• Non ci sono risultati.

First observation of the decay D-0 -> K-pi(+)mu(+)mu(-) in the rho(0)-omega region of the dimuon mass spectrum

N/A
N/A
Protected

Academic year: 2021

Condividi "First observation of the decay D-0 -> K-pi(+)mu(+)mu(-) in the rho(0)-omega region of the dimuon mass spectrum"

Copied!
10
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

First

observation

of

the

decay

D

0

K

π

+

μ

+

μ

in

the

ρ

0

ω

region

of

the

dimuon

mass

spectrum

.

LHCb

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received29October2015

Receivedinrevisedform12April2016 Accepted14April2016

Availableonline19April2016 Editor:L.Rolandi

A studyof thedecay D0→K

π

+

μ

+

μ

− isperformed usingdata collectedby the LHCb detectorin proton–protoncollisionsatacentre-of-massenergyof8 TeV,correspondingtoanintegratedluminosity of2.0 fb−1.Decaycandidateswithmuonpairsthathaveaninvariantmassintherange675–875 MeV/c2 areconsidered.Thisregionisdominatedbythe

ρ

0and

ω

resonances.Thebranchingfractioninthisrange ismeasuredtobe

B(D0→K

π

+

μ

+

μ

)= (4.17±0.12(stat)±0.40(syst))×10−6.

ThisisthefirstobservationofthedecayD0K

π

+

μ

+

μ

.Itsbranchingfractionisconsistentwiththe

valueexpectedintheStandardModel.

©2016CERNforthebenefitoftheLHCbCollaboration.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Rare charm decays may proceed via the highly suppressed

c

u

μ

+

μ

−flavourchangingneutralcurrentprocess.Inthe Stan-dardModelsuch processescanonlyoccurthroughloopdiagrams, where in charm decays the GIM cancellation [1] is almost com-plete. As a consequence, the short-distance contribution to the inclusive D

X

μ

+

μ

− branching fraction is predicted to be as lowas

O(

10−9

)

[2],making thesedecaysinteresting forsearches fornewphysicsbeyondtheStandardModel.However,takinginto accountlong-distancecontributionsthroughtreediagrams involv-ingresonancessuchasD

X V

(→

μ

+

μ

)

,whereV representsa

φ

,

ρ

0 or

ω

vectormeson,thetotalbranchingfractionoftheserare charm decays can reach

O(

10−6

)

[2–4].Their sensitivity to new physicsthereforeis greatestinregions ofthedimuonmass spec-trumaway fromthese resonances,where themain contributions to the branching fraction may come from short-distance ampli-tudes. Angular asymmetries are sensitive to newphysics both in the vicinity of these resonances and away from them [4–8] and couldbeaslargeas

O(

1%

)

.

This Letter focuses on the measurement of the decay1 D0

K

π

+

μ

+

μ

−. This will provide an important reference channel for measurements of the c

u

μ

+

μ

− processes

D0

π

+

π

μ

+

μ

and D0

K+K

μ

+

μ

: precise branching fractions are easier to obtain if they are compared with a

nor-1 Theinclusionofchargeconjugatedecaysisimplied.

malisationmode thathassimilarfeatures.When restrictedtothe dimuon mass range 675

<

m

(

μ

+

μ

)

<

875 MeV

/

c2, where the

ρ

0 and

ω

resonances are expected to dominate, it can also be used to normalise the decays D0

K

π

+

η

()

(

μ

+

μ

)

.

Mea-suringtheirbranchingfractionsallowsthecoupling

η

()

μ

+

μ

to be determined. This contains crucial information for various low energy phenomena, and is an input to the prediction of the anomalous magnetic moment of the muon [9–11]. Focusing on this dimuon mass range also simplifies the analysis, which does not have to account for the variation of the selection effi-ciency asa function of m

(

μ

+

μ

)

. From previous measurements the most stringent90% confidencelevel upper limits on the de-cay D0

K

π

+

μ

+

μ

− are set by the E791 experiment [12]:

B(

D0

K

π

+

μ

+

μ

)

<

35

.

9

×

10−5 inthefull K

π

+ mass re-gionand

B(

D0

K

π

+

μ

+

μ

)

<

2

.

4

×

10−5 intheregionofthe

K∗0 resonance.

The study presented here is based on data collected by the LHCb detector in proton–proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 2

.

0 fb−1. A subsample corresponding to an integrated luminos-ityof1

.

6 fb−1 hasbeenusedto measure

B

(D0

K

π

+

μ

+

μ

−). Theremainder ofthedatasetwasusedtooptimisetheselection. Thebranchingfraction

B

(D0

K

π

+

μ

+

μ

)ismeasuredrelative to thatof thenormalisationdecay D0

K

π

+

π

+

π

.Themost accurate recent measurement of this branching fraction is used,

B(

D0

K

π

+

π

+

π

)

= (

8

.

287

±

0

.

043

±

0

.

200

)

×

10−2,obtained bytheCLEOexperiment[13].

http://dx.doi.org/10.1016/j.physletb.2016.04.029

0370-2693/©2016CERNforthebenefitoftheLHCbCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

2. Detectorandsimulation

TheLHCb detector [14,15]is asingle-armforward spectrome-tercoveringthe pseudorapidityrange2

<

η

<

5,designedforthe studyofparticles containing b orc quarks. Thedetectorincludes a high-precisiontracking systemconsisting ofa silicon-strip ver-tex detector surrounding the pp interaction region, a large-area silicon-stripdetectorlocatedupstream ofadipole magnetwitha bendingpower of about4 Tm, and threestations of silicon-strip detectorsandstrawdrifttubesplaceddownstreamofthemagnet. Thetrackingsystemprovidesameasurementofmomentum,p,of chargedparticleswitharelativeuncertaintythatvariesfrom0.5% atlowmomentumto1.0%at200 GeV/c.Theminimumdistanceof atracktoaprimaryvertex,theimpactparameter(IP),is measured witharesolutionof

(

15

+

29

/

pT

)

μm,wherepT isthecomponent ofthemomentumtransversetothebeam,in GeV/c.

