• Non ci sono risultati.

Ensemble-based algorithm for error reduction in hydraulics in the context of flood forecasting

N/A
N/A
Protected

Academic year: 2021

Condividi "Ensemble-based algorithm for error reduction in hydraulics in the context of flood forecasting"

Copied!
9
0
0

Testo completo

(1)E3S Web of Conferences 7, 18022 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718022. Ensemble-based algorithm for error reduction in hydraulics in the context of flood forecasting 1,a. 1. 2. 1. 1,3. 4,5. 6. Sébastien Barthélémy , Sophie Ricci , Etienne Le Pape , Mélanie Rochoux , Olivier Thual , Nicole Goutal , Johan Habert , 1 1 4 2 Andrea Piacentini , Gabriel Jonville , Fabrice Zaoui , Philippe Gouin 1. CECI, CERFACS  CNRS, 42 avenue Gaspard Coriolis, 31820 Toulouse, France SCHAPI, 42 avenue Gaspard Coriolis, 31820 Toulouse, France 3 INPT, CNRS, IMFT, Toulouse, France 4 LNHE, EDF R&D, Chatou, France 5 LNSH, EDF R&D, Chatou, France 6 DREAL Champagne Ardenne, Châlons-en-Champagne, France 2. Abstract. Over the last few years, a collaborative work between CERFACS, LNHE (EDF R&D), SCHAPI and CE-REMA resulted in the implementation of a Data Assimilation (DA) method on top of MASCARET in the framework of real-time forecasting. This prototype was based on a simplified Kalman filter where the description of the background error covariances is prescribed based on off-line climatology constant over time. This approach showed promising results on the Adour and Marne catchments as it improves the forecast skills of the hydraulic model using water level and discharge in-situ observations. An ensemble-based DA algorithm has recently been implemented to improve the modelling of the background error covariance matrix used to distribute the correction to the water level and discharge states when observations are assimilated from observation points to the entire state. It was demonstrated that the flow dependent description of the background error covariances with the EnKF algorithm leads to a more realistic correction of the hydraulic state with significant impact of the hydraulic network characteristics.. 1 Introduction The present study was carried out in the framework of a collaboration between CERFACS, SCHAPI and LNHE (EDF). It deals with the simulation of river hydrodynamics, with a focus on environmental risk assessment related to flooding. It relies on the use of the MASCARET software that solves the mono-dimensional shallow water equations and is used by SCHAPI (Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations) and SPCs (Services de Prévision des Crues) to build models for catchments of interest in France. In spite of the advances in numerical modelling and the expertise invested in the development and the use of MASCARET, the capacity for real-time anticipation of extreme flood events remains limited because of several sources of uncertainties in hydraulic models. In order to better forecast flood events, these uncertainties should be identified, quantified and reduced. To begin with, forcing data that represent hydrologic boundary conditions for hydraulic models usually result from the transformation of uncertain observed water levels into discharges with an uncertain rating curve or from discharges that are forecasted by uncertain hydrologic models. Another source of uncertainty is the description of the river channel and flood plain geometry. This requires on-site measurements of topographic and bathymetric profiles to provide a spatially a. distributed geometry. Additionally, the model equations are based on simplifications and parameterizations of the physics. The parameterization schemes are calibrated to adjust the model behaviour to observed water levels or discharges, typically, through the calibration of friction coefficients. The calibration of the river bed and flood plain friction coefficients is usually achieved once for all using a batch of observations such as water levels from a limited number of flood events, thus providing time-invariant values for the model parameters. It is important to mention that errors in the model inputs and in the model equations are sometimes difficult to