• Non ci sono risultati.

Early Warning Flood Defence System, experience from the field Rob van Putten

N/A
N/A
Protected

Academic year: 2021

Condividi "Early Warning Flood Defence System, experience from the field Rob van Putten"

Copied!
6
0
0

Testo completo

(1)E3S Web of Conferences 7, 18003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718003. Early Warning Flood Defence System, experience from the field Rob van Putten. 1,a. 1. Waternet, Research and Engineering, 1096AC Amsterdam, The Netherlands. Abstract. Waternet and Siemens built an early warning system for the Ringdijk in Amsterdam. The experiences during this project led to a vision on the usage and benefits of such systems. This article is about that vision and the practical experiences during the project. The article shows the context of implementing an early warning system in Dutch practice and describes the promises and proven benefits in an age of upcoming digital technologies and climatological chances.. 1 Introduction Flooddefence is deeply rooted into Dutch culture. Since The Netherlands literally appeared on the surface, there was an ongoing struggle against the forces of nature. During the last 4 centuries the flood defence systems became more advanced. But even as recently as  

(2)   

(3) 

(4) 

(5)   

(6) 

(7)     

(8) 

(9)       

(10)   

(11)    . `Deltawerken were initiated as a result of the 1953 disaster including a secure coastline, bridges, dams and the famous !"

(12)    #  .. Today we are living in the digital age and we see the results of the industrialisation on climate change. This poses challenges to a country below sea level. The Netherlands will have to be innovative in the defence against flooding. Advances have been made in modelling and construction, but somehow the big data and artificial intelligence possibilities seem to get little attention, even though they offer great promise in early warning systems flood defence systems. This paper covers the usage of remote sensor systems, advanced modelling, big data and artificial intelligence in the development of modern early warning systems.. 2 The need for early warning systems . Figure 1. Breach during the 1953 flooding. a.  

(13)         

(14)           

(15)   

(16)  !   ""#   

(17)  $    

(18)  $   

(19)     

(20)     

(21) 

(22)    %    & 

(23)  '      $ (     

(24) 

(25)       

(26)   

(27)   %        )  

(28)      ) 

(29)     **+  

(30) ,*  % 

(31)       

(32)     

(33)  , 

(34) 

(35)  +  

(36) 

(37)   

(38)  $   *-**    %      

(39)    $    

(40)   ./00!000   ./!000!000     

(41) 

(42)  $    

(43)  1

(44)    %  

(45) 

(46)

(47)     . Corresponding author: rob.van.putten@waternet.nl. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(48) E3S Web of Conferences 7, 18003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718003. = % $  +   $       

(49) .       1     

(50)    

(51)  

(52)  $ 2      

(53)    $   

(54)  ;  %    

(55)    1      

(56)  

(57)     7         

(58)  +

(59) +

(60)  +    

(61)   $+ 

(62)     4     

(63)       +   $     

(64) .    $ 

(65)  %    

(66)   

(67)  $   

(68)     +        $ %   . ,             

(69)  

(70)  

(71)      $ ,

(72)  $ 2 +  3'4 56 + $    7

(73) 8  x &  $  x 9      x (    % * x :    % *: x 4  

(74)  7     4    

(75)  . $       $    

(76) 7 %  ;$+  % 

(77)   $$       

(78) $   

(79)   . 3 Uncertainties and impact @   $  $  

(80)   +   

(81)   +         @ 

(82)     %       7   +      $.

(83)  +  %                +                   

(84)  

(85)     3.1 Soil variability  9 $ 2    

(86)    ;    +

(87)  $      

(88)        

(89)    + 

(90)  +   % %

(91) %A$  +   $   , 

(92) .   . Figure 2. Typical day for a Dutch dike, source; beeldbank.rws.nl, Rijkswaterstaat / Harry van Reeken.  <         

(93) 

(94)    $    = % $    ;   

(95) 

(96)       $; 

(97)   $     

(98)              

(99)   $   

(100)  $ $ %     ,   %   $ 

(101)   . $ $     ;      +   1        +   %  2 .      

(102) 

(103)    $    

(104)     

(105)     >   +   $                   +            +   $     $

(106)  ;  $$ 

(107)  

(108)   $    ? $  

(109)      

(110)   

(111)  +       

(112) 

(113)      <  $       +    7   7 

(114)       

(115)  +        $          

(116)     +  7  

(117)           $  <  $

(118)   

(119)       

(120) $    ! 4  2      

(121)      +  +      + !'

(122)   

(123)   

(124)  

(125)  $

(126)  %    

(127)    

(128)  

(129)  

(130)   ,          

(131)  

(132)  

(133)  

(134)   $        1

(135)  + 

(136)   +

(137)     % %    

(138)    . Figure 3. Geotechnical profile in Amsterdam. .  4  $ ;       B   

(139)  B         , 

(140) $   +  C%   $   B      %      % $    

(141)  D $ +E  $ $ 

(142)    D$ E

(143)    D+ E.  4            

(144)  

(145)       (

(146)      

(147)  $       ' $        

(148)            

(149)       1            -B  -F      %  5*6 2    

(150) 

(151)    1     .      