Differenttypesofchargedhadronsare distinguished using in-formation from two ring-imaging Cherenkov detectors. Photons, electronsandhadronsareidentifiedbyacalorimetersystem con-sistingofscintillating-padandpreshowerdetectors,an electromag-neticcalorimeterandahadroniccalorimeter.Muonsareidentified byasystemcomposedofalternatinglayers ofiron andmultiwire proportionalchambers[16].

The online event selection is performed by a trigger [17], which consists of a hardware stage, based on information from thecalorimeterandmuon systems,followedby asoftware stage, whichapplies afull eventreconstruction. Intheoffline selection, requirementsaremadeonwhetherthetriggerdecisionwasdueto thesignalcandidateortootherparticlesproducedinthepp

colli-sion.ThroughoutthisLetter,thesetwonon-exclusivecategoriesof candidatesare referred to asTriggerOn Signal(TOS) andTrigger IndependentofSignal(TIS)candidates.

Simulated samples of D0

K

π

+

μ

+

μ

and D0

K

π

+

π

+

π

decays have been produced. In the simula-tion, pp collisions are generated using Pythia [18] with a spe-cific LHCb configuration [19]. Decays of hadronic particles are described by EvtGen [20], in which final-state radiation is gen-eratedusing Photos[21]. The interactionof thegenerated parti-cles with the detector, and its response, are implemented using the Geant4 toolkit [22] as described in Ref. [23]. No theoreti-cal model or experimental measurement provides a reliable de-cay modelfor D0

K

π

+

μ

+

μ

. This decaymode istherefore

modelledasanincoherentsumofresonantandnon-resonant con-tributions,such as K∗0

K

π

+ and

ρ

0

/

ω

μ

+

μ

,motivated

by the resonant structure observed in D0

K

π

+

π

+

π

and D0

K

π

+

π

+

π

π

0 decays[24],andbythetheoretical predic-tionsofRef.[4].Inthecaseof D0

K

π

+

π

+

π

−,a decaymodel reproducingthe data was implemented usingthe MINT software package[25].

3. Eventselection

The criteria used to select the D0

K

π

+

μ

+

μ

and D0

K

π

+

π

+

π

decays are as similar as possible to allow many systematic uncertainties to cancel in the efficiency ratio. At trigger level, only events that are TIS with respect to the hadronhardwaretrigger,whichhasatransverseenergythreshold of3.7 GeV,are kept. In the offline selection,the onlydifferences betweenthesignalandnormalisationchannelsarethemuon iden-tificationcriteria.

The first-level software trigger selects events that contain at leastone goodqualitytrackwithhigh pT and

χ

IP2,wherethe lat-teris defined asthe difference in

χ

2 of the closest primary pp interactionvertex(PV)reconstructedwithandwithoutthe parti-cleunderconsideration.Theofflineselectionrequiresthatatleast

oneofthesetracksoriginatesfromeitherthe D0

K

π

+

μ

+

μ

− or the D0

K

π

+

π

+

π

− decay candidates. The second-level software trigger uses two dedicated selections to reconstruct

D0

K

π

+

μ

+

μ

− or D0

K

π

+

π

+

π

− candidatesoriginating from the PV. These combine good quality tracks that satisfy pT

>

350 MeV

/

c and p

>

3000 MeV

/

c. A muon (D0

K

π

+

μ

+

μ

)orchargedhadron(D0

K

π

+

π

+

π

)pair

is required to form a good quality secondary vertex that is sig-nificantly displaced from the PV. In events where such a pair is found, two charged hadrons are subsequently added. The result-ingfour-particlecandidatemusthaveagoodqualityvertexandits invariant massmustbe consistentwiththeknown D0 mass[24]. The momentum vector of this D0 candidate must be consistent withhavingoriginatedfromthe PV.

Apreselectionfollowsthetriggerselections.Fourcharged parti-clesarecombinedtoformD0candidates.Tracksthatdonot corre-spondtoactualtrajectoriesofchargedparticlesaresuppressedby usinganeuralnetworkoptimisationprocedure.Torejectthe com-binatorial background involving tracks from the PV, only high-p and high-pT tracks that are significantly displaced from any PV are used. This background is further reduced by requiring that the four decay products of the D0 meson form a good qual-ity vertex that is significantly displaced from the PV and that

pT

(

D0

)

>

3000 MeV

/

c.These three criteriaalso reject candidates formed from partially reconstructed charm hadron decays, com-binedwitheitherrandomtracksfromthePVorwithtracksfrom the decay of another charmed hadron in the same event. This type of background is further reduced by requiring the D0 mo-mentum vectoriswithin 14 mradofthevectorthat joinsthePV with the D0 decay vertex, ensuring that the D0 candidate orig-inates from the PV. Finally, the invariant mass of the D0 candi-date,whichisreconstructedwitharesolutionofabout7 MeV

/

c2, is required to lie within 65 MeV

/

c2 of the known D0 mass. In the case of D0

K

π

+

μ

+

μ

, m

(

μ

+

μ

)

is restricted to the

range675–875 MeV

/

c2.Thetwobackgroundsdescribedaboveare referred to as the non-peaking background throughout this Let-ter.

After the preselection, a multivariate selection based on a boosteddecisiontree(BDT)[26,27]isusedtofurthersuppressthe non-peaking background. The GradBoost algorithm is used [28]. The BDTuses thefollowingvariables: the pT and

χ

IP2 ofthefinal state particles;the pT and

χ

IP2 ofthe D0 candidateaswellasthe

χ

2 per degreeoffreedom ofits vertexfit;thesignificanceofthe distance betweenthis vertexand thePV; the largest distance of closest approachbetweenthetracks that formthe D0 candidate; theanglebetweenthe D0 momentumvector andthevectorthat joinsthe PVwith its decayvertex. The cut on theBDT response usedin theselection discardsmorethan 80%ofthe non-peaking candidatesandretainsmorethan80%ofthesignalcandidatesthat havepassedthepreselection.