discriminate. These uncertainties usually translate into errors in the model representation of the water level-discharge (H-Q) relation that is not coherent with that from the reality and generally translate into an imperfect prediction of the hydraulic state in the river and flood plains. Following the path of deterministic forecast achieved at SCHAPI and SPCs, an error reduction approach was implemented in the framework of the collaboration between CERFACS, SCHAPI and LNHE. Previous work by [1] assumed that major sources of uncertainties relate to hydrologic forcing. The authors proposed to implement a data assimilation (DA) algorithm to reduce these errors and thus improve the flow simulation and forecast. [1] describe the improvement of the simulated hydraulic state assimilating water level and/or discharge observations in the context of operational flood forecasting. These preliminary. Corresponding author: barthelemy@cerfacs.fr © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(2)  . . E3S Web of Conferences 7, 18022 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. bathymetry and the confluences in the hydraulic network; they also vary in time especially due to the maritime influence. Finally, the EnKF leads to a correction of water level and discharge that is coherent with the model equations and it further improves the DA results when compared to those of the previously described EKF. The implementation of an ensemble-based DA algorithm thus appears as the next step towards a physically consistent DA system for flood forecasting. The structure of the paper is as follows: Section 2 provides a brief description of the hydraulic model equations and application to the Adour catchment. The ensemble-based approach is presented in Sect. 3 as well as the elements for the implementation of this approach with a coupling software and MASCARET. In Sect. 4, the DA results are presented for a synthetic test case as well as over a set of selected real flood events. Conclusions and perspectives for this work are given in Sect. 5.. developments are gathered in a platform called DAMP (Data Assimilation for Mascaret Prototype). Water level data were sequentially assimilated using an Extended Kalman Filter (EKF) algorithm to control the upstream flow for the hydraulic network and dynamically correct the hydraulic state. The first step of the analysis is based on the assumption that the upstream flow can be adjusted using a simple three-parameter correction, and the second step consists in correcting the hydraulic state every hour (the observation frequency) to provide an improved initial condition for a forecast simulation. This procedure is applied on a sliding time-window over the entire period of each flood event for the Adour and Marne catchments; the results were interpreted for several events over each catchment. It was shown that the simulation with DA is significantly closer to the observation than the free run (no assimilation) over the re-analysis period as well as over the forecast period. It was also found that the sensitivity to an initial condition for the forecast mode is negligible compared to the sensitivity to the upstream flow, except at short forecast lead-time. Recent work by [2] provides a time-dependent correction of the river bed and flood plain friction coefficients to account for errors in the bathymetry that vary as water level reaches different sections of the described geometry. It is worth noting that the system presented in [1] and [2] is used operationally at SPC SAMA since 2014 and is currently being implemented at SCHAPI for operational flood forecasting. The present paper is based on [3] and it investigates the impact of the flow dynamics and the river geometry on the background error covariance functions in an Ensemble Kalman Filter (EnKF) algorithm with MASCARET for the Adour catchment. It was demonstrated that the correlation length-scales for the errors in the hydraulic state are large with a strong impact of the ߲ܵ ߲ܳ ൅ ൌ Ͳ ߲‫ݔ߲ ݐ‬ డொ డொ௏ డ௓ ொమ ൅ ൅ ݃ܵ ൅ ‫ ܬ‬൅ ‫ܬ‬ௌ ൌ Ͳ  ‫ ܬ‬ൌ మ మ రΤయ డ௧. డ௫. . డ௫. DOI: 10.1051/ e3sconf/2016 0718022. 2 Hydraulic modelling 2.1 Shallow water equations    

