfor24hbefore itsremoval,andtheresultantnetNa+fluxesmeasured.MeanSE(n=6seedlings).

3.5. AcclimationimprovesvacuolarNa+sequestrationinleaf

epidermalcells

ImagingprofilesshowedthatNa+specificfluorescenceoccurred

bothinacclimated andnotacclimatedplants.Interestingly,Na+

localisationwasmainlyinthecytosolintheNAleaveswhereasin

A(25)Na+wasmainlyconfinedinvacuolarregions(Fig.6).Under

no-saltstress,CoroNa-Greenfluorescencewasalmostundetectable

intheleavesduetolowNa+content(datanotshown).

4. Discussion

Plantsexposuretolowlevelsalinityactivatesanarrayof

pro-cessesleadingtoanimprovementofplantstresstolerance.Thishas

alreadybeendemonstratedfordifferentherbaceousspeciessuchas

soybean,rice,sorghumandpea(Amzallagetal.,1990;Umezawa

etal.,2000;Djanaguiramanetal.,2006;Pandolfietal.,2012).In

theliteraturethetimingofpre-treatmentisverydifferent,from

7daysinrice(Djanaguiramanetal.,2006)to20daysinSorghum

bicolor(Amzallagetal.,1990),anditappearsthatthelengthofthe

pre-treatmentisstronglyrelatedtotheplantspecies.Umezawa

(6)

Fig.6. Laserscanningconfocalimagesofmaizeleaves.Leafsegmentswerecutandlabelledwith10mMCoronaGreendyefor1hbeforetheconfocalimagesweretaken. (A–B)One(ofsix)typicalleafsegmenttakenforeachtreatment(NA-NotAcclimatedandA25-acclimated)isshown.(C–E)QuantificationofthecytosolictovacuolarNa+ contentratioinepidermalleafcellsofthetwotreatmentswasdone.TheNa+contentineachcellcompartmentisproportionaltotheintensityofCoronaGreenfluorescence (showedinarbitraryunits).

pre-treatmentshorterthan10daysisunabletotriggerabeneficial

effectinsoybean,whereasinourpreviousworkonPisumsativum,

7dayswereenoughtoseevisiblechanges(Pandolfietal.,2012),

andweretainedthesameprotocolforthisexperiment.

Inthepresentstudyweinvestigatedindepththemechanisms

behindplantacclimationtosalinitystressusingaZeamaysasa

rep-resentativesalt-sensitiveglycophytespecies.Themajorfindingsof

thisworkcanbesummarisedasfollows.Beingexposedtosalinity,

acclimatedplants(1)retainmoreK+butaccumulatelessNa+ in

roots;(2)havebettervacuolarNa+sequestrationabilityinleaves

andthusarecapableofaccumulatinglargeramountsofNa+inthe

shootwithouthavinganydetrimentaleffectonleaf

photochem-istry;and(3)relymoreonNa+forosmoticadjustmentintheshoot.

Atthesametime,acclimationaffectwasnotrelatedinincreased

rootNa+exclusionability.Thephysiologicalrationalebehindthese

observationsisdiscussedbelow.

Inourexperiments,noreductioninrootsbiomasswasreported;

neitherduringtheacclimationphasenorafterthemainsalt

treat-ment(Table1).Interestinglybiomassaccumulationwasequalto

controldespiteA(25)plantshadhigherNa+contentinshootsatthe

endofthe2weeksofsalttreatment(Fig.2).Thispointsoutthat

acclimatedplantspossessedhighlyefficientmechanismsforNa+

sequestrationintheshoot.ExperimentswithfluorescentCoroNa

Greendye(Fig.6)stronglysuggest thatimprovedvacuolarNa+

sequestrationwasbehindthisphenomenon.

