• Non ci sono risultati.

Modelling EROEI and net energy in the exploitation of non renewable resources

N/A
N/A
Protected

Academic year: 2021

Condividi "Modelling EROEI and net energy in the exploitation of non renewable resources"

Copied!
5
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Ecological

Modelling

j o u r n al hom ep age : w w w . e l s e v i e r . c o m / l o c a t e / e c o l m o d e l

Modelling

EROEI

and

net

energy

in

the

exploitation

of

non

renewable

resources

Ugo

Bardi

a,∗

, Alessandro

Lavacchi

b

, Leigh

Yaxley

c

aDipartimentodiChimicaUniversitàdiFirenze,ViadellaLastruccia3,SestoFiorentino[Fi],Italy bICCOM-CNR,PoloscientificodiSestoFiorentino,50019FirenzeItaly

cSocietyforPetroleumEngineers,10777WestheimerRd.,Suite1075,Houston,UnitedStates

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3February2011

Receivedinrevisedform15May2011 Accepted17May2011

Available online 7 July 2011 Keywords: Hubbertmodel Naturalresources Lotka–Volterra EROEI Netenergy

a

b

s

t

r

a

c

t

Recently,BardiandLavacchi(2009)showedthatasimplesystemofcoupleddifferentialequationscan beusedforaquantitativedescriptionoftheexploitationofnonrenewableresourcesinafreemarket economy.Thepresentpaperexamineshowthemodeldescribesthebehaviorofthesystemintermsof energyreturnforenergyinvested(EROEI)andnetenergy(energyreturnedminusenergyexpended).We showthatthemodelgeneratesabehaviorofthesefactorscomparabletotheresultsobtainedbyother methods,forinstanceforthecaseofcrudeoilproductionintheUS.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Theexploitationofafiniteresourcemustnecessarilyfollowa

productioncyclethatstartswithzeroandendswithzero.In

sev-eralhistoricalcases,andinparticularforfossilfuels,ithasbeen

observedthattheshapeoftheproductioncurveisrelatively

sim-ple:itis“bellshaped”withasinglemaximumwhenapproximately

halfoftheresourcehasbeenproduced.Thismodelwasproposed

forthefirsttimebyHubbert(1962)asanempiricaldescriptionof

theproductionofcrude oilintheUS48 lowerstates.Thesame

behaviorisoftenobservedforseveralcasesofmineralresources

(BardiandPagani,2008)andforslowlyrenewableresources,such

aswhaleoil(Bardi,2007).

Areasonableexplanationforthedeclineofproductionafterthe

peakisrelatedtothedecliningenergyreturnforenergyinvested

(EROEIorEROI)(Halletal.,2008;Murphy,2009).Producerswill

normally tend to exploit first the“easy” resources, those with

highEROEI and mustprogressivelymove tolower EROEI ones,

withincreasingcostsofextraction.Withlowerprofits,companies

involvedinextractionfindthemselvesshortofcapitalandmust

reduceinvestments.Thisprocessleads,eventually,to“peaking”of

productionandtoitssuccessivedecline.

In the present paper we examine how a simple model can

describehowEROEIvariesasafunctionofproduction.Themodel

hasbeendescribedinapreviouspaper(BardiandLavacchi,2009)

∗ Correspondingauthor.

E-mailaddress:ugo.bardi@unifi.it(U.Bardi).

andisrelatedtothewellknownLotka–Volterra(LV)model(Lotka,

1925; Volterra, 1926), also known as the “predator–prey” and

“foxesandrabbits”model.Thismodelcanprovideaquantitative

fittingofthehistoricalproductiondataforanumberofcasesof

exploitationofnon-renewableresources,suchascrudeoil,orof

slowlyrenewableones,suchaswhaleoil.Wewillshowherehow

themodeldescribesthedeclineofEROEIduringtheexploitation

processandconfirmsthattheHubbertbehaviorisrelatedto

declin-ingenergyyield.

