• Non ci sono risultati.

BIBLIOGRAFIA 1.

N/A
N/A
Protected

Academic year: 2021

Condividi "BIBLIOGRAFIA 1."

Copied!
8
0
0

Testo completo

(1)

74

BIBLIOGRAFIA

1. Shafer, J.A., and Higgins, D.L. (1988) CRC Crit. Rev. Clin.Lab.Sci. 26, 1-14

2. Mosesson, M. W. (1992) The role of fibrinogen and fibrin in hemostasis and thrombosis Semin. Hematol. 29, 177-188.

3. Kant JA, Fornace AJ Jr, Saxe D, et al. Evolution and organization of the fibrinogen locus on

chromosome 4:gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci USA 1989;82:2344.

4. Henry I, Uzan G, Weil D, et al. The genes coding for Aα, Bβ, and γ chains of fibrinogen map to 4q2. Am J hum Genet 1984;36:760.

5. Chung DW, Harris JE, Davie EW. Nucleotide sequences of the three genes coding for human fibrinogen. Adv Exp Med Biol 1990;281:39.

6. Fowlkes DM, Mullis NT, Comeau CM, et al. Potential basis for regulation of the coordinately expressed fibrinogen genes: homology in the 5’ flanking regions. Proc Natl Acad Sci USA 1984;81:2313.

7. Crabtree GR, Kant JA, Fornac AJ Jr, et al. regulation and characterization of the mRNAs for the Aα and Bβ e γ chains of fibrinogen. Ann NY Acad Sci 1983;408:457.

8. Simpson –Haidaris PJ, Courtney MA, Wright TW, et al. Induction of fibrinogen expression in lung epithelium during P.carinii pneumonia. Infect Immun 1998;66:4431-4439.

9. Dalmon J, Laurent M, Courtois G. The human beta fibrinogen promoter contains a hepatocyte nuclear factor-1-dependent IL-6-responsive element. Mol Cell Biol 1993;13:1183.

10. Dowton SB, Colten HR. Acute phase reactans in inflammation and infection. Semin Hematol 1988;25:84.

11. Nham S-U, Fuller GM. Effect of fibrinogen degradation products on production of hepatocyte stimulating factor by a macrophage cell line (P388D1). Thromb Res 1986;44:467.

12. Asselta R, Duga S, Modugno M, et al. Identification of a glucocorticoid response element in the human γ chain fibrinogen promoter. Thromb Haemost 1998;79:1144.

13. Vasse M, Paysant I, Soria J, et al. Down regulation of fibrinogen biosynthesis by 4, 10 and IL-13. Br J Haematol 1996;93:955.

14. Conti P, Bartle L, Barbacane RC, et al. The down regulation of IL-6 stimulated fibrinogen steady state mRNA and protein levels by human recombinant IL-1 is not PGE2 dependent: effects of IL-1 receptor anatagonist (IL-1RA). Mol Cell Biochem 1995;142:171.

15. Hassan JH, Chelucci C, PeschleC, et al. TGF-β inhibits expression of fibrinogen and factor VII in a hepatoma cell line. Thromb Haemost 1992;67:478.

16. Redman CM, Xia H. Fibrinogen biosynthesis. Assembly, intracellular degradation, and association with lipid synthesis and secretion. Ann NY Acad Sci 2001;936:480.

17. Zhang J-Z, Kudryc B, Redman CM. Symmetrical disulfide bonds are not necessary for assembly and secretion of human fibrinogen. J Biol Chem 1993;268:11278.

18. Okumura N, Terasawa F, Tanaka H, et al. Analysis of fibrinogen γ chain truncations shows the C-terminus, particularly γIle387, is essential for assembly and secretion of this multichain protein. Blood 2002;99:3654.

19. De Maat MPM, Verschurr M. Fibrinogen heterogeneity: inherited and non-inherited. Curr Opin Hematol 2005;12:377-83.

20. Collen D, Tygat GN, Claeys H, et al. Metabolism and distribution of fibrinogen I. Fibrinogen turnover in physiological conditions in humans. Br Haematol 1972;22:681.

21. Reeve EB, Franks JJ. Fibrinogen synthesis, distribution and degradation. Semin Thromb Hemost. 1974;1:129.

(2)

75

22. Francis CW, Nachman RL, Marder VJ. Plasma and platelet fibrinogen differ in γ chain content. Thromb Haemost 1984;51:84.