Finally,theinformationfromtheRICH,thecalorimetersandthe muonsystemsarecombinedtoassignprobabilitiesforeachdecay producttobeapion,akaonoramuon,asdescribed inRef.[15]. A loose requirement on the kaon identification probability re-jects about 90% ofthe backgrounds that consist of

π

+

π

μ

+

μ

or

π

+

π

π

+

π

− combinationswhilepreserving 98%ofthesignal candidates. In the case of D0

K

π

+

μ

+

μ

decays,the muon identification criteria have an efficiency of 90% per signal muon and reduce the rate of misidentified pions by a factor of about 150. In the absence of muon identification, D0

K

π

+

π

+

π

decayswithtwomisidentified pionswouldoutnumbersignal de-caysbyfourordersofmagnitude.Aftertheseparticleidentification requirements,thisbackgroundisreducedtoaround50%ofthe sig-nalyieldandisdominatedby decaysinvolvingtwopiondecaysin

(3)

flight (

π

+

μ

+

ν

μ).It is referred to asthepeaking background

throughoutthisLetter.

Inadditionto D0

K

π

+

π

+

π

− decayswithtwo misidenti-fiedpions,backgroundsduetothedecaysofD+, D+s,D∗+,

τ

,

Λ

+c

and

c0 are considered.Theseare studiedusingsimulatedevents andfoundtobenegligible.

The selection is optimised usingdata and simulated samples. TheBDT istrainedusingsimulated D0

K

π

+

μ

+

μ

eventsto model the signal. The sample used to represent the background consists of candidates with m

(

K+

π

μ

+

μ

)

>

1890 MeV

/

c2, drawn from2% ofthe total datasample. Candidates onthe low-mass side of the signal peak are not used due to the pres-ence there of peaking background decays, whose features are very close to those of signal decays. Optimal selection crite-ria on the BDT response and muon identification are found using another independent data sample corresponding to 20% of the total dataset. The fit described in Sect. 4 is used to estimate the yields of D0

K

π

+

μ

+

μ

signal (S), peaking background (Bpk) and non-peaking background (Bnpk) present in this sample in the region of the signal peak, defined as 1840

<

m

(

K

π

+

μ

+

μ

)

<

1890 MeV

/

c2.Therequirementsonthe muon identification and BDT response are chosen to maximise

S

/



S

+

Bpk

+

Bnpk.

The two samples described above consist of events chosen randomly from the 2012 data and are not used for the subse-quentanalysis. The remainder ofthe dataset (78%),which corre-spondstoanintegratedluminosityof1

.

6 fb−1,isusedtomeasure

B

(D0

K

π

+

μ

+

μ

). The final D0

K

π

+

μ

+

μ

sample

ob-tainedwiththisselectionconsistsof5411candidates.Inthecase of D0

K

π

+

π

+

π

−,the large value of

B

(D0

K

π

+

π

+

π

−) allows usto usea small sample (3 pb−1), drawn randomly from thetotaldataset.Thefinal D0

K

π

+

π

+

π

sample consistsof 121 922candidates.

4. DeterminationoftheD0

K

π

+

μ

+

μ

−and

D0

K

π

+

π

+

π

yields

A simultaneous binned maximum likelihood fit to the

m

(

K

π

+

μ

+

μ

)

andm

(

K

π

+

π

+

π

)

distributions is performed tomeasure

B

(D0

K

π

+

μ

+

μ

−).

Ineachsample,theprobabilitydensityfunction(PDF)fittedto thesignal peak isa Gaussian function withpowerlawtails. Itis definedinthefollowingway:

f

(

m

;

mD0

,

σ

,

α

L

,

nL

,

α

R

,

nR

)

=



nL |αL|



nL

×

e−12α2L



nL |αL|

− |

α

L

| −

mmD0 σ



nL if mmD0 σ

≤ −|

α

L

|,



nR |αR|



nR

×

e−12α2R



nR |αR|

− |

α

R

| +

mmD0 σ



nR if mmD0 σ

≥ |

α

R

|,

exp

−(mmD0)2 2σ2

otherwise

,

wheremD0 and

σ

are themean andwidthofthe peak, and

α

L, nL,

α

R and nR parameterise the left and right tails. This

func-tion was found to describe accurately the m

(

K

π

+

μ

+

μ

)

and

m

(

K

π

+

π

+

π

)

distributionsobtainedwiththesimulation,which exhibit non-Gaussiantailson bothsidesofthepeaks.Thetailon the left-hand side is dominated by final-state radiation and in-teractions with matter, while the right-hand side tail is due to non-Gaussianeffectsinthereconstruction.

The non-peaking backgroundin the D0

K

π

+

π

+

π

sam-ple is described by a first-order polynomial. In the case of

D0

K

π

+

μ

+

μ

,asecond-orderpolynomialisused.

Three peaking backgrounds due to misidentified

D0

K

π

+

π

+

π

− decays are categorised by the presence of candidates involving misidentified pions that did not decay in flight before reaching the mostdownstream tracking stations, or candidates where one or two pions decayed upstream of these trackingstations.Candidatesfromthefirstcategoryaredescribed by a one-dimensional kernel density estimate [29]. This PDF is derived from the m

(

K

π

+

μ

+

μ

)

distribution obtained using simulated D0

K

π

+

π

+

π

decays reconstructed under the

D0

K

π

+

μ

+

μ

− hypothesis. Candidates from the remaining two categories appear as tails on the lower-mass side of the

m

(

K

π

+

μ

+

μ

)

distribution andmustbe accountedfortoavoid biasesinthenon-peakingbackgroundandinthesignalyield mea-suredbythefit.Duetothesmallnumberofsuchcandidatesinthe simulatedsample,simulatedD0

K

π

+

π

+

π

candidateswhere nopiondecaysinflightarealteredtoreproducetheeffectofsuch decays,andthecorrespondingm

(

K

π

+

μ

+

μ

)

distributionis de-termined.Thisisachievedbymodifyingthemomentumvectorsof eitheroneortwoofthepionspresentinthe D0

K

π

+

π

+

π

finalstateaccordingtothekinematicsof

π

+

μ

+

ν

μ decays.The m

(

K

π

+

μ

+

μ

)

distributionsobtainedafterthismodificationare convertedintoone-dimensionalkerneldensityestimates.