ThetransportofNa+intothevacuolesismediatedbya

tono-plastNa+/H+antiporterencodedbyNHXgenesthatwerefoundto

bepresentandoperateinbothrootandleafcells(Zhangetal.,

2001;Yokoi et al., 2002).Identified first inArabisopsis (Gaxiola

etal.,1999),homologousNHXtransporterswereidentifiedin>60

plant species (Pardo et al., 2006) including maize (Zorb et al.,

2005).Contrarytohalophytes(ShabalaandMackay,2011),

tono-plastantiportersarenotconstitutivelyexpressedinglycophytes

(ZhangandBlumwald,2001).Instead,salt-stressedcaninduceNHX

activityinglycophytes(GarbarinoandDupont,1988;Apseetal.,

1999).Maizeisclassifiedasasalt-sensitivespeciesand,hence,is

expectedtohaveratherlowlevelsofNHXtranscriptsthatarenot

sufficienttocopewithsalinity.Thesecommentsareconsistentwith

reportsofZorbetal.(2005)thattheexpressionsignalofZmNHX

wasveryweak(atthedetectionlimitoftheautoradiography)and

visibleonlyafterprolongedplantexposuretosalinity.Also,a

sig-nificantup-regulationoftheZmNHXinleavesofthesalt-resistant

hybridsSR03andSR05wasreportedbyPitannetal.(2013).In

thelight ofabove,itappearsthatinourexperimentsoneweek

acclimationin25mMNaClwassufficienttoinducehigherNHX

(7)

evidentfromourNa+sequestrationdata(Fig.6).Overexpression

ofNHXantiportershasbeenusedtoimprovesalttolerancein

sev-eralplantspecies(Apseetal.,1999;ZhangandBlumwald,2001;

Zhangetal.,2001;Lietal.,2011),withalltransformedplants

show-ingimprovedplantsurvivalandincreasedshootgrowthoverthe

controllinesundersaltstress−resultssimilartoourobservations

reportedhere.

In our work, differences in ion accumulation also varied in

roots,whereacclimatedplantsshowedahighercapacitytoexclude

sodiumandretainpotassium.Hencebeneficialeffectof

acclima-tioninmaizeisachievedbytwoseparatemechanismsactingat

shootandrootlevel,andnotmainlyattherootlevelasreported

forpeas(Pandolfietal.,2012).Theseresultsarealsoindicative

thatacclimatedplantsuseNa+andClaccumulatedinshootsas

acheaposmoticumreducingtheenergeticinvestmenttoproduce

compatiblesolutes.Indeed,inorganicionsaccountedfor75%of

tis-sueosmolarityinNAplantsbutto95%inacclimatedA(25)plants

(Fig.3A).Giventhehighcostofosmolyteproduction(between50

to70molATPperone moleof compatiblesolute;Raven,1995;

ShabalaandShabala,2011),acclimatedplantsarecapableto

redi-rectmorecarbohydratereservestowardsotherenergy-demanding

processes.Oneoftheseprocessesismembranepotential

mainte-nancetoensureK+homeostasisunderstressedconditions.High

cytosolicK+levelsthatarerequiredforoptimalcellmetabolism

areachieved primarilybythemaintenance of a large(−120to

−180mV)negativevoltagedifferenceacrosstheplasmamembrane

(PM)(ShabalaandPottosin,2014)Thisrestingpotentialissetby

theplasmamembraneH+-ATPaseand isnormallykeptcloseto

theequilibrium potentialfor K+,E

K (Hirschet al.,1998).Ashift

inmembranepotentialvaluespositiveofEKleadstosubstantial

K+leakthroughtheoutward-rectifyingK+(KOR)channels,

result-inginadisturbancetocytosolicK+homeostasisandapossibility

oftriggeringprogrammedcelldeath(PCD)inrootsresultingfrom

lowK+-inducedstimulationofproteasesandendonucleases(Peters

andChin2007;Shabalaetal.,2007).Thenumberofcells

under-goingPCDinArabidopsisgork1-1mutantsplantslackingfunctional

KORchannelswasabout4-foldlowercomparedwithwildtype

(Demidchiketal.,2010).Thus,thebetterK+retentioninacclimated

roots(Fig.4)maybeattributedtotheabilityofA(25)plantsto

allo-catemoreATPformembranepotentialmaintenance.Althoughthe

abovementionedexperimentswereperformedonsmallseedlings,

itisknownthatK+ effluxmeasurementscorrelateswithmature

plants’homeostasis of cytosolicK+ andNa+,a key determinant

ofplant salinitytolerance(Chenet al.,2007).It shouldbealso

commentedthatMIFEtechniquemeasuresnetfluxesoftheion

ofinterest,e.g.inthiscaseabalancebetweenK+uptakemediated

bybothlow-andhigh-affinitytransportsystemsandK+mediated

byeffluxchannelssuchasGORKorNSCC.Itremainstobe

inves-tigatedwhichofthiscomponentsismostaffectedbysalinityand

acclimation.