23. Harrison P, Wilbourn B, Debili N, et al. Uptake of plasma fibrinogen into the α granules of human megakaryocytes and platelets. J Clin Invest 1989;84:1320.

24. Belloc, F., E. Heilman, R. Combrie, M. R. Boisseau, and A. T.Nurden. 1987. Protein synthesis and storage in human platelets: a defective storage of fibrinogen in platelets with Glanzmann's thrombasthenia. Biochim. Biophys. Acta. 925:218-225.

25. Fatah K, Hamsten A, Blomback B, Blomback M. Fibrin gel network characteristics and coronary heart disease: relations to plasma fibrinogen concentration, acute phase protein, serum lipoproteins, and coronary atherosclerosis.Thromb Haemost. 1992; 68: 130-135.

26. Hoeprich PD, Doolittle RF. Dimeric half-molecules of human fibrinogen are joined through disulfide bonds in an antiparallelal orientation. Biochemistry 1983;22:2049.

27. Doolittle RF. The amino acid sequence of the alfa-chain of human fibrinogen. Nature 1979;280:464.

28. McKee P.A.; Rogers L.A; Marler E; Hill R.L. Arch. Biochem. Biophys. 1966;116,271-279.

29. Henschen A; Lottspeich F; Kehl M; Southan C. Covalent structure of fibrinogen Ann N Y Acad Sci 1983;408:28-43.

30. Doolittle RF. Thromb Haemost (Bloom AL; Thomas DP, eds) 1981;163-197 Churchill Living-stone, Edinburgh.

31. Townsend RR; Hilliker E; Li YT; Laine RA; Bell WR; Lee YC. J Biol Chem 1982; 257:9704-9710. 32. Wolfenstein-Todel C, Moesson MW. Human plasma fibrinogen heterogeneity: evidence for an

extended carboxyl-terminal sequence in a normal gamma chain variant. Proc Natl Acad Sci USA 1980;77:5069-73.

33. Fu Y, Grieninger G. Fib420: a normal human variant of fibrinogen with two extended α chains. Proc

Natl Acad Sci USA 1994;91:2625.

34. Huang S, Cao Z, Davie EW. The role of N-terminal disulfide bonds in the structure and assembly of human fibrinogen. Biochem Biophys Res Commun 1993;190:488.

35. Blomback, B., B. Hessel & D. Hogg 1976. Disulfide bridges in NH2- terminal part of human

fibrinogen. Thromb. Res. 8:639-658.

36. Bouma H, Takagi T, Doolittle RF. The arrangement of disulfide bonds in fragment D from human fibrinogen. Thromb Res 1978;13:557.

37. Hall CE, Slayter HS. The fibrinogen molecule: its size, shape and mode of polymerization. J Biophys Biochem Cytol 1959;5:11.

38. Weisel JW, Medved’ LV. The structure and function of the αC domains of fibrinogen. Ann N Y Acad Sci 2001;936:312-27.

39. Nussnzweig V, Seligmann M, Pelimont J,Grabr P. Les produits de degradation du fibrinogene humain par la plasmine. Ann Inst Pasteur 1961;100:377-89.

40. Francis CW, Marder VJ. A molecular model of plasmic degradation of crosslinked fibrin. Semin Thromb Hemost 1982;8:25.

41. Yang Z, Kollmann JM, Pandi L, et al. Crystal structure of native chicken fibrinogen at 2.7A resolution. Biochemistry 2001;40:12515.

42. Brown JH, Volkmann N, Jun G, et al. The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci USA 2000;97:85.

43. Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997;389:455-62.

(3)

76

44. Madrazo J, Brown JH, Litvinovich S, Dominiguez R, Yakolev S, Medved L, Cohen C. Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4- Å resolution. Proc Natl

Acad Sci USA 2001;98:11967-72.

45. Tsrupa G, Tsonev L, Medved L. Structural organization of the fibrinogen αC domain. Biochemistry 2002;41:6449-59.

46. Gorlatov S, Medved L. Interaction of fibrinogen with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2terminal portions of the fibrin β chains.

Biochemistry 2002; 41:4107-16.

