• Non ci sono risultati.

 Alexander, L., Grierson, D., (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039–2055.

N/A
N/A
Protected

Academic year: 2021

Condividi " Alexander, L., Grierson, D., (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039–2055. "

Copied!
9
0
0

Testo completo

(1)

80

7. Bibliografia

 Alexander, L., Grierson, D., (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039–2055.

 Angelini R. ( 2008). Il pesco. Coltura & coltura: collana ideate e coordinate da Renzo Angelini. Bayer Crop Science S.r.l.

 Avanzato D. et al. (1991) . Frutticoltura speciale. Reda edizione per l’agricoltura.

 Baldoni L. et al.,( 1992). Frutticultura generale. Reda edizione per l’agricoltura.

 Barry CS, Llop-Tous MI, Grierson D. 2000. The regulation of 1- aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology 123, 979-986.

 Bonghi C, Ferrarese L, Ruperti B, Tonutti P, Ramina A (1998) Endo-b- 1,4-glucanases are involved in peach fruit growth and ripening, and regulated by ethylene. Physiologia Plantarum, 102: 346-352.

 Brovelli EA, Brecht JK, Sherman WB, Sims CA, Harrison JM. 1999.

Sensory and compositional attributes of melting- and nonmelting-flesh peaches for the fresh market. Journal of the Science of Food and Agriculture 79, 707–712.

 Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM. (2004). Cell wall metabolism during maturation, ripening and senescence of peach fruit.

Journal of Experimental Botany 55, 2029–2039

.

 Brummell DA, Harpster MH. 2001. Cell wall metabolism in fruit

softening and quality and its manipulation in transgenic plants. Plant

Molecular Biology 47, 311–340.

(2)

81

 Buchanan B.B. et al., (2003). Biochimica e biologia molecolare delle piante.Editore Zanichelli.

 Burg SP, 1973. Ethylene in plant growth. Proc. Natl. Acad. Sci. USA 70, 591-597.

 Calvenzani V., Martinell M., Lazzeri V., Giuntini D., Dall’asta C.,Galaverina G., Tonelli C., Ranieri A. Petroni K.(2010). Response of wild type and high pigment-1 tomato fruit to UV-B depletion: flavonoids profiling and gene expression. Planta. 231 (3), 755-765.

 Cara, B. and J.J. Giovannoni. 2008.Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci. 175:106–113.

 Croizer A., Lean M.E.J., Mc Donals M.S., Black C. (1997). Quantitative analysis of the flavonoids content of commercial tomatoes, onions lettuce and celery. Jour. Agric. Food Chem.. 45, 590-595.

 Desmond R.Layne, Daniele Bassi ( 2008). The peach: botany, production and uses.

 Duthie G., Crozier A.(2000). Plant-derived phenolic antioxidant. Curr.

Opin. Lipid. 3 (6), 447-451.

 E.Baldini, F.Scaramuzzi ( 1981 ). Il pesco. Frutticoltura anni 80: collana ideata da Baldini e Scramuzzi. Reda edizione per l’agricoltura.

 Evaggelia Tzika D. D.,Papadimitru, V.,Sotiroudis, T.,Xenakis A. (2008).

Antioxidant properties of fruit and vegetable shots and juices: an electron paramagnetic resonance study. Foods Biophysics. Volume 3, Number 1,48-53.

expression in flesh and peel of two tomato genotypes grown under UV-B depleted conditions during ripening. J Agric Food Chem. 23;56(14):5905- 15.

 Faller A. L. K., Fialho E. (2010). Polyphenol content and antioxidant

capacity in organic and conventional plant foods. Journal of Food

Composition and Analysis. 6, 561-568.

(3)

82

 FAOSTAT (2010) FAO Statistical Databases: Agriculture.

http://apps.fao.org. Accessed.

 Ghiani A., Onelli E., Aina R., Cocucci M., Citterio S. (2011). A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endopolygalacturonase (endo-PG) is mainly involved in pericarp textural changes, not in firmness reduction.

Journal of Experimental Botany.