Sodiumexclusionfromuptakeisoftennamedasamostcrucial

traitcontributingtosalinitytoleranceinglycophytes(Munnsand

Tester,2008).Thermodynamically,Na+extrusionfromthe

cyto-soltotheexternalmediumundersalineconditionsisanactive,

energy-consumingprocessthatismediatedbyplasmamembrane

Na+/H+exchangersfuelledbytheexistenceofsharpH+gradients

atbothsidesoftheplasmamembrane(ApseandBlumwald,2007).

InArabidopsis,aNa+/H+antiporterfunctionhasbeenattributedto

SOS1gene(Shietal.,2000;Qiuet al.,2003).Experimental

evi-denceforthepresenceofSOS1-homologueshasbeenshownfor

otherspecies,bothglycophytes(Mullenetal.,2007;Cuinetal.,

2011)andhalophytes(Chenetal.,2010),andover-expressionof

SOS1hasbeenfoundtoreduceNa+ accumulationand improve

salinitytoleranceintransgenicArabidopsis(Shietal.,2003).

How-ever,it appearsthat acclimationtosalinity is notattributedto

betterabilityofmaizerootstoexcludeNa+,giventhelackofany

significantdifferenceinnetNa+ fluxes betweenacclimatedand

non-acclimatedroots(Fig.5).Thesefindingsareinafull

agree-mentthatacclimatedplantsaccumulatedmoreNa+intheshoot

compared with non-acclimatedones (Fig. 2J). Although further

investigationisneededinordertounravelaclearpictureofthe

ioniccomponentoftheacclimationmechanismsatthemolecular

level,thereportedresultsallowustosuggestthattheinvolvement

oftherootSOS1plasmamembranetransportersinthisprocessis

relativelyminor,andinsteadpointsoutattheimportantroleof

vacuolarcompartmentationofNa+asacomponentofacclimation

mechanism.

Inconclusion, despiteNa+ exclusionfromuptakehasalways

beennamedasacentralcomponentofplantadaptiveresponses

tosalinity(MunnsandTester,2008),itappearsthatitisnotthe

mechanismthatis“targeted”byacclimation.Rather,improved

vac-uolarNa+sequestrationintheshootsappearstoplayadominant

rolein thisprocess.Thesefindings notonlycautionagainstthe

validityofbreedingstrategiesaimedatreductionofNa+uptakeby

plants,butalsohighlighttheneedtofocusonshoottissue

toler-ancemechanisms(and,specifically,vacuolarNa+sequestration)as

amorepromisingapproachintheproductionoftolerantplants(eg.

Shabala,2013).

Acknowledgments

ThisresearchwassupportedbytheAustralianResearchCouncil

andGrainResearchandDevelopmentCorporationgrantstoSergey

Shabala andby anEndeavourResearch Fellowship anda Marie

CurieIEFFellowshiptoCamillaPandolfiMarieCurieIEFFellowship

toCamillaPandolfi.

References

Amzallag,G.N.,Lerner,H.R.,Poljakoff-Mayber,A.,1990.Inductionofincreasedsalt toleranceinSorghumbicolorbyNaClpretreatment.J.Exp.Bot.41,29–34. Apse,M.P.,Blumwald,E.,2007.Na+transportinplants.FEBSLett.581,2247–2254.

Apse,M.P.,Aharon,G.S.,Snedden,W.A.,Blumwald,E.,1999.Salttolerance conferredbyoverexpressionofavacuolarNa+/H+antiport.Science285,

1256–1258.

Bethke,P.,Drew,M.,1992.Stomatalandnonstomatalcomponentstoinhibitionof photosynthesisinleavesofCapsicumannuumduringprogressiveexposureto NaClsalinity.PlantPhysiol.99,219–226.

Blumwald,E.,2000.Sodiumtransportandsalttoleranceinplants.Curr.Opin.Cell Biol.12,431–434.

Bonales-Alatorre,E.,Shabala,S.,Chen,Z.H.,Pottosin,I.,2013.ReducedtonoplastFV andSVchannelsactivityisessentialforconferringsalinitytoleranceina facultativehalophyte,Chenopodiumquinoa.PlantPhysiol.162,940–952. Bose,J.,Shabala,L.,Pottosin,I.,Zeng,F.,Velarde-Buendía,A.M.,Massart,A.,

Poschenrieder,C.,Hariadi,Y.,Shabala,S.,2014.Kineticsofxylemloading, membranepotentialmaintenance,andsensitivityofK+-permeablechannelsto

reactiveoxygenspecies:physiologicaltraitsthatdifferentiatesalinity tolerancebetweenpeaandbarley.PlantCellEnviron.37,589–600. Chen,Z.,Pottosin,I.,Cuin,T.A.,Fuglsang,A.T.,Tester,M.,Jha,D.,Zepeda-Jazo,I.,

Zhou,M.,Palmgren,M.G.,Newman,I.A.,Shabala,S.,2007.Rootplasma membranetransporterscontrollingK+/Na+homeostasisinsalt-stressedbarley.