The fit model involves 5 yields: the signal yield, Nsig, the yield of normalisation decays, ND0Kπ+π+π−, the peaking and non-peaking background yields, Npk and Nnpk, and the yield of backgroundcandidatesintheD0

K

π

+

π

+

π

sample,NKπ π π

npk . Theyareallfreeparametersinthefit.Italsoinvolves15 parame-ters to define theshapesof the PDFs.The parameters describing the widths and upper-mass tails are free parameters in the fit but are common between the PDFs for the D0

K

π

+

μ

+

μ

andD0

K

π

+

π

+

π

peaks.Thelower-masstailparametersare determined separately. Those used for D0

K

π

+

π

+

π

− can-didates are allowed to vary in the fit. This is not possible for

D0

K

π

+

μ

+

μ

candidates because of the overlap between the signal and the D0

K

π

+

π

+

π

− peaking background and therefore the parameters are fixed to the values obtained from thesimulatedsample.Intotal,thereare15freeparametersinthe fit.

The relativeyields ofthe threepeakingbackgroundcategories described above are fixed to values obtained by a fit to a large control sample. It consistsof D0

K

π

+

μ

+

μ

− candidates that areintheTOScategorywithrespecttothemuonhardwaretrigger, incontrasttothesignalandnormalisationsamplesthatareinthe TIS category with respect to the hadron trigger. All ofthe other selectionrequirementsarethesameasthosedescribedinSect.3. This TOS signal control sample consistsof28 835 candidatesand containsapproximatelysixtimesmoreD0

K

π

+

μ

+

μ

−decays thanthenominalTISsample.

The fit results are summarised in Table 1 and the observed mass distributions are shownin Fig. 1,with fitprojections over-laid. The main difficulties in this procedure are the similari-ties in the shape of the signal, peaking background and non-peaking background,and the overlap betweentheir distributions in m

(

K

π

+

μ

+

μ

)

. However, their impact on the measurement presented in this Letter is limited, as can also be seen in Ta-ble 1.

5. Branchingfractionmeasurement

The branchingfractionofthedecayD0

K

π

+

μ

+

μ

is ob-tainedby combiningthequantitiespresentedinTable 2withthe branchingfractionofthe D0

K

π

+

π

+

π

decayaccordingto

(4)

Table 1

Summary of the results of the fit described in Sect. 4. The yields measured in the D0Kπ+μ+μsample and the correlations between them, the

yieldsmeasured in the normalisation sample,the commonwidth fittedto the D0Kπ+μ+μandD0Kπ+π+πyields,andtherelativeuncertaintyon

B(D0Kπ+μ+μ)arepresented.Uncertaintiesonthefittedparametersare

statistical.Thevariationofthe uncertaintyonB(D0Kπ+μ+μ)whenthe

backgroundyieldsarefixedindicatestowhatextentitisenhancedbytheneedto separatecontributionsinoverlapandwhichshapespresentsomesimilarities.

Parameter Value Nsig 2357±67 Npk 1047±84 Nnpk 2007±116 ND0K−π+π+π− 83 575±334 NnpkKπ π π 38 346±257 σ 7.17±0.03 MeV/c2 CNpk,Nnpk −78% CNsig,Npk 27% CNsig,Nnpk −48% σB(D0Kπ+μ+μ) 2.9% σB(D0Kπ+μ+μ), if Npkfixed 2.8% σB(D0Kπ+μ+μ), if Npkand Nnpkfixed 2.4%

Fig. 1. Massdistributionsof(a)D0Kπ+π+πand(b)D0Kπ+μ+μ

candidates.The data areshownas points (black)and the total PDF(bluesolid line)isoverlaid.In(a),thetwocorrespondingcomponentsofthefitmodelarethe D0Kπ+π+πdecays(redsolidline)andthenon-peakingbackground(violet

dashedline).In(b),thecomponentsaretheD0Kπ+μ+μ(long-dashedgreen

line),thepeakingbackgroundduetomisidentifiedD0Kπ+π+πdecays(red

solidline),andthenon-peakingbackground(violetdashedline).(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

B

(

D0

K

π

+

μ

+

μ

)

=

ND0→Kπ+μ+μND0Kπ+π+π

×

ε

D0Kπ+π+π

ε

D0Kπ+μ+μ

×

B

(

D0

K

π

+

π

+

π

),

(1) Table 2

MeasuredefficienciesandyieldsforthedecayD0Kπ+μ+μinthedimuon

massrange675–875 MeV/c2,andfor thedecay D0Kπ+π+π.The

uncer-taintiesarestatistical.Inthecaseofefficiencies,itstemsfromthefinitesizeofthe simulatedsamples. D0Kπ+μ+μD0Kπ+π+π− Efficiency [10−5] 8.8±0.2 8.2±0.1 Yields 2357±67 83 575±334 Table 3 SystematicuncertaintiesonB(D0Kπ+μ+μ). Source Uncertainty [%] Track reconstruction 3.2 Offline selection 2.0 Simulated decay models 2.5 Hardware trigger 4.4 Software trigger 4.3 Muon identification 3.2 Kaon identification 1.0 Size of simulated sample 2.9

σsyst(εD0Kπ+μ+μ/εD0Kπ+π+π) 8.8 Signal shape parameters 0.8 Peaking background tails 1.5 Signal PDF 0.6 Non-peaking background shape 2.1

σsyst(NKπ++μ)ρ0−ω/NKπ+π+π) 2.8

B(D0Kπ+π+π) 2.5

Quadratic sum 9.6

where ND0Kπ+μ+μ−, ND0Kπ+π+π−,

ε

D0Kπ+μ+μ− and

ε

D0Kπ+π+π− aretheyieldsandselectionefficienciesforthe

sig-nalandnormalisationdecays.Thebranchingfractionofthesignal decayfordimuoninvariantmassesintherange675–875 MeV

/

c2 ismeasured tobe

B(

D0

K

π

+

μ

+

μ

)

= (

4

.

17

±

0

.

12

)

×

10−6, wheretheuncertaintyisstatistical.