 Gil M., Tomas-Barberan A.T., Hess-Pierce B., Kader A. A. Antioxidant capacities, phenolic compounds, carotenoids and vitamin C content of nectarine and plum cultivars from Clalifornia. Journal of Agricoltural and Food Chemistry, 50, 4976-4982 (2002)

 Giovannoni J. (2001). Molecular biology of fruit maturation and ripening.

Annual Review of Plant Physiology and Plant Molecular Biology 52, 725- 749.

 Giuntini D, Graziani G, Lercari B, Fogliano V, Soldatini GF, Ranieri A.

(2005). Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. J Agric Food Chem. 20;53(8):3174-81.

 Giuntini D, Lazzeri V, Calvenzani V, Dall'Asta C, Galaverna G, Tonelli C, Petroni K, Ranieri A.(2008) Flavonoid profiling and biosynthetic gene

 Hagen S. F., Borge G. I., Bengtsson G. B., Bilger W., Berge A., Haffner K.,solhaug K. A.( 2007). Phenolic contents and other healt and sensory related properties of apple fruit ( Malus Domestica BORKH., cv. Aroma.):

Effect on post-harvest UV-B irradiation. Postharvest Biology and Tecnology. 45, 1-10.

 Hamidi M., Boucher B.A.,Cheung A.M., Beyene J., Shah P.S. (2011).

Fruits and vegetable intake and bone healt in women aged 45 years and

over: a systematic review. Hosteoporosis International. 22 (6), 1681-1693.

(4)

83

 Hayama, H., T. Shimada, H. Fujii, A. Ito, and Y. Kashimura. (2006a).

Ethylene-regulatio fruit softening and softening-related genes in peach. J.

Expt. Bot. 57:4071–4077.

 Hilal M., Rodrìguez-Montelongo L., Rosa M., Gallardo M., Gonzalez J.A., Interdonato R., Rapisarda V.A., Prado F. E. Solar and Supplemental UV-B Rdiation Effects in Lemon Peel UV-B-absorbing Compound Content- Seasonal Variations. Photochemistry and Photobiology, 84:1480-1486, (2008).

 Kaur C., Kapoor H.C. (2001). Antioxidant in fruit and vegetable- the millennium’s healt. International Journal of Food and Science Technology.

36, 703-725.

 Kevin L.-C. Wang, Hai Li, Joseph R. Ecker (2002). Ethylene Biosynthesis and Signaling Networks

 Kotikova Z., Lanchman J., Hejtmankova A, Hejtmankova K. (2011).

Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. Food Science and Technology. 8, 1703-1710.

 Lasheras C., Huerta J.M:, Gonzales S., Brana A.F., Patterson A.M., Fernandez S. (2002). Indipendent and interactive association of blood antioxidant and oxidative damage in ederly people. Free. Rad. Res.8, 875- 882.

 Valerio Lazzeri, Valentina Calvenzani, Katia Petroni, Chiara Tonelli, Antonella Castagna, and Annamaria Ranieri (2012). Carotenoid Profiling and Biosynthetic Gene Expression in Flesh and Peel of Wild-Type and hp- 1 Tomato Fruit under UV-B Depletion. Journal of Agricultural and Food Chemstry 10:45:42 l 10.

 Lester DR, Speirs G, Orr G, Brady CJ. 1994. Peach (Prunus persica) endo-

PG cDNA isolation and mRNA analysis in melting and non-melting peach

cultivars. Plant Physiology 105, 225–231.

(5)

84

 Liu C., Han X., Lu X., Jiang Z.(2011). Postharvest UV-B irradiation

 Luthria D.L., Mukhopadhayay S., Krizet D.T. (2006). Content of total phenolic acids in tomato fruits as influenced by cultivar and solar UV radiation. Journal of food Composition and Analysis. 19,771-777.

 Maffei M. Fisiologia Vegetale. Piccin, 1998

maintains sensor qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biology and Technology. 59, 232-237.

 Martelli A.,Cabras P. (2004). Chimica degli alimenti: nutrienti, alimenti di origine vegetale, alimenti di origine animale, integratori alimentari, bevande, sostanze indesiderabili. Pàtron editore.

 Morgutti S, Negrini N, Nocito EF, Ghiani A, Bassi D, Cocucci M. 2006.

Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotype. New Phytologist 171, 315–

325.