2. EROEIandnetenergy

Exploitinganenergyresourcecanneverbeen100%efficient.For

instance,inordertoexploitthechemicalenergystoredinanoilwell

wemustexpendsomeenergyinoperationssuchasprospecting,

drilling,extracting, processing, and transporting.EROEI (energy

returnforenergyinvested)is definedastheratiooftheenergy

obtainedfromtheresourcetotheenergyexpendedinproduction

(Halletal.,1986,2008,2009).Arelatedconceptisthatofnetenergy,

definedastheenergyproducedminustheenergyexpended.When

theEROEIisequalto1orlower,thenetenergyiszeroorlower.

EROEIisausefulconceptforunderstandingtherealvalueofa

resourceineconomicandenergyterms.Obviously,largerEROEIs

arepreferableandanEROEIsmallerthanonecorrespondstoanet

lossofenergy.However,someprocessesmaybecarriedouteven

atlowEROEIs,evensmallerthanone,asaresultofspecificchoices

oftheeconomicsystem.Asanexample,biofuels,andin

particu-larethanol,havealowEROEI(PimentelandPatzek,2005)butfor

politicalreasonsgovernments(especiallyintheUS)provide

finan-0304-3800/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ecolmodel.2011.05.021

(2)

cialsubsidiesthatresultinanettransferofenergyfromfossilfuels

toethanolproduction.

Despiteitsusefulness,thedefinitionofEROEIsuffersofsome

uncertainty,mainlyintermsoftheboundariesofthesystembeing

considered.Theseboundariesmaybedefinedaccordingtothe“Life

CycleAnalysis”(LCA)concept.Therelatednormsaredefinedin

protocolssuchas,forinstance,theASTME1991-05.If,however,one

wantstotakeintoaccounteverythingthatisdonewithanenergy

source;fromproducingfuel,tothecarsandroadstouseit,allthe

waytocathedralsandpoetrythenwemayspeakof“fullEROEI”or

“societalEROEI”(Halletal.,2008,2009).ThevalueofsocietalEROEI

determinesthesurplusthatcanbeutilizedforallthoseactivities

thatareconsideredpartofwhatwecall“civilization”.Theproblem

doesnotexistaslongasconsistentEROEIdefinitionsareusedwhen

comparingdifferentenergysources,butitmustbekeptinmind

whenmodellingeconomicsystems.

3. Asimplemodelforresourceexploitation

Lotka(1925)andVolterra(1926)developedawellknownmodel

of“predator–prey”relationshipinsimplebiologicalsystems.This

modelisintuitivelyandmathematicallyattractive,andisoftenused

inecologytoconceptualizetherelationbetweenpredatorandprey

species.TheLotka–Volterra(LV)modelworkswellenoughwith

simplelaboratorysystemsandalsoappearedtoworkinnature;

howeverHall(1988)showedthat mostexamplesgivenin

text-books,includingthewellknownoneofharesandlynx,infactdo

notsupporttheuseofsucha simplemodelin realecosystems.

Nevertheless,modelsbasedontheLVapproachhavefound

appli-cationsineconomics.Thesemodelsaresometimesknownas“Free

Access”model(see,e.g.Smith,1968).

BardiandLavacchi(2009)developedamodifiedversionofthe

LVmodelinordertodescribetheeconomicexploitationofnon

renewable(orslowlyrenewable)resourceswhereitisassumed

thattheprey(rabbits)donotreproduce.Themodelinvolvestwo

mainstockvariables:resourcesandcapital.Theamountofavailable

resourceisdefinedasthe“resourcestock”,R.Theothermain

vari-ableofthemodelistheaggregateamountofeconomicresources

beingutilizedintheexploitation;thatisequipment,land,

knowl-edge,humanwork,andsimilar.Wecalledthisaggregateamount

“capitalstock”,C.RandCaredefinedastheflow(thevariationas

afunctionoftime)of,respectively,resourcesandcapital.Further

parametersofthemodelaretheinitialstocksofresource(Ro)and

ofcapital(Co).

AsintheoriginalLVmodel,it isassumedthatresource (the

“prey”) can be extracted in proportion to the available

capi-tal(the“predator”)and, atthesametime, inproportiontothe

amountoftheresourcestock.Implicitly,thisassumptioninvolves

thatresourcesare“graded”and thatthe“easy”(lessexpensive)

resourcesareextracted[orproduced]first.