PlantPhysiol.145,1714–1725.

Chen,J.A.,Xiao,Q.A.,Wu,F.H.,Dong,X.J.,He,J.X.,Pei,Z.M.,Zheng,H.L.,2010.Nitric oxideenhancessaltsecretionandNa+sequestrationinamangroveplant

Avicenniamarina,throughincreasingtheexpressionofH+-ATPaseandNa+/H+

antiporterunderhighsalinity.TreePhysiol.30,1570–1585. Cuin,T.A.,Miller,A.,Laurie,S.,Leigh,R.,2003.Potassiumactivitiesincell

compartmentsofsalt-grownbarleyleaves.J.Exp.Bot.54,657–661.

Cuin,T.A.,Betts,S.A.,Chalmandrier,R.,Shabala,S.,2008.Aroot’sabilitytoretainK+

correlateswithsalttoleranceinwheat.J.Exp.Bot.59,2697–2706. Cuin,T.A.,Parsons,D.,Shabala,S.,2010.WheatcultivarscanbescreenedforNaCl

salinitytolerancebymeasuringleafchlorophyllcontentandshootsap potassium.Funct.PlantBiol.37,656–664.

Cuin,T.A.,Bose,J.,Stefano,G.,Jha,D.,Tester,M.,Mancuso,S.,Shabala,S.,2011. AssessingtheroleofrootplasmamembraneandtonoplastNa+/H+exchangers

insalinitytoleranceinwheat:inplantaquantificationmethods.PlantCell Environ.34,947–961.

Cuin,T.A.,Zhou,M.,Parsons,D.,Shabala,S.,2012.Geneticbehaviourof physiologicaltraitsconferringcytosolicK+/Na+homeostasisinwheat.Plant Biol.14,438–446.

(8)

Demidchik,V.,Cuin,T.A.,Svistunenko,D.,2010.ArabidopsisrootK+-efflux

conductanceactivatedbyhydroxylradicals:single-channelproperties,genetic basisandinvolvementinstress-inducedcelldeath.J.CellSci.123,1468–1479. Demmig-Adams,B.,Dumlao,M.,Herzenach,M.,AdamsIII,W.,2008.Acclimation.

In:Jørgensen,S.E.,Fath,B.D.B.D.(Eds.),EncyclopediaofEcology.Elsevier,BV Oxford,p.2008.

Djanaguiraman,M.,Sheeba,J.,Shanker,A.,Devi,D.,Bangarusamy,U.,2006.Rice canacclimatetolethallevelofsalinitybypretreatmentwithsublethallevelof salinitythroughosmoticadjustment.PlantSoil284,363–373.

Garbarino,J.,Dupont,F.M.,1988.NaClinducesaNa/Hantiportintonoplast vesiclesfrombarleyroots.PlantPhysiol.86,231–236.

Gaxiola,R.A.,Rao,R.,Sherman,A.,Grisafi,P.,Alper,S.L.,Fink,G.R.,1999.The Arabidopsisthalianaprotontransporters,AtNhx1andAvp1,canfunctionin cationdetoxificationinyeast.Proc.Nat.Acad.Sci.U.S.A.96(4),1480–1485. Hamaji,K.,Nagira,M.,Yoshida,K.,Ohnishi,M.,Oda,Y.,Uemura,T.,Goh,T.,Sato, M.H.,Morita,M.T.,Tasaka,M.,2009.Dynamicaspectsofionaccumulationby vesicletrafficundersaltstressinArabidopsis.PlantCell.Physiol.50, 2023–2033.

Hirsch,R.E.,Lewis,B.D.,Spalding,E.P.,Sussman,M.R.,1998.ArolefortheAKT1 potassiumchannelinplantnutrition.Science8,918–921.

Li,M.R.,Lin,X.J.,Li,H.Q.,Pan,X.P.,Wu,G.J.,2011.OverexpressionofAtNHX5 improvestolerancetobothsaltandwaterstressinrice(OryzasativaL).Plant CellTissueOrganCult.107,283–293.