(3)                         ! "#$  %  &

(4)  '()      * +   ,, + -% , , ,  .,+   &  /, , +/0.,  

(5) ,   , ,   ,    &      

(6)               %% 1 !         *(   23        &        &               

(7)  -%                        %  &   1 !      &

(8) &    &  ,  , , , ,  ,  , 8+ ,  1 7  &      & 

(9)   ? %  @ A(B C    A

(10)   1 :   %%- 

(11)  =    %      & %%     &       A

(12)      A(BD@ E? % 1:  &            % 

(13)               &    &

(14)        1 7             &

(15)   % &

(16)   48 *  4

(17) %   8/%     21 !    

(18)        &     =#F%%  &

(19)       %  E;G= %  1!   %    &        

(20)    &  -%      &   A

(21)           &             %       %  1 !  H  ( (  *H2 A %       %  %%    &     4A:1 !          8 &                   A

(22)    %- %   

(23)  

(24)     1 4A:I . ௌ ௄ೄ ோಹ.  " $      " $  .      

(25) "  $

(26) " $        "  $         

(27)       

(28)  %         % 

(29) 1!                       4 5 6*2(6&*2   6*2 "$          6&"$ %    &  &

(30) 

(31) 1 !   

(32)     !       

(33) 1 1.2 Hydraulic modelling and test case catchment  !      

(34)    *' 1 2       7  '        81 !               &       9  1 :  %    ;       <   <      <9 ;1!           -% %      1! %      & &

(35) &     * & 

(36)  =   2    .             &      &     -8 >   &1 . 2.

(37)     E3S Web of Conferences 7, 18022 (2016) rd FLOODrisk 2016 - 3 European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718022.            (-%      1-  %%    >       

(38)      *H?@ 2 % .    &

(39)  "=$    

(40)     

(41) 

(42) 1 !  

(43)   %&   -%  %%  &       %   %  &   %    %         %%       %& 1    %%    &          %

(44)   1 7  ( &        % %   &         %              %   

(45)               .   "9$1 K      &        %(&   %       A

(46)      *A2      &

(47)  ";$  

(48)  %.    %.     "F$    %  

(49)    &

(50)       

(51) ( 17        &

(52)    %  

(53)  %%                       -   1.                            '     &        1 !        &

(54)               &( (B   8 > -     A

(55)   1 ' -%  

(56)      A

(57)     E1 #1   #1G   % 

(58) 1 '           

(59)     &  >     

(60) % 1 '     %       #     

(61)    ;  # 

(62)    -    & #DD   DDD  ݉ଷ Ǥ ‫ି ݏ‬ଵ 1     %    9 ;    E < 

(63)   -   &FDD 9=D   ݉ଷ Ǥ ‫ି ݏ‬ଵ     9    -    & #DD   DD   ݉ଷ Ǥ ‫ି ݏ‬ଵ    ;1 !    %  < 

(64)          %      9   ;     E  < 

(65) 1 !          

(66)    

(67)  &   &

(68)   1  . 3.2 EnKF algorithm !           

(69)     & L   

(70)    L'"G$1 !     %     

(71)      & &

(72)    >         1!  L' %   

(73)  %    %     

(74)  %%     %    ' 1E 

(75) 

(76)  1 !  L'      &K  %& & *  -  &

(77)   &  % 2    %                 &         %             1 '  

(78)        &      -      

(79)        1*2.   4

(80)               !      & 1 7  &       %       1   <9  ;%    & 1. 3 Ensemble reduction. methods. for. ே೐. ͳ ் ‫ܤ‬௜ ൌ ෍൫‫ݔ‬௜௕ǡ௞ െ ‫ݔ‬Ʋ௜௕ ൯൫‫ݔ‬௜௕ǡ௞ െ ‫ݔ‬Ʋ௜௕ ൯ ሺͳሻ ܰ௘ െ ͳ. uncertainty.   . ௞ୀଵ. ‫ݔ‬Ʋ௜௕ ൌ. ଵ ே೐. ே೐ σ௞ୀଵ ‫ݔ‬௜௕ǡ௞   %    .  &*&   -    2          %1 !    L   ‫ܭ‬௜   %    ‫ܭ‬௜ ൌ ‫ܤ‬௜ ‫ ் ܪ‬ሺ‫ܤܪ‬௜ ‫ ் ܪ‬൅ ܴሻିଵ  

(81)           &   % H   %         &   %       &    -1' &   &    (      

(82)    

(83)  %          %&  &   . 3.1 Monte-Carlo approach and statistics estimation  ! *2%%  %%     

(84)         %

(85)    ‫

(86) &  ܯ‬              % 

(87)    .     %  &   

(88)           %&&  

(89)   &  1 !  %    %                       %%      %  & 1            &               %       %     % 1    & .     % 

(90)     % 

(91)                      

(92)      1:     

(93)   &    &   &    J  %%   . ‫ݕ‬௜௢ ൅ ߝ௜௢ǡ௞  *   ߝ௜௢ǡ௞   H       > 2 ௕ǡ௞ "D$     &   ‫ݔ‬௜       L %  3 . ‫ݔ‬௜௔ǡ௞ ൌ ‫ݔ‬௜௕ǡ௞ ൅ ‫ܭ‬௜ ቀ‫ݕ‬௜ ൅ ߝ௜௢ǡ௞ െ ‫ܪ‬൫‫ݔ‬௜௕ǡ௞ ൯ቁ*E2 . 3.