47. Fenton JW Jr, Olson TA, Zabinski MP, Wilner GD. Anion-binding exosite of human α-trombin and fibrinogen recognition. Biochemistry 1988;27:7106-12

48. Budzynski AZ, Olexa SA, Pandya BV. Fibrin polymerization sites in fibrinogen and fibrin fragments. Ann NY Acad Sci 1983;408:301-14.

49. Laudano AP, Doolittle RF. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc Natl Acad Sci USA 1978;75:3085-9.

50. Shimizu, A., Y. Saito & Y. Inada. Distinctive role of histidine-16 of the Bβ chain of fibrinogen in the end-to-end association of fibrin. Proc. Natl. Acad. Sci. USA. 1986;83:591-593.

51. Everse, S.J., G. Spraggon, L.Veerpandian, et al. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry 1998;37:8637-8642.

52. Weisel JW. Fibrinogen and fibrin. In: Parry DAD, Squire JM, eds. Advances in protein chemistry. 70 “Fibrous proteins:coiled-coils, Collagen and Elastomers” San Diego: Elsevier, 2005:70. 53. Bailey K, Bettelheim FR, Lorand L, et al. Action of thrombin in the clotting of fibrinogen. Nature

1951;167:233.

54. Blomback B, Vestermark A. Isolation of fibrinopeptides by chromatography. Arkiv Kemi 1958;12:173.

55. Blomback B, Blomback M, Hessel B, et al. Structure of N-terminal fragments of fibrinogen and specificity of thrombin. Nature 1967;215:1445.

56. Shen LL, Hermans J, McDonagh J, et al. Role of FpB release: comparison of fibrins produced by thrombin and Ancrod. Am J Physiol 1977;232:H629.

57. Kathleen E. Brummel, Saulius Butenas and Kenneth G.Mann An integrated study of fibrinogen during blood coagulation. J Biol Chem 1999;274:22862-22870.

58. Weisel JW. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J 1986;50:1079.

59. Fowler WE, Hantgan RR, Hermans J, et al. Structure of the fibrin protofibril. Proc Natl Acad Sci USA 1981;78:4872.

60. Hantgan RR, McDonagh J, Hermans J. Fibrin assembly. Ann NY Acad Sci 1983;408:344.

61. Blomback B, Carlsson K, Fatah K, Hessel B, Procyk R. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation. Thromb Res 1994;75:521-38.

62. Gorkun OV, Veklich YI, Medved LV, Henschen A, Weisel JW. Role of the αC domains of fibrin in the clot formation. Biochemistry 1994;33:6986-97.

63. Langer BG, Weisel JW, Dinauer PA, et al. Deglycosylation of fibringen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem 1988;263:15056.

64. Hunziker EB, Straub PW, Haeberli A. A new concept of fibrin formation based upon the linear growth of interlacing and branching polymers and molecular alignment into interlocked single-stranded segments. J Biol Chem 1990;265.7455.

65. Lorand, L., Jeong, J.M., Radek, J.T., and Wilson, J. Methods Enzymol. 1993;222:22-29. 66. Schwartz, M.L., Pizzo, S.V., Hill, R.L., and McKee, P.A. J Biol Chem 1971;246:5851-5854.

(4)

77

67. Chen, R., and Doolittle, R.F. γ-γ Cross linking sites in human and bovine fibrin. Biochemistry 1971;10:4486-4491.

68. Mosesson MW, Siebenlist KR, Haifeld JF, Wall JS. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils. J Struct Biol 1995;115:88-101.

69. Folk, J.E., and Finlayson, J.S. Adv Protein Chem 1977;31:1-133.

70. McKee, P.A., Mattock, P., and Hill, R.L. Proc Natl Acad Sci USA 1970;66:738-744.

71. Mosesson MW, Siebenlist KR, Amrani DL, DiOrio JP. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc Natl Acad Sci USA 1989;86:1113-7.

72. Mosesson MW. The fibrin cross-linking debate:cross-linked gamma-chains in fibrin fibrils bridge “transversely” between strands:yes. J Thromb Haemost 2004;2:388-93.

73. Roska FJ, Ferry JD. Studies of fibrin film:I. Stress relaxation and birefringence. Biopolymers 1982;21:1811-32.

74. Sobel, J.H.& M.A. Gawinowicz. Identification of the α chain lysine donor sites involved in factor XIIIa fibrin cross-linking. J Biol Chem 1996;271:19288-19297.