5.1. Systematicuncertainties

The systematic uncertainties on

B

(D0

K

π

+

μ

+

μ

) are summarised in Table 3. Those related to reconstruction and se-lection efficiencies are minimised thanks to the efficiency ratio in Eq. (1) and to the similarities between D0

K

π

+

μ

+

μ

and D0

K

π

+

π

+

π

decays. This is illustrated in Fig. 2, which shows the distributions of the BDT response for the

D0

K

π

+

μ

+

μ

− and D0

K

π

+

π

+

π

− decays, both in data and simulated samples. In data, the background contribu-tions are removedusing the sPlot technique[30]. Alsoshown in this figure are the ratios between the D0

K

π

+

μ

+

μ

and D0

K

π

+

π

+

π

distributions. The BDT response,which com-bines all the offline selection variables (with the exception of muon identificationcriteria),isverysimilar forbothkindsof de-cay and the differences are well described by the simulation.In caseswhere selectioncriteriadepend onthe natureofthe decay products,data-drivenmethodsareused,asdescribedbelow.

The uncertainty on the charged hadron reconstruction ineffi-ciency isdominatedby the uncertaintyonthe probability to un-dergo a nuclear interaction in the detector. This inefficiency is evaluated usingsimulated events. The corresponding uncertainty isderivedfromthe10%uncertaintyonthemodellingofthe detec-tormaterial[31].

The selection efficiencies based on the kinematical and geo-metrical requirements are derived from simulation. A systematic uncertainty to take into account imperfect track reconstruction

(5)

Fig. 2. Distributions of the BDT response of D0Kπ+μ+μ(circles) and D0Kπ+π+πdecays(triangles)indata(fullmarkers)andsimulation(open

markers). In data, the background contributions are removed using the sPlot technique. The lower plot shows the ratio between the D0 Kπ+μ+μ

and D0Kπ+π+πdistributionsindata(fullsquares)andsimulation(open

squares).

modellingisestimatedbysmearingtrackpropertiestoreproduce thoseobservedindata.Similarly, asystematicuncertaintyonthe efficiency of the BDT selection is assigned as the difference be-tweentheefficiencyobtainedindataandsimulation.

Theuncertaintiesinthedecaymodelsareestimatedseparately for the signal and normalisation channels. For the signal, this is carried out by reweighting simulated D0

K

π

+

μ

+

μ

de-cays to reproduce the distributions of m

(

K

π

+

)

and m

(

μ

+

μ

)

observed in data, with the difference in efficiency relative to the default being assigned as the systematic uncertainty. For

D0

K

π

+

π

+

π

, the sensitivity to the decay model is stud-ied by comparingthe defaultefficiency withthat obtainedin an extreme case in which the decay model provided by the MINT package is replaced by an incoherent sumof the resonances in-volvedinthedecay,asgiveninRef.[24].

Toavoiddependenceonthemodellingofthehardwaretrigger insimulation,itsefficiencyisdeterminedindata.Theefficiencyto be TISwithrespect to hadron hardware trigger isdetermined as thefractionof D0

K

π

+

μ

+

μ

− decaysthat fulfilthis require-mentamongD0

K

π

+

μ

+

μ

− candidatesthatareTOSwith re-specttothemuonhardwaretrigger.Itismeasuredin12different regions definedin the (pT

(

D0

)

, Nt) plane, where Nt is the track multiplicity of the event. The overall hardware trigger efficiency forD0

K

π

+

μ

+

μ

decaysistheaverageofthese12 efficien-ciesweightedaccordingtothedistributionsofD0

K

π

+

μ

+

μ

− candidates observed in data. The efficiency of the normalisation mode is obtained by weighting the same 12 efficiencies accord-ing to the distributions of D0

K

π

+

π

+

π

− candidates. This procedure assumes that the probability for D0

K

π

+

μ

+

μ

decays to fulfil the TIS requirement is not enhanced by the re-quirement to also be in the TOS category and that this TIS ef-ficiencyis the same in every region for D0

K

π

+

μ

+

μ

− and

D0

K

π

+

π

+

π

− decays.No difference is found in simulation betweenthe

ε

D0Kπ+π+π

/

ε

D0Kπ+μ+μ− ratioobtainedwith this method and the ratio of true efficiencies, obtained by di-rectlycountingthe numberofsimulated D0

K

π

+

μ

+

μ

and D0

K

π

+

π

+

π

decays that fulfil the hadron trigger TIS

re-quirement. To determine the systematic uncertainty associated withthehardwaretriggerefficiency,theuncertaintyonthis com-parison is combined with the statistical uncertainties on the 12 measurementsperformedindatain(pT

(

D0

)

,Nt)regions.

Asimilarapproachisemployedinthecaseofthefirstlevelof the software trigger. A sample of D0

K

π

+

π

+

π

− candidates isselectedfromdatathat satisfiedthe triggerrequirements inde-pendentlyofthesecandidates.ThefractionofD0

K

π

+

π

+

π

decayswhereatleastoneofthedecayproducts alsosatisfiesthe requirementsofthistriggerismeasuredusingthissample.This ef-ficiencyismeasuredinregionsof pT

(

D0

)

andweightedaccording to distributions ofthis variable in simulated D0

K

π

+

μ

+

μ

and D0

K

π

+

π

+

π

events.Thevariationintheefficiency

ra-tio when these distributions are corrected to match the data is usedtoevaluatethecorrespondingsystematicuncertainty.

Theefficiencyofthesecond-levelsoftwaretriggerforthesignal decayiscalculatedrelativetothatofthenormalisationdecay.This ratio is measured using D0

K

π

+

μ

+

μ

− decays in data and simulationandconsistentresultsareobtained.Theuncertaintyon thiscomparisonisthereforeassignedasthesystematicuncertainty onthistriggerefficiency.

Theefficiencyofthemuonidentificationcriteriaisdetermined in data usinga large andpure sample of B

J

/ψ(→

μ

+

μ

)

X

decays. Efficiencies measured in several regions of pT

(

μ

)

,

η

(

μ

) and Nt are weighted according to the distribution observed for themuoncandidatesfromD0

K

π

+

μ

+

μ

decays.Several

def-initions of these domains are considered, with varying binnings. The different efficiencies obtained this way, as well as the effi-ciencies obtained in simulated samples, are compared to evalu-ate thecorresponding systematicuncertainty.The sameapproach is used to evaluate the efficiency of the kaon identification re-quirement. In this case, the calibration kaons are provided by

D∗+

D0

(→

K

π

+

)

π

+decaysindata.

