• Non ci sono risultati.

Let n be an integer greater than 1

N/A
N/A
Protected

Academic year: 2021

Condividi "Let n be an integer greater than 1"

Copied!
1
0
0

Testo completo

(1)

Problem 11812

(American Mathematical Monthly, Vol.122, January 2015) Proposed by C. Chiser (Romania).

Let f be a twice continuously differentiable function from [0, 1] into R. Let n be an integer greater than 1. Given thatPn−1

k=1f (k/n) = −(f (0) + f (1))/2, prove that

Z 1 0

f (x) dx

2

≤ 1 5!n4

Z 1 0

(f00(x))2dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

By the second-order Euler-Maclaurin Formula, we have that for any g ∈ C2([0, n]),

n−1

X

k=0

g(k) = Z n

0

g(x) dx + B1(g(n) − g(0)) +B2

2 (g0(n) − g0(0)) −1 2

Z n 0

B2({x})g00(x) dx

where Bi is the ith Bernoulli number (B1 = 1/2, B2 = 1/6), B2(x) = x2− x + 1/6 is the second Bernoulli polynomial, and {x} = x − bxc is the fractional part of x.

Hence, by taking g(x) = f (x/n), we get

n−1

X

k=0

f (k/n) = n Z 1

0

f (x) dx +f (1) − f (0)

2 +f0(1) − f0(0)

12n − 1

2n Z 1

0

B2({nx})f00(x) dx

and by usingPn−1

k=1f (k/n) = −(f (0) + f (1))/2, we obtain Z 1

0

f (x) dx = 1 2n2

Z 1 0

B2({nx})f00(x) dx −f0(1) − f0(0) 12n2

= 1 2n2

Z 1 0



B2({nx}) − 1 6



f00(x) dx

= 1 2n2

Z 1 0

{nx}2− {nx} f00(x) dx.

Finally, by Cauchy-Schwarz inequality,

Z 1 0

f (x) dx

2

≤ 1 4n4

Z 1 0

{nx}2− {nx}2 dx ·

Z 1 0

(f00(x))2d = 1 120n4

Z 1 0

(f00(x))2dx, because

Z 1 0

{nx}2− {nx}2

dx = 1 n

Z n 0

{x}2− {x}2

dx = Z 1

0

x2− x2

dx = x5 5 −x4

2 +x3 3

1

0

= 1 30.



Riferimenti

Documenti correlati

[r]

Then the following assertions are equivalent... the hermitian part of A

Also, let ω be a primitive nth root

Fon-Der-Flaass (Russia)

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. For k

[r]

The mathematical representations characterized by the smallest number of nonzero parameters are called canonical forms.. • The most interesting canonical forms are