(152)  $

(153)      %            $   (; + .  

(154)      

(155)  $  

(156) %

(157) 

(158)      1     3.2 Soil strength  <        

(159)          

(160) 

(161)    $    

(162)      G  FF  7      %    

(163)  . 2.

(164) E3S Web of Conferences 7, 18003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718003.   <   56

(165)  + $ 

(166)     D2GGE    9 $    

(167)       + 

(168)   +

(169)  %         A$ ( +    

(170)           9      %   %   $    H     $. 7      $. Figure 5. Long term hydraulic head measurements   4         

(171)   ++ 

(172)  %  $   +  % ,     % %+  %    

(173)     . . . 3.4 Other  4  *  2   +  +          

(174)  D<GG'E 

(175) +

(176)    

(177)  '-<  

(178)   5(6           

(179)  $    +  

(180)  

(181)    $

(182)      D2GGE     

(183)       7    9 $  

(184)    % +  +   +

(185)    

(186)     

(187)         G      

(188)  7    +   

(189)  + 

(190)      >%  $  7    + +   +  $ 

(191)  

(192) 

(193)         2 $     % %         + 

(194) . Figure 4. Typical distribution of strength parameters. 9 $  I           

(195)  

(196)         (  7     . % $ %        : J    %    

(197) 

(198)   * J          

(199)      .   

(200)  $      +   K  

(201)        

(202)   $    

(203)        

(204)     )    

(205)       3.3 Water levels  ,             +  %    

(206) 

(207)       

(208)       

(209)  $      +  %     

(210)  

(211)     ;   $   .

(212)  +    

(213)   

(214)   H

(215)          

(216) 

(217) 

(218)  $  + +  9           

(219)  .   

(220)      

(221)   7    

(222)  % 

(223)    A$  +   $        

(224)   

(225) D,JE  

(226)  , 

(227) 2 $  

(228) *         + ,J L*,JL( . 3.5 Impact of uncertainties ? $       

(229)     

(230)     

(231)       +   

(232)    )  

(233)  $ +       MNOPQ % $BBK      

(234)  $    +%    $      $ 

(235)   $ 7 %  

(236)      +   .    <     

(237)   

(238)       

(239)                  %      & 

(240)          

(241)      

(242)   +   

(243)     +  

(244) 

(245) 

(246)   

(247)     

(248)              ' 

(249) )  +

(250)    $ + . 3.

(251) E3S Web of Conferences 7, 18003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. 

(252)   

(253) 

(254) $%        

(255) 56. DOI: 10.1051/ e3sconf/2016 0718003. 4.2 Measurements      

(256)    %  +   ; +   

(257)   %      .

(258) )     %  ,            

(259)     

(260)   +  

(261)   H $

(262)   %      +  

(263)   

(264)  

(265)        

(266)     7  $ . I  %   % 

(267)  

(268)       

(269) 

(270)     I

(271) +%   %  

(272)   +   H    +  +   %         $    % %

(273) 

(274)     3.6 Uncertainties and EWS. A$ B +   

(275)    %        

(276)  $ +  % . ,    

(277)       %    

(278)  

(279)  $   

(280)   %

(281)  $  

(282)   ;    

(283)   $   +   

(284)    

(285)      +  

(286)   +      ; +     $            +      $   $  $ + ,H $

(287)      + +  4

(288)  

(289)    

(290)   %.

(291)   +         

(292)  <  $ $

(293)   %    

(294) 

(295)  %  . 4 Test case Ringdijk in Amsterdam. . R        

(296) 

(297)   H $ 

(298)     

(299)     

(300)    +

(301)   $     +   +     2 $  4S

(302) )         

(303)   &) +  .  5B6 %      

(304) 

(305)  +     H  I  ;  +  

(306)     , 

(307) .    

(308)         

(309)         *  

(310)  , 

(311) . . Figure 6. Measurements at the Ringdijk.           

(312)      

(313)         .

(314) %   4.3 First ideas  = % $       

(315)  

(316)   

(317)   $ %  

(318)  

(319) 

(320)   

(321)  

(322)  . D  E   $  . 4.1 Test location  & $

(323) )  

(324)  , 

(325)  $  1

(326)  

(327)  I $.   +   (      +  - %  ,

(328)  $   *

(329) .     

(330)  

(331)  +          +

(332)    +  +H

(333)    ? 

(334)  

(335) 7 

(336)     $ 

(337)          + 

(338) 

(339)  +   

(340)      

(341)   % %     4  *  & $

(342) ) +  H

(343)  +     D$

(344) E    

(345)  +   ; +  % ;  %       +   +    % 2 $ *

(346)  *  

(347)   +   

(348)   

(349)      +   $      

(350)   +   

(351) 

(352)  $  R  A 

(353)  <   ,    %     G 

(354)  I   

(355)      + $.  Figure 7 Flow chart of continuous safety assessments.              $ .   

(356)     )   +

(357)   ,   

(358)      

(359)     $   %   +. 4.