In the fit outlined in Sect. 4, the parameters of the function that describethe lower-masstailofthe D0

K

π

+

μ

+

μ

− peak are fixed to values obtained from simulation. The corresponding systematicuncertaintyisdeterminedbyrepeatingthefitusingthe valuesobtainedbyafittothesignalTOScontrolsample.Asimilar difference is observed when thecorresponding test isperformed forD0

K

π

+

π

+

π

candidates.

The systematic uncertainty related to the description of the peaking background is determined by the change observed in

B

(D0

K

π

+

μ

+

μ

)whenthecomponentsduetothedecayof oneortwopionsinflightareneglected,andwhentheiryields rel-ativetotherestofthepeakingbackgroundareenhancedbytwice theiruncertainty.

Two other systematic uncertainties have been evaluated. To estimate the impact of the signal PDF employed, the fit is re-peated using the Cruijff function [32] instead. Potential effects arising fromnon-peaking backgrounds are assessed by repeating thefitswiththenon-peakingbackgroundsassumedtobelinearin

m

(

K

π

+

μ

+

μ

)

.Thevaluesofthesystematicuncertainties asso-ciated withthe choice offit modelandits parameters were also furthervalidatedusingpseudoexperiments.

The impact on the fit of the similarities between the shapes of thesignal and backgroundcomponents was furthercontrolled intwoways. First,fixingthebackgroundyieldsdecreasesthe rel-ative uncertainty on

B

(D0

K

π

+

μ

+

μ

−) from 2.9% to 2.4%. This variation is far lower than the total systematic uncertainty dueto theyielddetermination(2.8%).Moreover, anotherstudyis performed based on pseudoexperiments, generated withrealistic values of the yields and PDFs shape parameters. The fit proved able to return unbiasedmeasurements ofthe generated value of

B

(D0

K

π

+

μ

+

μ

−) andan accurate estimationofthe statisti-caluncertainty,consistentwiththeuncertaintyobtainedindata.

(6)

As can be seen in Table 3, the systematic uncertainties are dominated by the uncertainty on the D0

K

π

+

μ

+

μ

− to

D0

K

π

+

π

+

π

− efficiencyratio,whichislarger thanthe2.9% statisticaluncertaintyon

B

(D0

K

π

+

μ

+

μ

).Asexpected, this systematicuncertaintyisprimarily duetothedifferentfinal state particlesofthetwodecays.Thetriggerefficiencies,andthemuon identification and track reconstruction efficiencies, are responsi-bleforabout90%ofthisuncertainty.Theuncertaintiesduetothe yielddeterminationandtheknowledge of

B

(D0

K

π

+

π

+

π

−) representsecondarycontributions.

6. Conclusions

Thedecay D0

K

π

+

μ

+

μ

isstudied using proton–proton collisiondatacorrespondingtoanintegratedluminosityof2

.

0 fb−1 collectedin2012bytheLHCbdetectoratacentre-of-massenergy of8 TeV.Thebranching fractionofthedecay D0

K

π

+

μ

+

μ

− inthedimuonmassrange675–875 MeV

/

c2 ismeasuredtobe

B

(

D0

K

π

+

μ

+

μ

)

= (

4

.

17

±

0

.

12 (stat)

±

0

.

40 (syst)

)

×

10−6

.

ThisbranchingfractioncanbecomparedtotheStandardModel value calculatedin Ref. [4],

B(

D0

K

π

+

μ

+

μ

)

=

6

.

7

×

10−6, in the full dimuon mass range. This is the first observation of this decay. The branching fraction is measured with an overall precision of 10% and is one order of magnitude lower than the previousmoststringentupperlimit.Precisemeasurementsofthe

D0

π

+

π

μ

+

μ

andD0

K+K

μ

+

μ

decaysare now

pos-sibleinallregionsofthedimuoninvariantmasssincetheycanbe comparedwithanormalisationmodethathassimilarfeaturesand aprecisely knownbranching fraction. Thiswill allowmore strin-gentconstraintsonnewphysicstobeobtainedusingdataalready collectedbytheLHCbdetector,andthesensitivityoffuture exper-imentstoangularasymmetriestobeassessed.

Thedistributionsofthe K

π

+ and

μ

+

μ

− invariantmassesin

D0

K

π

+

μ

+

μ

decays are shownin Fig. 3,where the back-ground contribution is removed using the sPlot technique [30], takingthe m

(

K

π

+

μ

+

μ

)

invariant mass as the discriminating variable.An amplitude analysis wouldbe requiredfor a full un-derstanding of the decay dynamics. The distributions in Fig. 3 suggestthe presence ofadditionalcontributions, includingthe

ω

resonance,beyondtheK∗0

ρ

0 intermediatestatethat,accordingto Ref.[4],shouldstronglydominatethedecayamplitude.

Acknowledgements

We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC. We thank the technical andadministrative staff at the LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN(Italy); FOMandNWO (TheNetherlands);MNiSWandNCN (Poland);MEN/IFA (Romania);MinES andFANO (Russia);MinECo (Spain);SNSFandSER(Switzerland);NASU(Ukraine);STFC(United Kingdom);NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Ger-many), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We areindebtedtothecommunitiesbehind themultipleopensource softwarepackagesonwhich wedepend.Weare alsothankfulfor the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members

Fig. 3. Backgroundsubtracteddistributionof(a) the Kπ+ invariant massand

(b) theμ+μ−invariantmass,measuredinD0Kπ+μ+μdecaysusingthe sPlot technique.

havereceivedsupportfromAvHFoundation (Germany),EPLANET, Marie Skłodowska-Curie ActionsandERC (EuropeanUnion), Con-seil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Ré-gionAuvergne(France),RFBR(Russia),GVA,XuntaGalandGENCAT (Spain),TheRoyalSocietyandRoyalCommissionfortheExhibition of1851(UnitedKingdom).

References

[1]S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton–hadron symmetry, Phys. Rev. D 2 (1970) 1285.