75. Falls LA, Farrell DH. Resistance of γA-γ’ fibrin clots to fibrinolysis. J Biol Chem 1997;272:14251. 76. Catani MV, Bernassola F, Rossi A, et al. Inhibition of clotting factor XIII activity by nitric oxide.

Biochem Biophys Res Commun 1998;249:275-278.

77. Mary A, Achyuthan KE, Greenberg CS. The binding of divalent metal ions to platelet factor XIII modulates its proteolysis by trypsin and thrombin. Arch biochem Biophys 1988;261:112-121. 78. Greenberg CS, Miraglia CC, Rickles Fr, et al. Cleavage of blood coagulation. Factor XIII and

fibrinogen by thrombin during in vitro clotting. J Clin Invest 1985;75:1453.

79. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005;3:1894-904.

80. Siebenlist, K.R., D. Meh & M.W.Mosesson. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin.2001;86:1221-8.

81. Marguerie GA, Plow EF, Edington TS. Human platelet possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 1979;254:5357.

82. Peerschke EIB. The platelet fibrinogen receptor. Semin Hemat 1985;22:241.

83. Belkin AM, Tsurupa G, Zemskov E, Veklich Y,Weisel JW, Medved L. Transglutaminase-mediated oligomerization of the fibrin(ogen) aC-domains promotes integrin-dependent cell adhesion and signaling. Blood 2005; 105: (in press).

84. Andrieux A, Hudry-Clergeon G, Ryckwaert J-J. Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GP IIb-IIIa. J Biol Chem 1989; 264: 9258–65.

85. Podolnikova NP, Yakubenko VP, Volkov GL, et al. Identification of a novel binding site for platelet integrins αIIbβ3 and α5β1 in the gamma C-domain of fibrinogen. J Biol Chem 2003;278:32251-32258.

86. Joel S. Bennett, Sandford J, Shattil, John W. Power and T. Kent Gartner. Interaction of fibrinogen with its platelet receptor, differential effects of α and γ chain fibrinogen peptides on the

glycoprotein IIb-IIIa complex. J Biol Chem 1988;263:12948-12953.

87. Bennett, J.S., Vilaire, G., and Cines, D.B. J Biol Chem 1982;257:8049-8054.

88. Plow, E. F., McEver, R. P., Coller, B. S., Woods, V. L., Jr.,Marguerie, G. A., and Ginsberg, M. H. (1985) Blood 66, 724-727.

89. Thiagarajan, P., and Kelly, K. L. (1988) J. Biol. Chem.263:3035-3038. 90. Asch, E., and Podack, E. (1990) J. Clin. Inuest. 85,1372-1378.

91. Ruggeri, Z. M., De Marco, L., Gatti, L., Bader, R., and Montgomery,R. R. (1983) J. Clin. Inuest. 72, 1-12.

(5)

78

92. Brian Savage and Zaverio M.Ruggeri. Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein IIb-IIIa on nonactivated platelets. J Biol Chem 1991;266:11227-11233. 93. Weiss, H. J., Baumgartner, H. R., Tschopp, T. B., Turitto, V. T.,and Cohen, D. Blood

1978;51:267-279.

94. Sakariassen, K. S., Boehuis, P. A., and Sixma, J. J. (1979). Nature 279:636-638.

95. Weiss, H. J., Hawiger, J., Ruggeri, Z. M., Turitto, V. T., Thiagarajan,P., and Hoffman, T. (1989) J. Clin. Invest. 83, 288-297.

96. Remijn JA, Ijsseldijk MJ, van Hemel BM, et al. Reduced platelet adhesion in flowing blood to fibrinogen by alterations in segment gamma 316-322, part of the fibrin-specific region. Br J Haematol 2002;117:650.

97. Gartner, K.T. & M.L. Ogilvie. 1988. Peptides and monoclonal antibodies which bind to platelet glycoproteins IIb and/or IIIa inhibit clot retraction. Thromb. Res. 49:43–53.