Theotherfundamentalassumptionofthemodel–again

corre-spondingtotheoriginalLVmodel–isthatcapitalisgeneratedin

anamountproportionaltotheamountofextractedresources.In

otherwords,theresourcestockispartlytransformedintocapital

stock;letussaythattheextractedoilisusedtoprovidetheenergy

necessarytobuildmoreoilrigsandotherfacilities.Inmoregeneral

terms,thistransformationismediatedbythemarketsystem.That

is,theenergyre-investedisgeneratedviathesaleoftheresource

onthemarketandtheprofitsareusedtocreatetheequipmentand

facilitiestoproducemoreresource.

Afinal assumptionof themodel isthat capital is dissipated

overtimeinproportiontotheamountofcapitalitself,thesame

assumptionmadeintheoriginalLVmodel.Thesignificanceofthis

assumptionisoftenmisunderstood.“Dissipation”mightbeseenas

correspondingto“depreciation,”thatisthedeclineinvalueofthe

Fig.1. QualitativesolutionsofthemodelobtainedusingtheVensimsoftware.The parametersshownareresource,capitalandproduction.

capitalstock,mainlyintermsofobsolescence.Inthebiological

ver-sionofthemodel,itwouldmeanthatitdescribeshowfoxesgetold

anddieofaging.Butthatisonlyapartialview:thecapitalstock

(orthefoxesstock)isanenergystockandthistermdescribeshow

muchofthisenergyislostasafunctionoftimewithoutspecifying

bywhatmechanism.Inpractice,theassumptionisaboutthe

funda-mentalfeedbackofthesystemthathascapitalallocatesomeenergy

inordertocreatemorecapital(thatis,howfoxesexpendenergy

bychasingrabbits).Thispointisfundamentalinthemodellingof

thesystem’sEROEI,asitwillbeshownlateron.

Themodelcanbedescribedinmathematicalformastwo

cou-pleddifferentialequations.Thesetwoequationsarebasicallythe

sameasthoseoftheoriginalLotka–Volterramodel,exceptthatone

termismissing,thatofthereproductionoftheprey.The“ks”are

constantswhichdescribethequantitativebehaviorofthemodel

R=k

1CR (1)

C=k

2CR−k3C (2)

Qualitativeresultsofthemodel– obtainedusingtheVensim

software–areshowninFig.1.Inorderforthemodeltobeable

(3)

Fig.2. FittingofthedataforoildiscoveryintheUS48lowerstatesandofthenumberofwildcats.Inthiscase,thenumberofwildcatsisproportionaltothecapitalusedby theoilindustryintheeffortofdiscoveringtheresource(oilwells).FromBardiandLavacchi(2009).

someofthemainparametersintheequations.Inapreviouspaper

(BardiandLavacchi,2009)weusedhistoricaldataonproduction

andonaggregatecapitalaccumulation.Thelatterweremeasured

intermsof“proxies”;e.g.usingthetonnageofthewhalingfleetas

proportionaltothetotalcapitalavailabletothewhalingindustry.In

thisway,wefoundthatthissimplifiedmodelcandescribeanumber

ofhistoricalcasesofresourceexploitation,whentheresourceisnon

renewable(e.g.crudeoil)orslowlyrenewable(e.g.whaleoil).

AnexampleoftheresultsobtainedfortheUS-48lowerstates

historicaldataoncrudeoilproductionisshowninFig.1.Here,the

“discoveries”parameterisusedasaproxyforresourceproduction

andthenumberofwildcatsasaproxyfortheaggregatecapitalused

bytheoilindustryforprospectingintheareaconsidered(Fig.2).

Othercasesforwhichthemodelwasfoundtogiveagoodor

accept-abledataweregoldproductioninSouthAfricaandinCalifornia,

whaleoilproductioninthe19thcenturyandcrudeoilproduction

inNorway(BardiandLavacchi,2009).

4. EROEIandnetenergyintheexploitationofmineral resources

Anymodelattemptingtodescribeaphysicalsystemmust

sat-isfythelawsofphysicsand,inparticular,thoseofthermodynamics.