(94)    E3S Web of Conferences 7, 18022 (2016) rd FLOODrisk 2016 - 3 European Conference on Flood Risk Management.            .  %

(95)    1    

(96)       &            %&      H      >  &

(97)   >    %    9        

(98) 1! &  %   %&    H    > &

(99) %(   (   #           

(100)    -%  1! %   %&    =P            .          

(101)         1    %   %&   < &      &       ' 1<1 . :   &       %&     ௢ǡ௞. &    1 *E2 ‫ݕ‬௜௢ ൅ ߝ௜           %  

(102)     & .      1     ' 1E *( 2 

(103)    %%    &

(104)     ‫ܯ‬௜ିଵǡ௜ %  &&       -     

(105)  *        %%  &  &23  ௔ǡ௞ ‫ݔ‬௜௕ǡ௞ ൌ ‫ܯ‬൫‫ݔ‬௜ିଵ ൯. . DOI: 10.1051/ e3sconf/2016 0718022. *<2 .        %      L'    

(106) 

(107)   !   "!# $ %&. : %  

(108)     %      > 

(109)             &

(110)  *6 M21 !   -  %    #

(111)   &(      %             1 :        ‫ܤ‬௓௓   MM ‫ܤ‬ொொ            &   &(       ‫ܤ‬ொ௓    N  &    &(       5  ‫ܤ‬௓ொ !   &  3 . ‫ܤ‬௓௓ ‫ܤ‬ൌ൬ ‫ܤ‬ொ௓.   !  %  %      9   ED   3   &      %     J   &   % %&   1   &  L'     >     &          &  ( %    

(112)          &  .  1 "$ %%       

(113)     . %        & &

(114)       %      &   .               &   % 1    "E$    &   &     & '       &       (

(115)     ߣ ൐ ͳ           &    ̱ ‫ ݔ‬௕ǡ௞                   &      -&% 3  ̱ ‫ ݔ‬௕ǡ௞ െ ‫ݔ‬Ʋ ௕ ൌ ߣሺ‫ݔ‬ ̱௕ǡ௞ െ ‫ݔ‬Ʋ ௕ ሻǤ ሺͷሻ  !             

(116)    %   "<$&    %       &  &        %%

(117)    &   3  ் ݀௢ି௕ ݀௢ି௕ ൒ ‫ ் ܪܤܪ‬൅ ܴǤ ሺ͸ሻ     

(118)   &                    J ‫ ்ܪܤܪ‬ൌ ߪ௕ଶ . ൌ ‫ܤ‬ொ௓ ் 1. ‫ܤ‬௓ொ ൰*#2 ‫ܤ‬ொொ.  !    &       .          %      

(119)                                   1  ! %    &   

(120)     L'1:  

(121)    O   

(122)               %%-   

(123) 

(124)        %   %     & 

(125)        

(126)    1         &    &

(127)     H       &     1 !    &             & %&      %        

(128)   %        &1     

(129) 

(130)   %  >     . 4.

(131)     E3S Web of Conferences 7, 18022 (2016) rd FLOODrisk 2016 - 3 European Conference on Flood Risk Management     . ܴ ൌ ߪ௢ଶ 1 : 19    ் ൐ െߪ௢ଶ ൐ ߪ௕ଶ  ߣଶ ൌ ݀௢ି௕ ݀௢ି௕ .  .  % 

(132)       1 !  A?QA8?   