 Murr DP and Yang SF, 1975. Conversion of 5-methylthioadenosine to methionine by apple tissue. Phytochemistry 14, 1291-1292.

 Orr G, Brady C. 1993. Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biology and Technology 3, 121–130.

 Paoletti R. (1998). Vit C the state of the art in disease prevention sixty years after the nobel prize. Ed. Springer.

 Pietta P. (2000). Flavonoids as antioxidant. Journal of Natural Product. 63,

 Prasanna V, Prabha TN, Tharanathan RN. 2007. Fruit ripening phenomena—an overview. Critical Reviews in Food Science and Nutrition 47, 1–19.

 Pressey R, Avants JK. 1978. Differences in polygalacturonase

composition of clingstone and freestone peaches. Journal of Food Science

(6)

85

 Rasori A. et al.,(2002). Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission.

Journal of Experimental Botany,

Vol. 53, No. 379, pp. 2333-2339

 Robertson JA, Meredith FI, Horvat RJ Senter SD (1990) Effect of cold storage and maturity on the physical and chemical characteristiscs and volatile consituent of peaches (cv Cresthaven). J. Agric. Food Chem., 38:

620-628.

 Rose JKC, Bennett AB. 1999. Cooperative disassembly of the cellulose–

xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science 4, 176–183.

 Saladie´ M, Matas AJ, Isaacson T, et al. 2007. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiology 144, 1012–1028.

 Torres C.A., Andrews P.K., (2006). Developmental changes in antioxidant metabolites,enzymes and pigments in fruit exocarp of four tomato genotypes , beta carotene, high pigment-1, ripening inhibitor. Plant Physiology and Biochemistry. 44 (11-12), 806-818.

 Trainotti L, Zanin D, Casadoro G.( 2003). A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. Journal of Experimental Botany 54, 1821–1832.

 Trezeciakiewcz A., Habauzit V., Horcajada M. (2009). When nutrition interacts with osteblast functions: moleculas mechanism of polyphenols.

Nutrition Research Reviews. 22, 68-81.

 Valli R.(2001). Arboricoltura generale e special. Edizioni Agricole Calderini Edagricole s.r.l

 Vanzani P., Rossetto M., De Marco V., Rigo A., Scarpa M. (2011).

Efficiecy and capacity of antioxidant rich foods in trapping peroxil

radicals: a full evaluation of radical scavenging activity. Food Research

International. 44, 269-275.

(7)

86

 Vicente AR, Saladie´ M, Rose JK, Labavitch JM. 2007. The linkare between cell wall metabolism and fruit softening: looking to the future.

Journal of the Science of Food and Agriculture 87, 1435–1448.

 Borgs J., Downey M.O., Harvey J.S., Ashton A.R., Tanner G.J., Robinson S.P. Proanthocyanidin Syntesis and espression of genes enconding Leucoanthocyanidin Reductase and Anthocyanidin reductase in Devolping Grape Berries and Grapevine Leaves. Plant physiology, Vol. 139, 652- 663, (2005).

 Hasard H., May J., Smirnoff N. (2004). Vit C function and biochemistry in animals and plants. Bios. Scientific Publisher.

 Xue L., Zhang Y., Zhant T., An L., Wang X. (2005). Effect of enhacedUV-B radiation on algae and cyanobacteria. Crit. Rev. Microb.79- 89.

 Santocono M., Zurria M., Berrettini M., Fedeli D., Falcioni G. (2006) Influence of astanxanthin and lutein on DNA damage and repair in UV-A irradiation.cell. Jour. Photo. Photobio. 205-215.

 Rensen J.J., Vredenberg W.J., Rodrigues G.C. (2007) Time sequence of the damage to the acceptor and donor sides of the photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence. Photos. Res.. 291- 297.

 Kovacs. E., Keresztesa (2002). Effect of gamma and UV-B/C radiation on plant cell. Miconutrient. 199-210.

 Viczian A., Mate Z., Nagy F., Vass L. (2000). UV-B induced differential transcription of Psb genes encoding the D2 protein of PSII in the cianobacterium Synechocystis. Photosyin. Res.. 257-266.

 Vass L., Sass L., Spetea C., Bakou A., Ghanotakis D.F., Petroleus V.