Liu,J.X.,Srivastava,R.,Che,P.,Howell,S.H.,2007.Saltstressresponsesin Arabidopsisutilizeasignaltransductionpathwayrelatedtoendoplasmic reticulumstresssignaling.PlantJ.51,897–909.

Mullen,W.,Marks,S.C.,Crozier,A.,2007.Evaluationofphenoliccompoundsin commercialfruitjuicesandfruitdrinks.J.Agr.FoodChem.55,3148–3157. Munns,R.,Tester,M.,2008.Mechanismsofsalinitytolerance.Annu.Rev.PlantBiol.

59,651–681.

Munns,R.,1993.Physiologicalprocesseslimitingplantgrowthinsalinesoils: somedogmasandhypotheses.PlantCellEnviron.16,15–24.

Ottow,E.A.,Brinker,M.,Teichmann,T.,Fritz,E.,Kaiser,W.,Brosche,M.,

Kangasjarvi,J.,Jiang,X.,Polle,A.,2005.Populuseuphraticadisplaysapoplastic sodiumaccumulation,osmoticadjustmentbydecreasesincalciumandsoluble carbohydrates,anddevelopsleafsucculenceundersaltstress.PlantPhysiol. 139,1762–1772.

Pandolfi,C.,Mancuso,S.,Shabala,S.,2012.Physiologyofacclimationtosalinity stressinpea(Pisumsativum).Environ.Exp.Bot.84,44–51.

Pardo,J.M.,Cubero,B.,Leidi,E.O.,Quintero,F.J.,2006.Alkalicationexchangers: rolesincellularhomeostasisandstresstolerance.J.Exp.Bot.57,1181–1199. Peters,J.,Chin,C.K.,2007.Potassiumlossisinvolvedintobaccocelldeathinduced

bypalmitoleicacidandceramide.Arch.Biochem.Biophys.465,180–186. Pitann,B.,Mohamed,A.K.,Neubert,A.B.,Schubert,S.,2013.TonoplastNa+/H+ antiportersofnewlydevelopedmaize(Zeamays)hybridscontributetosalt resistanceduringthesecondphaseofsaltstress.J.PlantNutr.SoilSci.176, 148–156.

Qiu,Q.S.,Barkla,B.J.,Vera-Estrella,R.,Zhu,J.K.,Schumaker,K.S.,2003.Na+/H+

exchangeactivityintheplasmamembraneofArabidopsis.PlantPhysiol.132, 1041–1052.

Qiu,Q.S.,2012.PlantandyeastNHXantiporters:rolesinmembranetrafficking.J. Integr.PlantBiol.54,66–72.

Raven,J.A.,1995.Costsandbenefitsoflowosmolarityincellsoffreshwateralgae. Funct.Ecol.9,701–707.

Rodríguez,H.G.,Roberts,J.K.M.,Jordan,W.R.,Drew,M.C.,1997.Growth,water relations,andaccumulationoforganicandlnorganicsolutesinrootsofmaize seedlingsduringsaltstress.PlantPhysiol.113,881–893.

Saha,P.,Chatterjee,P.,Biswas,A.,2010.NaClpretreatmentalleviatessaltstressby enhancementofantioxidantdefensesystemandosmolyteaccumulationin mungbean(Vignaradiatalwilczek).IndianJ.Exp.Bot.48,593–600. Shabala,S.,Cuin,T.A.,2008.Potassiumtransportandplantsalttolerance.Physiol.

Plantarum133,651–669.

Shabala,S.,Mackay,A.,2011.Iontransportinhalophytes.Adv.Bot.Res.57, 151–199.

Shabala,S.,Pottosin,I.,2014.Regulationofpotassiumtransportinplantsunder hostileconditions:implicationsforabioticandbioticstresstolerance.Physiol. Plantarum151(3),257–279.

Shabala,S.,Shabala,L.,2011.Iontransportandosmoticadjustmentinplantsand bacteria.Biomol.Concepts2,407–419.

Shabala,S.,Cuin,T.A.,Prismall,L.,Nemchinov,L.G.,2007.Expressionofanimal CED-9anti-apoptoticgeneintobaccomodifiesplasmamembraneionfluxesin responsetosalinityandoxidativestress.Planta227,189–197.