(133)  8%A?% 

(134)      1 : &    N  %  %        

(135)    %   .       &   1 !           :4  AA?1 !    L'   %   ' 1#1 :   %   8%A?          %             -   &  !1 !         *      '2     %   L'   

(136)         A? B 1!    ! #*# +,*-(.     (%    &    %     

(137)    1 !            !* "",* + !   &

(138)   A?         & &    !  .  

(139)      & %  1 !    %   A?QA8? %   % %     !*   2  %        %% *

(140)   .    %   21 !   & %      % ( %   &

(141)     *+      %              &       1 ! 

(142)    &       &

(143)      (! *'& B  &      -        

(144)    ( ,/*012-      

(145)  %& !         &    &1.  .  %       3 ் ଶ ݀௢ି௕ ݀௢ି௕ ൐ െߪ௢ ሺ͹ሻ ߣଶ ൌ ߪ௕ଶ       &        &  %     ߪ ̱௕ଶ ൌ ߣଶ ߪ௕ଶ1!      %%   &  %    %    *  %     -     O2         %               &  %    ̱ ‫ ݔ‬௕ǡ௞ ሺ݆ሻ െ ‫ݔ‬Ʋ ௕ ሺ݆ሻ ൌ. ߣ. ͳ ൅ ሺߣ െ ͳሻ ‫ܥ ש‬ሺ݆ሻ ‫ ש‬ቀ‫ ݔ‬௕ǡ௞ሺ௝ሻ െ ‫ݔ‬Ʋ ௕ ሺ݆ሻቁ Ǥ ሺͺሻ . ! .  .   . DOI: 10.1051/ e3sconf/2016 0718022.  . ͳ ൅ ሺߣ െ ͳሻ ‫ܥ ש‬ሺ݆ሻ ‫ש‬൐ ͳǡ %

(146)           &          &            %         &       

(147)          &  &  % 17   &   .  &    

(148)           &     -   1 !      3 ே. ೚ ሺߣ௡ െ ͳሻ ‫ܥ ש‬௡ ሺ݆ሻ ‫ ש‬ቀ‫ ݔ‬௕ǡ௞ሺ௝ሻ െ ‫ݔ‬Ʋ ௕ ሺ݆ሻቁ Ǥ ሺͻሻ ͳ ൅ σ௡ୀଵ. ̱ ‫ ݔ‬௕ǡ௞ ሺ݆ሻ െ ‫ݔ‬Ʋ ௕ ሺ݆ሻ ൌ െ ͳሻ ‫ܥ ש‬௡ ሺ݆ሻ ‫ߣ   ש‬௡ ൐ ͳ  &   %   *( 5  111 )21 !             :   & L '   &

(149) : L'   1. ே೚ ሺߣ௡  σ௡ୀଵ. 3.3 Implementation with MASCARET !  L'      %       8%A? "#$ 1 :   %( 

(150)     %     & O 

(151)  %    '   8K   GG91 8%A?   &   

(152)           %  %

(153)    J          (    

(154)    &  

(155)   %%    %  *%

(156)   %     

(157) 

(158) 

(159) 2 .    

(160)      (%

(161)      * (    &  (     21 8%A?%      %  &    % %      A  :    * 11 A:4 8%A: ?NA:21 !    &  % &   %  * 11   -    %       %   2   %  * 11   -    %      %             2     % 

(162)    %    &(&                &   . .    8%A?      L'1    *   2  %    ' &        %    L'    * !* "",* + ! %%       ( ,/ *012- %  

(163)  %11121!          -  &  &  1. 4 Results. 5.

(164)  . E3S Web of Conferences 7, 18022 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718022. %     %          91 !  : L'            %.   

(165)      

(166)          .               9      %          &

(167) 

(168)   .     1                           %    & 

(169)       &

(170)    &    1 !  : L'  N          %   .   

(171)      &    .         &1 !       %    %    - : L'   %    %    % 

(172)   &          1             %&    %      

(173)    &      .  1 !   