[2]A. Paul, I.I. Bigi, S. Recksiegel, On DXul+l−within the Standard Model and

frameworks like the littlest Higgs model with T parity, Phys. Rev. D 83 (2011) 114006, arXiv:1101.6053.

[3]S. Fajfer, N. Ko˘snik, S. Prelov˘sek, Updated constraints on new physics in rare charm decays, Phys. Rev. D 76 (2007) 074010, arXiv:0706.1133.

[4]L. Cappiello, O. Cata, G. D’Ambrosio, Standard Model prediction and new physics tests for D0h+

1h−2l+l(h =π,K ;l=e,μ), J. High Energy Phys. 04 (2013) 135, arXiv:1209.4235.

[5]A. Paul, A. De La Puente, I.I. Bigi, Manifestations of warped extra dimen-sion in rare charm decays and asymmetries, Phys. Rev. D 90 (2014) 014035, arXiv:1212.4849.

[6]S. Fajfer, N. Ko˘snik, Prospects of discovering new physics in rare charm decays, arXiv:1510.00965.

(7)

[7]S. de Boer, G. Hiller, Flavor & new physics opportunities with rare charm decays into leptons, arXiv:1510.00311.

[8]S. Fajfer, S. Prelov˘sek, Effects of littlest Higgs model in rare D meson decays, Phys. Rev. D 73 (2006) 054026, arXiv:hep-ph/0511048.

[9] E.Kou,etal.,Novelapproachtomeasuretheleptonicη()μ+μdecaysvia

charmedmesondecays,http://publication.lal.in2p3.fr/,2016,LAL-16-011. [10]P. Masjuan, P. Sanchez-Puertas, η and η decays into lepton pairs, arXiv:

1512.09292.

[11]A. Nyffeler, On the precision of a data-driven estimate of hadronic light-by-light scattering in the muon g-2: pseudoscalar-pole contribution, arXiv: 1602.03398.

[12]E791 Collaboration, E.M. Aitala, et al., Search for rare and forbidden charm meson decays D0V l+land hhll,

Phys. Rev. Lett. 86 (2001) 3969,

arXiv:hep-ex/0011077.

[13]CLEO Collaboration, G. Bonvicini, et al., Updated measurements of absolute D+

and D0hadronic branching fractions and σ

(e+e−→D D)at Ecm=3774 MeV, Phys. Rev. D 89 (2014) 072002, arXiv:1312.6775.

[14]LHCb Collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, J. In-strum. 3 (2008) S08005.

[15]LHCb Collaboration, R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022, arXiv:1412.6352.

[16]A.A. Alves Jr., et al., Performance of the LHCb muon system, J. Instrum. 8 (2013) P02022, arXiv:1211.1346.

[17]R. Aaij, et al., The LHCb trigger and its performance in 2011, J. Instrum. 8 (2013) P04022, arXiv:1211.3055.

[18]T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High En-ergy Phys. 05 (2006) 026, arXiv:hep-ph/0603175;

T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

[19]I. Belyaev, et al., Handling of the generation of primary events in Gauss, the

LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.

[20]D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth-ods A 462 (2001) 152.

[21]P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z andW decays,

Eur. Phys. J. C 45 (2006) 97, arXiv:hep-ph/0506026.

[22]Geant4 Collaboration, J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270;

Geant4 Collaboration, S. Agostinelli, et al., Geant4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.

[23]M. Clemencic, et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[24]Particle Data Group, K.A. Olive, et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001.

[25]P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085.

[26]L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth International Group, Belmont, CA, USA, 1984.

[27]B.P. Roe, et al., Boosted decision trees as an alternative to artificial neural net-works for particle identification, Nucl. Instrum. Methods A 543 (2005) 577, arXiv:physics/0408124.

[28]A. Hoecker, et al., TMVA – toolkit for multivariate data analysis, PoS ACAT (2007) 040, arXiv:physics/0703039.

[29]K.S. Cranmer, Kernel estimation in high-energy physics, Comput. Phys. Com-mun. 136 (2001) 198, arXiv:hep-ex/0011057.

[30]M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Methods A 555 (2005) 356, arXiv:physics/0402083.

[31]LHCb Collaboration, R. Aaij, et al., Measurement of the track reconstruction ef-ficiency at LHCb, J. Instrum. 10 (2015) P02007, arXiv:1408.1251.

[32]BaBar Collaboration, P. del Amo Sanchez, et al., Study of B decays and

determination of |Vtd/Vts|, Phys. Rev. D 82 (2010) 051101, arXiv:1005.4087.