98. Hamaguchi, M., L.A. Bunce, L.A. Sporn, et al. 1993. Spreading of platelets on fibrin is mediated by the amino terminus of the β chain including peptide β15–42. Blood 81: 2348–2356

99. Leung LL. The role of thrombospondin in platelet aggregation. J Clin Invest 1984;74:1764. 100. Bale MD, Westrick LG, Mosher DF. Incorporation of thrombospondin into fibrin clots. J Biol

Chem 1985;260:7502.

101. Beguin S, Kumar R. Thrombin, fibrin and platelets: a resonance loop in which von Willebrand factor is a necessary link. Thromb Haemost 1997;78:590.

102. Godyna S, Diaz-Ricart M, Argraves WS. Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood 1996;88:2569.

103. Iino, M., H. Takeya, T. Takemitsu, et al. 1995. Characterization of the binding of factor Xa to fibrinogen/fibrin derivatives and localization of the factor Xa binding site on fibrinogen. Eur. J. Biochem. 232: 90–97.

104. Ohkura, N., K. Enjyoji, Y. Kamikubo & H. Kato. 1997. A novel degradation pathway of tissue factor pathway inhibitor: incorporation into fibrin clot and degradation by thrombin. Blood 90: 1883–1892.

105. Seegers WH, Johnson JF, Fell C. An antithrombin reaction related to prothrombin activation. Am J Physiol 1954;176:97-103.

106. Procyk R, Blomback B. Disulfide bond reduction in fibrinogen: calcium protection and effect on clottability. Biochemistry 1990;29:1501.

107. Boyer MH, Shainoff JR, Ratnoff OD. Acceleration of fibrin polymerization by calcium ions. Blood 1972;39:382.

108. Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA and plasminogen –binding sites.

Biochemistry 2000;39:15730-41.

109. Tamaki T, Aoki H. Cross-linking of α2-plasmin inhibitor and fibronectin to fibrin by fibrin-stabilizing factor. Biochim Biophys Acta 1981;661:280-6.

110. Ritchie H, Lawrie LC, Crombie PW, Mosesson MW, Booth NA. Cross-linking of plasminogen activator inhibitor 2 and α2-antiplasmin to fibrinogen. J Biol Chem 2000;275:24915-20. 111. Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin-binding, and plasminogen

activation. Arteriosclerosis 1990;10:240-5.

112. Carr ME, Gabriel DA, McDonagh J. Influence of factor XIII and fibronectin on fiber size and density in thrombin-induced fibrin gels. J Lab Clin Med 1987;110:747.

(6)

79

113. FlickMJ, Du X,WitteDP, JirouskovaM, Soloviev DA, Busuttil SJ,Plow EF, Degen JL. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004; 113: 1596–606.

114. Gralnick HR, Connaghan DG. Hereditary abnormalities of fibrinogen. In:Beutler E, Lichtman MA, Coller BS, Kipps TJ.Williams Hematology. 5th ed. New York, NY: McGraw-Hill; 1995:1439. 115. Ebert R. Index of Variant Human Fibrinogens. Boca Raton, Fla: CRC Press;1994.

116. Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia: report on a study of the SSC Subcommittee of Fibrinogen. Thromb Haemost.1995;73:151–161.

117. Galanakis DK. Inherited dysfibrinogenemia: emerging abnormal structure associations with pathologic and nonpathologic dysfunctions. Semin Thromb Hemost.1993;19:386–395.

118. Mosesson MW. Dysfibrinogenemia and thrombosis. Semin Thromb Hemost.1999;25:311-319. 119. Palascak JE, Martinez J. Dysfibrinogenemia associated with liver disease. J Clin Invest.

1977;60:89–95.

120. Martinez J, MacDonald KA, Palascak JE. The role of sialic acid in the dysfibrinogenemia associated with liver disease: distribution of sialic acid on the constituent chains. Blood. 1983;61:1196–1202.

121. Mammen EF. Coagulation defects in liver disease. Med Clin North Am.1994;78:545–554. 122. von Felton A, Straub PW, Fricj PG. Dysfibrinogenemia in a patient with primary hepatoma: first

observation of an acquired abnormality of fibrin monomer polymerization. N Engl J Med. 1969;280:405–409.

123. Dawson NA, Barr CF, Alving BM. Acquired dysfibrinogenemia: paraneoplastic syndrome in renal carcinoma. Am J Med. 1985;78:682–686.