TheLotka–Volterramodelisnoexception.Initssimplest

imple-mentation,thatoftwobiologicalspecies(foxesandrabbits),the

twostocksinvolvedcanberegardedasenergystocks.Thesame

interpretationispossibleforenergyresourcessuchascrudeoil.

Intheabsenceofanexternalenergyflux,themodeldescribes

theflowofenergyfromonestock(resources)toanother

(capi-tal).Thetransformationiscompletelyirreversibleanditoccursas

theresultoftheincreaseinentropyofthesystem(Karnaniand

Annila,2009).Eventually,thedissipationtermofthemodel(−k3C)

willbringtozerotheamountoffreeenergystoredinthecapital

stock;thusmaximizingtheentropyinaccordancewiththesecond

principleofthermodynamics.

Parameters suchas EROEI and netenergy are not explicitly

expressedin theequationsof themodel,but canbecalculated

fromtheavailableparameterswhich,asmentionedbefore,include

energyandenergyflow.Inapreviousstudy(BardiandLavacchi,

2009),wedefinedthe“yield”ofextractionas(R/C),thatistheratio

ofproductiontocapital.However,theconceptofEROEIrequiresa

moredetailedexamination.

Ifweapplythemodeltoanactualeconomicprocess,weare

interestedinmaximizingproductionandminimizingcosts.

Pro-ductionisexplicitlydefinedinthemodelas“R”.The“costs”in

themodelaredeterminedbytheonlytermthatproducesalossof

capital(−k3C).Asdescribedearlieron,thesecostsaretheresultof

thesumoftheenergyspentinordertoexploittheresourceand

theenergylostbecauseofobsolescenceandotherfactors

(depre-ciation).Inotherwords,thek3termisthesumoftwoterms,one

relatedtoexploitation,theothertodepreciation.Boththese

fac-torsshouldbeincludedinanEROEIcalculationsbasedonlife-cycle

analysis,soitisjustifiedtousetheaggregatedk3 factoras

pro-portionaltotheoverallexploitationcosts.Hence,wecandefine

theeconomicyieldoftheprocessastheratioofenergyproduction

(k1RC)toenergyloss(k3C).Analternativedefinitioncouldbeto

usecapitalaccumulation(k2RC)asthenumeratoroftheratio,but

usingproductionappearstobemorecloselyrelatedtotheconcept

ofEROEIasitisusuallydefinedinpractice.

Thereforewecanwrite:

EROEI=Rk1

(4)

Fig.3.Qualitativesolutionsofthemodelequationssystemobtainedusingthe Ven-simsoftware.Theparametersreportedareproduction,netenergyandEROEI.

ThisratiodescribeshowtheEROEIofanonrenewableenergy

sourcevarieswithtime.Forinstance,itdescribeshowthe

aver-ageEROEIofsingleoilwellsvariesastheoilresourcesofaregion

areexploited.Notethatthe“capital”stockdoesnotappearinthis

expression.Thisappearstobecorrect,sincetheEROEIderivesfrom

thecharacteristicsoftheresourcebeingexploited.However,note

thatthetwoparametersk1andk3aredefinedinthemodelwith

respecttobothresourcesandcapital,sothatthebehaviorofthe

capitalstockdoesaffectEROEI.

Alimitationofthisconceptisobviouswhenweapplythe

con-cepttoarealeconomicprocess.ThedefinitionofEROEI=Rk1/k3

isrigorouslyvalidonlyforasystemwherealltheenergygained

fromtheexploitationofaresourceisusedforfurtherexploitation.

Thatmightbetrueinasimplebiologicalsystem,sayfoxesand

rab-bits,butsurelynotfortheworld’seconomy.However,theconcept

thattheEROEIisproportionaltoR(theresourcestock)remains

usefulinthereasonableassumptionthatthefractionofprofits

re-investedbytheindustryintheexploitationofaresourceremains

approximatelyconstantovertheresourcelifetime.This

assump-tionisultimatelyjustifiedbythefactthatthemodelcanreproduce

thehistoricaldataonproduction(BardiandLavacchi,2009)fora

numberofcases.