(1996). UV-B induced inhibition of PSII electron transport studied by

EPR and chlorophyll fluorescence impairment of donor and acceptor side

components. Biochemystry. 8954-8973.

(8)

87

 Jordan B.R., Chow W.S., Strid A., Anderson J.(1991). Reduction in CAB and PSB RNA transcript in response to supplementary UV-B radiation.

Febbs. Lett. 5-8.

 He J.M., She X.P., Meng Z.N., Zhao W.M. (2004). Reduction of Rubisco amount by UV-B radiation is related to increased H2O2 content in leaves of mug bean seedlings. Center of Bioinf. School Life. Science and

Technology. 30 (3) 291-296.

 Frohnmeyer, H. & Staiger, D. (2003). Ultraviolet-B radiation-mediated responses in plants: balancing damage and protection. Plant Physiology.

133, 1420–1428.

 Lamikanra O., Kueneman D., Ukuku D., Garber K. L.Bett. Effect of processing under ultraviolet light on the shelf life of fresh-cut of cantaloupe melon. J. of Food Sci. Vol 70, nr 9 (2005).

 Ubi B.E., Honda C., Bessho H., Kondo S., Wada M., Kobayashi S., Moriguchi T. Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Science 170 571-578 (2006)

 Szeto Y.T., Tomlinson B., Benzie, I. F. F.Total antioxidant and ascorbic acid content of fresh fruits and vegetables: Implication for dietary planning and food preservation. British Journal of Nutrition, 87, 55-59 (2002)

 Aiamla-or, S., Kaewsuksaeng, S., Shigyo, M., Yamauchi, N. Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chem. 120, 645–651 (2010)

 Cantos, E., García-Viguera, C., Pascual-Tersa, S., Tomás-Barberán, F.A.

Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of Cv. Napoleon table grapes. J. Agric. Food Chem. 48, 4606–

4612 (2000)

(9)

88

 Ko J.A., Lee B.H., Lee J.S., Park H.J. Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). J. Agric. Food Chem. 56, 3671–3674 (2008)

 Roberts, J.S., Teichert, A., McHugh, T.H. Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage. Food Chem. 56, 4541–4544 (2008)

 Szeto Y.T., Tomlinson B., Benzie, I. F. F.Total antioxidant and ascorbic acid content of fresh fruits and vegetables: Implication for dietary planning and food preservation. British Journal of Nutrition, 87, 55-59 (2002)

 Costa, H., Gallego, S.M., Tomaro, M. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledon. Plant Sci. 162, 939–

945 (2002)

 Xu, C., Natarajan, S., Sullivan, J.H. Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ. Exp. Bot. 63, 39–48 (2008)

 Burg SP, 1973. Ethylene in plant growth. Proc. Natl. Acad. Sci. USA 70,

591-597.

Riferimenti

Documenti correlati

(2014), an output of 50-500 heads of lettuce should represent the production of a small-scale aquaponic system worthy of this name. Aiming that plant yield, a climatic and

Indeed, given the uncertainties in the relative proportion of the populations, the uncertainties in the [α/Fe] dispersions, as well as the uncertainties in the results of

Systematic errors on the estimates of the growth rate f σ 8 when using the full parent mock flux-limited samples of blue and red galaxies in the redshift range 0.6 ≤ z ≤ 1.0..

orientano, ormai, per una datazione dei materiali siciliani a partire dalla fine del V/inizi del IV sec. cioè in momenti cronologici differenti rispetto a quelli cam-

“[…] Sin d’ora possiamo però sottolineare alcune criticità, quali: i finanziamenti inadeguati al Servizio Sanitario Nazionale, come già evidenziato dal CNB nel “Parere

È questo allora il senso della “sacralità” che l’immaginazione conferisce ai luoghi: la consapevolezza della molteplicità dei legami che formano la vita di un luogo, e al

Quando oltre al cloruro sono presenti i fosfati organici in concentrazione 1 mM, si verifica una notevole riduzione dell’affinità per l’ossigeno; questo effetto viene

To get an insight into these processes we investigated the reactivity of pheomelanin pigment isolated from human red hair (RHP) and synthetic pheomelanins