124. D.Llobet, M. Borrel, L.Vila, C.Vallvè, R.Felices, J.Fontcuberta. An acquired inhibitor that produced a delay of FpB release in an asymptomatic patient. Haematologica 2007;92: (2)e17-e19.

125. Marciniak E, Greenwood MF, Acquired coagulation inhibitor delaying fibrinopeptide release. Blood 1979; 53:81-92.

126. Davey FR, Gordon GB, Boral LI, Gottlieb AJ, Gamma globulin inhibition of fibrin clot formation. Ann Clin Lab Sci 1976; 6:72-7.

127. Ghosh S, McEvoy P, McVerry BA. Idiopathic autoantibody that inhibits fibrin monomer polymerization. Br J Haematol 1983; 53:65-72.

128. Galanakis DK, Ginzler EM, Fikrig SM. Monoclonal IgG anticoagulants delaying fibrin aggregation in two patients with systemic lupus erythematosus (SLE). Blood 1978; 52:1037-46.

129. Coleman M, Vigliano EM, Weksler ME, Nachman RL.Inhibition of fibrin monomer polymerization by lambda myeloma globulins. Blood 1972; 39:210-23.

130. Panzer S, Thaler E. An acquired cryoglobulinemia which inhibits fibrin polymerization in a patient with IgG kappa myeloma. Haemostasis 1993; 23:69-76.

131. O'Kane MJ, Wisdom GB, Desai ZR, Archbold GP. Inhibition of fibrin monomer polymerisation by myeloma immunoglobulin. J Clin Pathol 1994; 47:266-8.

132. Gris JC, Schved JF, Branger B, Aguilar-Martinez P, Vecina F,Oules R, et al. Autoantibody to plasma fibrinopeptide A in a patient with a severe acquired haemorrhagic syndrome. Blood Coagul Fibrinolysis 1992; 3:519-29.

133. Mammen EF, Schmidt KP, Barnhart MI. Thrombophlebitis migrans associated with circulating antibodies against fibrinogen: a case report. Thromb Diath Haemorrh 1967; 18:605-11. 134. Rosenberg RD, Colman RW, Lorand L. A new haemorrhagic disorder with defective fibrin

(7)

80

135. Hoots WK, Carrell NA, Wagner RH, Cooper HA, McDonagh J.: A naturally occurring antibody that inhibits fibrin monomer polymerization. N Engl J Med 1981; 304:857-61.

136. Marciniak E, Greenwood MF. Acquired coagulation inhibitor delaying fibrinopeptide release. Blood 1979; 53:81-92.

137. Ghosh S, Mcevoy P, Mcverry BA. Idiopathic autoantibody that inhibits fibrin monomer polymerization. Br J Haematol 1983; 53:65-72.

138. Ruiz-Arguelles A. Spontaneous reversal of acquired autoimmune dysfibrinogenemia probably due to an antiidiotypic antibody directed to an interspecies cross-reactive idiotype expressed on antifibrinogen antibodies. J Clin Invest 1988; 82:958-63.

139. Ginell R.Post, Lindsey James, Daisy Alapat, Virginia Guillory, Michele Cottler-Fox, Mayumi Nakagawa. A case of acquired dysfibrinogenemia in multiple myeloma treated with therapeutic plasma exchange. Trasfusion and apheresis Science 2013;48:35-38.

140. De Vries A, Rosenberg T, Kochwa S, Boss JH. Precipitating antifibrinogen antibody appearing after fibrinogen infusions in a patient with congenital afibrinogenemia. Am J Med 1961; 486-94. 141. A. Dear, S.O. Brennan, M.J. Faed, P.M. George. Acquired dysfibrinogenemia caused by

monoclonal production of immunoglobulin λ light chain. Haematologica 2007;92:e111-e117. 142. Ashby MA, Lazarchick J. Case report: acquired dysfibrinogenemia secondary to mithramycin

toxicity. Am J Med Sci. 1986;292:53–55.

143. Undas A, Zabczyk M, Iwaniec T. Dysfibrinogenemia: from bleeding tendency to thromboembolic disorders. Boletim da SPHM. 2011: 26: 5-17.

144. Dunn E, Ariëns RAS, Grant PJ. The influence of type 2 diabetes on clot structure and function. Diabetologia. 2005; 48: 1198-1206.