Notethatthereisnoelementintheformulathatwouldstop

processingwhentheEROEIbecomessmallerthanone;whenthat

occurs,exploitationwillcontinueutilizingpreviouslyaccumulated

energyresources.Notealsothat,sinceproductionisgivenbyR,a

maximumintheproductioncurvewillcorrespondtoaninflection

pointintheEROEIcurve.

Fromthisresult,wecanproceedwiththedeterminationofthe

formfornetenergy(NE)whichwemaydefineasproductionminus

dissipation.Thatis

NE=C(k1R−k3)

WeseethatforRsufficientlysmall,thatisinthefinalstagesof

exploitation,thenetenergyofthesystembecomesnegativeandit

remainsso.Wecanalsowritethisrelationas:

NE=CR(k1−k3/R)

AssumingthatRisrelativelylarge,thatiswearenotatthefinal

stagesoftheexploitationprocess,wecanapproximateNEasequal

tok1CR,thatisequaltoproduction.Therefore,weexpectnetenergy

tohaveamaximumthattakesplace,approximately,nearthe

pro-ductionpeak.QualitativesimulationsperformedusingtheVensim

softwareconfirmboththisstatementandtheonethatEROEIshould

haveaninflectionpointincorrespondencetotheproductionpeak;

asshowninFig.3.

Fig.4.HistoricalEROEIofcrudeoilextractioninthelower48USstates.Figurefrom Murphy(2009).

These calculations qualitatively correlate with the historical

dataontheEROEI ofoilextractionfromtheUS-48lowerstates

(Murphy,2009;Cleveland,2005)asshowninFig.4.Despitethe

smallnumberofpointsavailable,itispossiblethattheinflection

pointintheEROEIcurveoccursaround1970andthereforeit

cor-respondstotheproductionpeakintheregion.

Theseconsiderationsraisethequestionofwhetheritispossible

tousethemodeldescribedhereinordertodeterminetheEROEI

insteadofusingthestandardLCA.Therearetwoproblemsinthis

sense:thefirstistheuseofproxydataforthefittingofthe

histor-icaltrends,thesecondisthatEROEI,asdefinedwithinthemodel,

impliesthatalltheenergyproducedbythesystemisallreusedto

producemoreenergy,anobviouslynonrealisticassumption.

Regardingtheuseofproxydata,itispossibletonormalizethe

equationsofthemodelandtoobtainavalueoftheEROEIasa

func-tionofthemeasuredparameters.Forthesecondproblem,however,

themodelcannotsayanythingaboutthesocietaldecisionofwhich

fractionoftheprofitsfromtheexploitationofaresourcehavetobe

allocatedtofurtherexploitation.Indeed,testsmadewiththeUS-48

crudeoilsystemstudiedinapreviouspaper(BardiandLavacchi,

2009)showthattheEROEIcalculatedfromthemodelissmaller

thantheLCAcalculatedEROEI(Cleveland,2005),asexpected.Inany

case,furtherdataandanalysisarenecessaryinordertodetermine

thepotentialofthismethodasatoolforEROEIcalculations.

5. Conclusions

Themodelpresentedhereoffersusefulinsightsonthe

mecha-nismofresourceexploitationanditmayofferarouteformodelling

andunderstandingeconomicprocesseswhicharevital for

soci-ety.TheroleandtheimportanceofEROEI areclarifiedbythese

resultswhichconfirmthat,indeed,EROEIisthedrivingforceinthe

exploitationprocess.Furthermore,themodelshowsthat,utilizing

accumulatedresources,theuseanonrenewableenergyresource

maycontinueevenforEROEIssmallerthanoneand–hence–for

negativenetenergyproduction.Whetherthiswillbethe

behav-ioroftherealworld’seconomy remainstobeseen,butit isat

leastapossibility;indicatingthattheeconomicmechanismswhich

arejudgedappropriatetodayfordeterminingexploitation

priori-tiesmaynotbesuchwhenappliedtononrenewableresources.

Althoughonlyqualitative,themodeloffersasimplementaltool,a

“mindsizedmodel”(Papert,1980),thatcanbeusedtounderstand

themechanismoftheexploitationofnaturalresources(including

theabilityoftheatmospheretocontainCO2withoutoverheating

theecosystem.