LHCbCollaboration

R. Aaij

39

,

C. Abellán Beteta

41

,

B. Adeva

38

,

M. Adinolfi

47

,

A. Affolder

53

,

Z. Ajaltouni

5

,

S. Akar

6

,

J. Albrecht

10

,

F. Alessio

39

,

M. Alexander

52

,

S. Ali

42

,

G. Alkhazov

31

,

P. Alvarez Cartelle

54

,

A.A. Alves Jr

58

,

S. Amato

2

,

S. Amerio

23

,

Y. Amhis

7

,

L. An

3

,

L. Anderlini

18

,

J. Anderson

41

,

G. Andreassi

40

,

M. Andreotti

17

,

f

,

J.E. Andrews

59

,

R.B. Appleby

55

,

O. Aquines Gutierrez

11

,

F. Archilli

39

,

P. d’Argent

12

,

A. Artamonov

36

,

M. Artuso

60

,

E. Aslanides

6

,

G. Auriemma

26

,

m

,

M. Baalouch

5

,

S. Bachmann

12

,

J.J. Back

49

,

A. Badalov

37

,

C. Baesso

61

,

W. Baldini

17

,

39

,

R.J. Barlow

55

,

C. Barschel

39

,

S. Barsuk

7

,

W. Barter

39

,

V. Batozskaya

29

,

V. Battista

40

,

A. Bay

40

,

L. Beaucourt

4

,

J. Beddow

52

,

F. Bedeschi

24

,

I. Bediaga

1

,

L.J. Bel

42

,

V. Bellee

40

,

N. Belloli

21

,

j

,

I. Belyaev

32

,

E. Ben-Haim

8

,

G. Bencivenni

19

,

S. Benson

39

,

J. Benton

47

,

A. Berezhnoy

33

,

R. Bernet

41

,

A. Bertolin

23

,

M.-O. Bettler

39

,

M. van Beuzekom

42

,

A. Bien

12

,

S. Bifani

46

,

P. Billoir

8

,

T. Bird

55

,

A. Birnkraut

10

,

A. Bizzeti

18

,

h

,

T. Blake

49

,

F. Blanc

40

,

J. Blouw

11

,

S. Blusk

60

,

V. Bocci

26

,

A. Bondar

35

,

69

,

N. Bondar

31

,

39

,

W. Bonivento

16

,

S. Borghi

55

,

M. Borsato

7

,

T.J.V. Bowcock

53

,

E. Bowen

41

,

C. Bozzi

17

,

S. Braun

12

,

M. Britsch

11

,

T. Britton

60

,

J. Brodzicka

55

,

N.H. Brook

47

,

E. Buchanan

47

,

C. Burr

55

,

A. Bursche

41

,

J. Buytaert

39

,

S. Cadeddu

16

,

R. Calabrese

17

,

f

,

M. Calvi

21

,

j

,

M. Calvo Gomez

37

,

o

,

P. Campana

19

,

D. Campora Perez

39

,

L. Capriotti

55

,

A. Carbone

15

,

d

,

G. Carboni

25

,

k

,

R. Cardinale

20

,

i

,

A. Cardini

16

,

P. Carniti

21

,

j

,

L. Carson

51

,

K. Carvalho Akiba

2

,

39

,

G. Casse

53

,

L. Cassina

21

,

j

,

L. Castillo Garcia

40

,

M. Cattaneo

39

,

Ch. Cauet

10

,

G. Cavallero

20

,

R. Cenci

24

,

s

,

M. Charles

8

,

Ph. Charpentier

39

,

M. Chefdeville

4

,

S. Chen

55

,

S.-F. Cheung

56

,

N. Chiapolini

41

,

M. Chrzaszcz

41

,

X. Cid Vidal

39

,

G. Ciezarek

42

,

P.E.L. Clarke

51

,

M. Clemencic

39

,

H.V. Cliff

48

,

J. Closier

39

,

V. Coco

39

,

J. Cogan

6

,

E. Cogneras

5

,

V. Cogoni

16

,

e

,

L. Cojocariu

30

,

G. Collazuol

23

,

P. Collins

39

,

A. Comerma-Montells

12

,

A. Contu

16

,

A. Cook

47

,

M. Coombes

47

,

S. Coquereau

8

,

G. Corti

39

,

M. Corvo

17

,

f

,

B. Couturier

39

,

G.A. Cowan

51

,

D.C. Craik

49

,

A. Crocombe

49

,

M. Cruz Torres

61

,

S. Cunliffe

54

,

R. Currie

54

,

C. D’Ambrosio

39

,

E. Dall’Occo

42

,

J. Dalseno

47

,

P.N.Y. David

42

,

A. Davis

58

,

O. De Aguiar Francisco

2

,

K. De Bruyn

6

,

S. De Capua

55

,

M. De Cian

12

,

J.M. De Miranda

1

,

L. De Paula

2

,

P. De Simone

19

,

C.-T. Dean

52

,

D. Decamp

4

,

M. Deckenhoff

10

,

L. Del Buono

8

,

N. Déléage

4

,

M. Demmer

10

,

D. Derkach

66

,

O. Deschamps

5

,

F. Dettori

39

,

B. Dey

22

,

A. Di Canto

39

,

F. Di Ruscio

25

,

H. Dijkstra

39

,

S. Donleavy

53

,

F. Dordei

12

,

M. Dorigo

40

,

A. Dosil Suárez

38

,

D. Dossett

49

,

A. Dovbnya

44

,

K. Dreimanis

53

,

L. Dufour

42

,

G. Dujany

55

,

F. Dupertuis

40

,

P. Durante

39

,

R. Dzhelyadin

36

,

A. Dziurda

27

,

A. Dzyuba

31

,

S. Easo

50

,

39

,

U. Egede

54

,

V. Egorychev

32

,

S. Eidelman

35

,

69

,

S. Eisenhardt

51

,

U. Eitschberger

10

,

R. Ekelhof

10

,

L. Eklund

52

,

I. El Rifai

5

,

Ch. Elsasser

41

,

S. Ely

60

,

S. Esen

12

,

H.M. Evans

48

,

T. Evans

56

,

Figura

Fig. 1. Mass distributions of (a) D 0 → K − π + π + π − and (b) D 0 → K − π + μ + μ −
Fig. 2. Distributions of the BDT response of D 0 → K − π + μ + μ − (circles) and D 0 → K − π + π + π − decays (triangles) in data (full markers) and simulation (open
Fig. 3. Background subtracted distribution of (a) the K − π + invariant mass and

Riferimenti

Documenti correlati

One of the most critical issues in handling digital files for long-term preservation purposes lies in the preservation, at the most detailed level of

The effect on the viscosity of two consistency factors and three different vegetable waxes was also studied and compared to a basic emulsion (E9) not containing any of them

Ma, come sappiamo, anche l’esercizio della forza fisica può avere una funzione simbolica, ad esempio nelle cosiddette azioni dimostrative, che tendono ad offrire solo

composed of a fixed DCT filtering layer and 20 learn- able convolutional layers. To the best of our knowl- edge, it achieves the best performance in detecting JPEG image

Pica Alfieri Division of Plastic and Reconstructive Surgery Department of Medicine, Surgery, and Neuroscience University Hospital “Santa Maria alle Scotte” University of Siena

In untreated patients, the expression of the protein, evaluated by RT-qPCR and immunohistochemistry, was significantly higher in tumor specimens than in non-neoplastic

Coming back home: recolonisation of abandoned dens by crested porcupines Hystrix cristata and European badgers Meles meles after wood-cutting and riparian vegetation mowing

prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus, Nature neuroscienze 2005, p.. Fino a poco tempo fa, si credeva che i