145. Mark.T Cunnigham, MD; John T. Brandt, MD; Michael Laposata, MD, PhD; John D.Olson, MD, PhD. Laboratory diagnosis of dysfibrinogenemia Arch Pathol Lab Med 2002;126:499-505. 146. Ohler A, Redondo M, Lammle B. Increased thrombin time in a patient with multiple myeloma.

Ther Umsch. 1999; 56:491-4.

147. National Committee for Clinical Laboratory Standards. Procedure for the Determination of Fibrinogen in Plasma. Approved guideline. Villanova, Pa: National Committee for Clinical Laboratory Standards; 1994. NCCLS document H30-A.

148. Palareti G, Maccaferri M, Manotti C, et al. Fibrinogen assays: a collaborative study of six

different methods. CISMEL Comitato italiano per la standardizzazione dei metodi in ematologia e laboratorio. Clin Chem 1991;37:714-719.

149. Polack B, Valiron O, Concord E, Freyssinet JM, Hudry-Clergeon G. Molecular characterization of abnormal fibrinogen by two-dimensional electrophoresis.Clin Chem. 1984;30:2093–2097. 150. Lewin B.“La diversità immunitaria”. In Lewin B., Il Gene VIII.Bologna, Zanichelli Editore: 782-817,

2006.

151. Abul K. Abbas; Andrew W. Lichtman; Jordan S. Pober, Immunologia cellulare e molecolare, 4a ed., Padova, Piccin, 2002.

152. Neha Korde, Sigurdur Y, Kristinsson, Ola Landgren. MGUS e SMM: novel biological insights and development of early treatment strategies. Blood 2011; 117(21):5573-5581.

153. S.Vincent Rajkumar. Multiple Myeloma: 2013 update on diagnosis, risk stratification, and management. AJH 2013; 88:26-235.

154. G.Carulli Manuale di ematologia per gli studenti di Medicina ed. 2009.

155. Katzmann JA, Kyle RA, Benson J, Larson DR, Snyder MR, Lust JA, et al. Screening panels for detection of monoclonal gammopathies. Clin Chem 2009;55:1517-22.

156. San Miguel JF et al. Conventional diagnostics in multiple myeloma. Eur J Cancer 2006;42:1510-1519.

(8)

81

157. Tate JR, Gill D, Cobcroft R, Hickman PE. Practical considerations for the measurement of free light chains in serum. Clin Chem 2003; 49: 1252 – 7.

158. Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, Drew R. Highly

sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem 2001; 47: 673 – 80.

159. Siegel D, Bilotti E, van Hoeven KH. Serum free light chain analysis for diagnosis, monitoring, and prognosis of monoclonal gammopathies. Lab Medicine 2009;40:363–366.

160. Pratt G. The evolving use of serum free light chain assays in haematology. Br J Haematol 2008;141:413-22.

161. Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23:215-24.

162. Keren DF. Heavy/light-chain analysis of monoclonal gammopathies. Clin Chem 2009;55:1606-8. 163. Kyle RA et al, International Myeloma Working Group (IMWG) consensus, Leukemia 2010.

Riferimenti

Documenti correlati

L’Atlante, attraverso la selezione di opportuni indicatori articolati in tre macroambiti tematici (istituzioni, popolazione residente e straniera, economia e quadro

Le attività che si sono susseguite hanno riguardato principalmente la realizzazione e l’implementazione del software di gestione, la codifica di tutte le macchine

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA DELLE TELECOMUNICAZIONI. Tesi

We describe a case of a metastatic fracture of the humeral neck treated by percutaneous insertion of metallic nails through an 8-gauge cannula followed by PMMA bone cement

Muons mainly come from the decay of pions and kaons which are produced with a characteristic transverse momentum distribution inside a narrow cylinder around the shower axis (for a

Among the three groups with different binding sites and interactions, the main difference was observed between groups 1 and 3, that show completely different

La Compagnia della Fortezza, diretta da Armando Punzo, si presenta come esperienza pilota rispetto a tutte le altre, grazie alle svariate conquiste ottenute nel corso

The mixture of steroid hormone-binding sites could be resolved by using the methods of Rosenthal(l967) for correc- tion of nonlinear Scatchard plots. This correction