• Non ci sono risultati.

Let νp(n) be the greatest power of p dividing a positive integer n

N/A
N/A
Protected

Academic year: 2021

Condividi "Let νp(n) be the greatest power of p dividing a positive integer n"

Copied!
1
0
0

Testo completo

(1)

Problem 11864

(American Mathematical Monthly, Vol.122, October 2015) Proposed by Bakir Farhi (Algeria).

Letp be a prime number, and let {un}n≥0 be the sequence given byun = n for 0 ≤ n ≤ p − 1 and byun = pun+1−p+ un−pforn ≥ p. Prove that for each positive integer n, the greatest power of p dividingun is the same as the greatest power ofp dividing n.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let νp(n) be the greatest power of p dividing a positive integer n.

We will show a more general statement: if s = νp(n) then un≡ n (mod ps+1).

From the generating function of the sequence {un}n≥0 we obtain

un = [xn]

Pp−1 k=1kxk 1 − (pxp−1+ xp)=

p−1

X

k=1

k[xn−k]X

j≥0

(pxp−1+ xp)j

=

p−1

X

k=1

kX

j≥0

[xn−k−pj](1 + p/x)j=

p−1

X

k=1

kX

j≥0

 j

pj + k − n



ppj+k−n.

If n = qp + r with 1 ≤ r ≤ p − 1 then pj + k − n = 0 iff j = q and k = r, hence un≡ r ≡ n (mod p).

If n = aps with s ≥ 1 and gcd(a, p) = 1 then pj + k − n ≥ 0 iff j ≥ ⌈(n − k)/p⌉ = aps−1 and, by letting i = j − aps−1, we have

un=

p−1

X

k=1

kX

i≥0

aps−1+ i pi + k

 ppi+k.

Then, for i ≥ 1 and 1 ≤ k ≤ p − 1,

νp((pi + k)!) = νp((pi)!) = i + νp(i!) ≤ i + ν2(i!) = i +

⌊ln2(i)⌋

X

j=1

⌊i/2j⌋ < i +

X

j=1

i/2j= 2i,

which implies that νp((pi + k)!) ≤ 2i − 1. Hence

νp



kaps−1+ i pi + k

 ppi+k



≥ νp(aps−1) − νp((pi + k)!) + pi + k ≥ (s − 1) − (2i − 1) + pi + 1 = s + 1

where in the last step we used the fact that p ≥ 2. Finally

un

p−1

X

k=1

kaps−1 k



pk = aps−1

p−1

X

k=1

aps−1− 1 k − 1



pk≡ aps= n (mod ps+1).



Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit` a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. If M is finite then the

For each positive integer n, determine the least integer m such that

Also, let ω be a primitive nth root

(American Mathematical Monthly, Vol.119, November 2012) Proposed by Mircea Merca (Romania). Let p be the Euler partition function, i.e., p(n) is the number of nondecreasing lists

Fon-Der-Flaass (Russia)

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.. For k

[r]