(174)            .        1 . :             L'                    8&   

(175)     -%  *8 2   &

(176)   1 !    %%        -%  *   &

(177)   2  ( &      1 :       &         .           ED   

(178)                 .  O      &91 !         %      9 ; (           (   %   *#2  -     =;=    ݉ଷ Ǥ ‫ି ݏ‬ଵ      %1

(179)      -     &     %   H         %    &   1 : &              & &  .   %& %   

(180) *. 21 4.1 Observing System Simulation Experiments Results :     & .    %

(181)  1 

(182)      &      

(183)    A

(184)   1!          %%      : L'    ED      '  1 =(9  A

(185)      @  % 

(186) 1 !       %

(187)   '  1;(F1 :  &    

(188)     &  &       &       &          *      21 !            A

(189)                  &

(190)           11@1!           &    .             

(191)  %   &     A

(192)    @1 A      &

(193)  "$ %          &      -       

(194)   1 :       %    &        %  &      (H              %     &   %     1 !                  >  

(195)       %         

(196)   

(197)          

(198)      1 7     : L'           

(199)      &      

(200)         

(201)                

(202)        1 :                   ED    &     %  '  1 G(D  % 

(203)      *662      *6M2     &           &      A

(204)   1 !       %        9(=(E(1 !  A

(205)       %               1 !    &       %    %  &     *   %  2   &    .     7   A

(206)          

(207)  ED 1! &     %        &        %        &       

(208)       *% & 21 .   %  ' 1=& &    @* 21 . 6.

(209)  . E3S Web of Conferences 7, 18022 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718022.    %   %      91 .   %  ' 1=&    A

(210)   * 21  .    %  ' 1G     N   &       1  '   (E  % 

(211)  %    E(     #(      A

(212)      @  % 

(213) 1 7         %  (   *(  <(  2   %                (    1 :    %   

(214)                

(215)        &              &

(216)    L'1 !              -          %   

(217)      %        *<(9(  9(E#(  % 

(218) 21.   %  ' 1=&    @* 21 .     %           &             A

(219)   %    : L'  9( =(E(        1 !           %     A

(220)    &    1 C  &       %    %  &           &. . 7.    '      A

(221)         E(  ( 1 !  &     %     &    &    

(222)     1 .

(223)  . E3S Web of Conferences 7, 18022 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.    '  @ #(   ( 1 !  &     %        &    &   

(224) .    1. DOI: 10.1051/ e3sconf/2016 0718022.     7   A

(225)          

(226)        ED#   1 !  &   %     &     &   

(227)     1  . 4.2 Real data experiment results :   -      L'  %%                      EDDG  ED#1 7  &         

(228)   A

(229)      A(B1 :           ED# 1 !      %%    L'  ED#  %

(230)   ' 1<A

(231)     ' 1#@1  

(232)   ' 1 <          -      %  

(233)  &     1  @     . %  -%            %    (   1        %   &            . %       1     &         %        

(234)  @ % >      

(235)   &  % .             

(236)                             %%%     1!    %     &   A

(237)      @    (            9   ;1      %                   % @1:  &   %&  %%          %  &            & 1 .    %  ' 1<&@1  !&  >    %           %                RDRE %    &       

(238)   1   &     A

(239)      A(B   

(240) . %      (      1!    %  ? %     &       1 4  . %@  D      1   !" # "$%#&%' +,- #()K* D F;1G  ./0"%'  ;#1F < #D1=G 9 E1DF D (<1#  1# E =1G = =19 D (D1GG. 8.

(241)     E3S Web of Conferences 7, 18022 (2016) rd FLOODrisk 2016 - 3 European Conference on Flood Risk Management  2!  ." #3 &% $. D E 9 E D  < 9. <D1<< 1D D1;; (1<9 ;D1G= #=1## D1E <1F. 4.. 5. 6.. ;1. %&  %       A

(242)    @ ? %    A(B         J    %       &EDDG ED#1. 8. 9.. 5 Conclusions 10.. !  

(243)    &  %%   : L'      S    S

(244)        

(245) 

(246)      !1 !  L'    &(&             &             

(247)    

(248)           O   &    %& %    1   %%   %   %   &     

(249)  1 !            &  

(250)    

(251)    > &

(252)  %  -1 ! 