Shabala,L.,Mackay,A.,Tian,Y.,Jacobsen,S.E.,Zhou,D.W.,Shabala,S.,2012. Oxidativestressprotectionandstomatalpatterningascomponentsofsalinity tolerancemechanisminquinoa(Chenopodiumquinoa).Physiol.Plantarum146, 26–38.

Shabala,S.,2013.Learningfromhalophytes:physiologicalbasisandstrategiesto improveabioticstresstoleranceincrops.Ann.Bot.Lond.112,1209–1221. Shi,H.,Ishitani,M.,Kim,C.,Zhu,J.K.,2000.TheArabidopsisthalianasalttolerance

geneSOS1encodesaputativeNa+/H+antiporter.Proc.Nat.Acad.Sci.U.S.A.

97,6896–6901.

Shi,H.,Lee,B.,Wu,S.,Zhu,J.,2003.OverexpressionofaplasmamembraneNa+/H+

antiportergeneimprovessalttoleranceinArabidopsisthaliana.Nat. Biotechnol.21,81–85.

Silveira,J.,Melo,A.,Viégas,R.,Oliveira,J.,2001.Salinity-inducedeffectson nitrogenassimilationrelatedtogrowthincowpeaplants.Environ.Exp.Bot.46, 171–179.

Smethurst,C.F.,Rix,K.,Garnett,T.,Auricht,G.,Bayart,A.,Lane,P.,Wilson,S.J., Shabala,S.,2008.Multipletraitsassociatedwithsalttoleranceinlucerne: revealingtheunderlyingcellularmechanisms.Funct.PlantBiol.35,640–650. Subbarao,G.,Ito,O.,Berry,W.,Wheeler,R.,2003.Sodiumafunctionalplant

nutrient.CRCCrit.Rev.PlantSci.22,391–416.

Umezawa,T.,Shimizu,K.,Kato,M.,Ueda,T.,2000.Enhancementofsalttolerancein soybeanwithNaClpretreatment.Physiol.Plantarum110,59–63.

Wu,H.H.,Shabala,L.,Barry,K.,Zhou,M.X.,Shabala,S.,2013.Abilityofleaf mesophylltoretainpotassiumcorrelateswithsalinitytoleranceinwheatand barley.Physiol.Plantarum149,515–527.

Yokoi,S.,Quintero,F.J.,Cubero,B.,2002.Differentialexpressionandfunctionof ArabidopsisthalianaNHXNa+/H+antiportersinthesaltstressresponse.PlantJ.

30,529–539.

Zhang,H.X.,Blumwald,E.,2001.Transgenicsalt-toleranttomatoplants accumulatesaltinfoliagebutnotinfruit.Nat.Biotechnol.19,765–768. Zhang,H.,Hodson,J.,Williams,J.,Blumwald,E.,2001.Engineeringsalt-tolerant

brassicaplants:characterizationofyieldandseedoilqualityintransgenic plantswithincreasedvacuolarsodiumaccumulation.Proc.Natl.Acad.SciU.S. A.98,12832.

Zorb,C.,Noll,A.,Karl,S.,Leib,K.,Yan,F.,Schubert,S.,2005.Molecular characterizationofNa+/H+antiporters(ZmNHX)ofmaize(ZeamaysL.)and

Riferimenti

Documenti correlati

Ampli¢cation of mariner £anking sequences indicated that Mbmar is inserted into a TA target sequence that was duplicated after transposon insertion (Figure 2).. Southern blotting

Accanto a queste due ipotesi che, nella contrapposizione tra autonomia a subordinazione — tertium non datur —, ben rappresentano la tradizionale configurazione binaria delle

Considering the ratio of the free energy barrier for heterogeneous nucleation on different substrates with respect to that of secondary nucleation appears to be

configurazione della interazione tra Alma e Primo, predisporre l’attivazione della nuova interfaccia utente (UI) di Primo.  Fase

The analysis results of bacterial diversity developed in Sataw-Dong sample during spontaneous fermentation revealed by DGGE approach were obtained by the ampli- fication

Altra caratteristica importante che vede applicato bene il ciclo combinato in esame con un sito come nuova Sasso è che il fluido geotermico utilizzato presenta in questo caso un

In the current paper, we extend this method to more general tensor spaces including classical multilinear tensors and multihomogeneous tensors.. This criterion is a rank condition of

Cyberwarfare implies diverse actors that causing and enduring certain impacts on the political, social and individual level of being. In principle, risks imposed by