Understanding(andactingon)thesemechanismsisthemain

(5)

References

Bardi,U.,2007.Energypricesandresourcedepletion:lessonsfromthecaseof whal-inginthenineteenthcentury.EnergySources,PartB:Economics,Planning,and Policy2(3),297–304.

Bardi, U., Pagani, M., 2008. Peak minerals. The Oil Drum. http://www. theoildrum.com/node/3086.

Bardi,U.,Lavacchi,A.,2009.ASimpleinterpretationofHubbert’smodelofresource depletion.Energies2(3),646–661,doi:10.3390/en20300646.

Cleveland,C.J.,2005.NetenergyfromtheextractionofoilandgasintheUnited States.Energy30(5),769–782.

Hall,C.A.S.,1988.Anassessmentofseveralofthehistoricallymostinfluential the-oreticalmodelsusedinecologyandofthedataprovidedintheirsupport. EcologicalModelling43,5–31.

Hall,C.A.,Cleveland,C.T.,Kaufman,R.,1986.EnergyandResourceQuality.Wiley, NewYork.

Hall,C.A.S.,Powers,R.,Schoenberg,W.,2008.In:Pimentel,D.(Ed.),PeakOil,EROI, InvestmentsandtheEconomyinanUncertainFuture.InRenewableEnergy Systems:EnvironmentalandEnergeticIssues.Elsevier,London,pp.113–136.

Hall,C.,Stephen,B.,MurphyDavid,J.R.,2009.WhatistheminimumEROIthata sustainablesocietymusthave?Energies2,25–47,doi:10.3390/en20100025. Hubbert,M.K.,1962.EnergyResources.AReporttotheCommitteeonNatural

Resources:NationalAcademyofSciences.Nat.Res.CouncilPubl.1000-D, Wash-ington,D.C.,p.54.

Karnani,M.,Annila,A.,2009.Gaiaagain.Biosystems95(1),82–87.

Lotka,A.J.,1925.ElementsofPhysicalBiology.Williams&WilkinsCo.,Baltimore. Murphy,D.,2009.ThenetHubbertcurve:whatdoesitmean?TheOilDrum.

http://netenergy.theoildrum.com/node/5500.

Papert,S.,1980.Mindstorms.BasicBooksed.,NewYork,USA.

Pimentel,D.,Patzek,T.W.,2005.Ethanolproductionusingcorn,switchgrass,and wood;biodieselproductionusingsoybeanandsunflower.NaturalResources Research14(1),65–76,doi:10.1007/s11053-005-4679-8.

Smith,V.L.,1968.Economicsofproductionfromnaturalresources.TheAmerican EconomicReview58(3(Part1)),409–431.

Volterra,V.,1926.Variazioniefluttuazionidelnumerod’individuiinspecieanimali conviventi.Mem.R.Accad.Naz.deiLincei.Ser.VI2.

Riferimenti

Documenti correlati

Claude Turmes, Member of European Parliament, President EUFORES 13:40 – 14:10 Session 1: Energy Efficiency in Italy and in the EU. Chair: Claude Turmes, Member of European

ANIE Rinnovabili, Federazione Nazionale Imprese Elettrotecniche ed Elettroniche, RES4MED & RES4AFRICA, Associazione impegnata nella promozione delle energie

10:20 - 10:30: Ambassador; Permanent Representative of OECD, President of YENADER Kerem Alkin, Ph.D Speech of Honors:. 10:30 - 10:50: President of International Energy Agency

The spreading of the effective solutions to making more and more university buildings energy efficient, (applying motion sensor switches and LED bulbs, optimizations of

Kprowpc j , K prowkh j , K prowkp j – value of the repaid bank commission in the j-th year of operation during the loan repayment period of N sbpc years, taken to cover

With the slow introduction of renewable energy sources, the country's economy was not able to provide material resources and energy for the creation of renewable

Tradizioni e modelli alle origini del diritto europeo » 409 Il diritto del commercio internazionale e la tradizione genovese » 417 L’organizzazione di una città portuale: il caso

Important potential synergies between Europe and the Gulf exist in the development of renewable energy sources, especially solar and wind energies, and in investment