(253)       %   

(254)        

(255)    %     %              &   

(256)    &  

(257)  

(258)  %   

(259)   1:    

(260)    -%          -%      : L'    &       &                 %   &        

(261)                  (   *( <2 %            1 :                               %       

(262)   %     %%                1   111. 11.. E1. 13.. 14.. 15.. 6 References 1.. 2.. 3.. Ricci S., Piacentini A., Thual O., Le Pape E. and Jonville G., (2011). Correction of upstream flow and hydraulics state with a data assimilation in the context of flood forecasting. Hydrol. Earth Syst. Sci 15, 1-21. Habert J., Ricci S., Thual O., Le Pape E., Piacentini A., Goutal N., Jonville G., Rochoux M., (2016). Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting. Journal of Hydrology, 532, 52-64. Barthélémy S., PhD (2015) Assimilation de données ensembliste et couplage de modèles hydrauliques 1D2D pour la prévision des crues en temps réel. Application au réseau hydraulique Adour maritime, Université de Toulouse, France.. 9. DOI: 10.1051/ e3sconf/2016 0718022. Goutal, N. and Maurel, F., (2002). A finite volume solver for 1D shallow water equations applied to an actual river. Int. J. Numer. Meth. Fluids, 38 (2), 1-19. Beven, K., Freer, J., 2001. A dynamic topmodel. Hydrol. Process., 15, 1993-2011. Boyaval, S. (2012). A fast Monte-Carlo method with a Reduced Basis of Control Variates applied to Uncertainty Propagation and Bayesian Estimation. CMAME, 241-244. 7 A1*G<F2. ! 4   1  T   1C1)*FG;(G<91 H  1   A1 %  *GG21          %%% 1 Evensen G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(C5), 10143-10162. Burgers G., Jan Van Leeuwen P. and Evensen G. (1998). Analysis Scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6), 1719-1724.    T1 ?1      1 ?1 *GGG21    :%     K  '   A&  A   &        '    

(263) 7   E;#(E;=F1 Anderson J. L. (2007).  %             &    ! 4   4

(264)  

(265)  8%

(266)  ED(EE#1 Desroziers G., Berre L., Chaonik B. and Poli P. (2005). Diagnosis of observation, background and analysiserror statistics in observation space. Quarterly Journal of the Royal Meteorological Society, 131(2005), 33853396. Buis S., Piacentini A. and Déclat D. (2006). PALM: a computational framework for assembling highperformance computing applications. Concurrency and Computation: Practice and experience, 18(2), 231-245. Li H., Kalnay E. and Miyoshi T. (2009). Simultaneous estimation of covariance inflation and observation errors within an Ensemble Kalman Filter. Quarterly Journal of the Royal Meteorological Society, 135(February), 523-533..

(267)

Riferimenti

Documenti correlati

Ensemble and analogue-based precipitation forecasts are both considered as probabilistic forecasts since the forecast for each lead time is made of an ensemble of M discrete

Keywords: Backward error estimate for the matrix exponential, overscaling, multiple precision floating point computation, scaling and squaring algorithm, Paterson–Stockmeyer

Thus, error-tolerant reasoning is hard even if only polynomi- ally many repairs exist; i.e., there are cases where |Rep T (C v D)| is polynomial on |T |, but brave and

The right panel of Figure 1 shows instead the evolution of the maximum of the rest-mass density when normalized to its initial value and where, for clarity, we have reported only

In other words, a classical background subtraction algorithm classifies each pixel individually by taking into account only the temporal changes (Temporal approach).. The

Un documento di architettura medievale in Liguria, Cinisello Balsamo (Milano) 1999, pp. Manfredi, Città del Vaticano 2000, pp. • Gli insediamenti genovesi nel Nord-Africa durante

2 which gives: (left panel) the raw status of the NEMO telescope, as integrated over the whole simulated event and (right panel) the location of the PMTs which are selected by

Più difficile, semmai, sarebbe identificare nella totalità quella progressione nelle tre immagini della seconda quartina: se il falco, infatti, ap- partiene al mondo animale