(360) E3S Web of Conferences 7, 18003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0718003. R  $       

(361)  .   + . +

(362)          A         

(363)       

(364)     

(365) 

(366)      %    

(367)  .     4 +     + 

(368)   $  

(369)       

(370)    

(371)   ,    $  

(372)   +    

(373) .    7

(374)       +  +  + 

(375) 

(376)          

(377)       $  . R    +       +  

(378)                 

(379)  %    

(380)    D  E  

(381)    

(382)     4 $     

(383)                   

(384)     +   (-*   $ 56 A  & $

(385) ) 7  

(386)      +  +   .  %  .   . 4.4 Proven strength  R  $ 

(387)       

(388) .    + 

(389)   

(390)     +       

(391)  $         

(392)  

(393)   

(394)    5B6 +   

(395)                

(396)    %   $. 4.6 Learn from the past . ? 

(397)   256  $       

(398)   

(399)          +  +     +    %      

(400) . ?  $$

(401)  

(402)       $   ;                

(403)    7  

(404)              $+   

(405) >IG & $

(406) ) =  

(407)    %  7    +     & $

(408) )     + 

(409)    

(410)   ++      $      $  T,4U!  ,4    +  

(411)      

(412)          $   $

(413)     $ V   +   

(414)  +    

(415)   $ 5F; 6 2 $4S

(416) )   **  H%

(417)    

(418)   56 A  & $

(419) )        +   . 

(420)  +  

(421)  $   .         $ 

(422) 

(423)   $    

(424)     7 

(425)    ,    $

(426)  $+  

(427)   D$

(428) E +  %  4  C *    :      + + 

(429)  .         %           % 

(430) 

(431)   7

(432)  

(433)   7      $8

(434)  

(435)  %%

(436) + 

(437)  

(438)  % $     . $   

(439)    

(440)   +  %   . 

(441) .  Figure 8 Concept of proven strength.           

(442)               

(443) 

(444)   

(445) 

(446) .

(447)       +      

(448)      % %    

(449)     4.5 Next level  

(450) %           

(451)   

(452)    

(453)   

(454) % 

(455)    ,   . $   

(456)     

(457)  $  %        

(458)  

(459)       $        +  

(460) J 7 . 4.7 Predicting the future  G    $     

(461)        $ $    %   $   

(462)     $  +     

(463)  $     C   

(464)  %     

(465)        $     +  %    $     

(466)  

(467) +  %  %;     

(468)     ? $   

(469)        

(470)          %     $  %     

(471)   

(472)    . G  +       

(473)     +     

(474)   J 7  

(475)   G   J 7         - $   .        

(476)    

(477)   

(478)    +   

(479)    .  4          + 

(480)     

(481)  2 $ 7  +    

(482)    

(483)         %          %    

(484)  

(485)  .   

(486) + . 2 $   );   +   

(487)    %

(488)    

(489)    

(490)  . 5.

(491) E3S Web of Conferences 7, 18003 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. 

(492) 

(493)  $ 

(494)      .

(495) 

(496)  $H     +            

(497)   

(498)   +  %  ). DOI: 10.1051/ e3sconf/2016 0718003. 5 Summary and final notes  >  +   $    +   $

(499)  $  

(500)   H        $;.     $ ;

(501)   

(502)  

(503)  $+ $.     ;   

(504)       .         +

(505)  <  $     +

(506) 

(507)  

(508) 7  +  

(509)  

(510)  

(511)  %

(512)    .  $   

(513)              ;

(514) $;   ; 

(515) 

(516)      % 

(517)        

(518)     $  H+

(519)    

(520)    % 

(521)    

(522)   

(523)  .  G 

(524) I   % +    

(525)      +   $   

(526)    

(527)       

(528)   H  4S

(529) )     % %            

(530)     2 $%       $   

(531)     

(532)  ;

(533)     $

(534)  $

(535)   G  

(536)    

(537) +   $ $    

(538)  ,   $

(539)      $     

(540)            ! 4        ;  $  

(541)      

(542)  %      

(543)       $       +   $    

(544)  $. 4.8 Caveats ?

(545)  $ >IG  $ + 

(546)  +  ;       

(547)  %            $    

(548)        $     =+%;    $   + + 

(549)    4.8.1 Sensor data. . 4     

(550)   H $

(551)   

(552)   9 $  +   ;      +       

(553)   

(554)   + % +  +       J    

(555) $         

(556)     +   $       

(557)   +  ! 2 $  & $

(558) ) 7        

(559)  $    +   + I         *K        

(560)    $$ $;

(561)  $ $;. References 1.. Hurk, van den B., Siegmund, Peter et al, KNMI 14: Climate Change scenarios for the 21st Century % A Netherlands perspective, KNMI WR 2014-01, 2014 2. Journel, A.G., Alabert, F., Non Gaussian data expansion in earth sciences, Terra Nova, 1(2):123134, 1989 3. Duinen, van A., Guide to determination of soil strength parameters (Dutch article), Deltares report 1209434-003, 2014 4. Zwanenburg, Cor, On the determination of soil parameters for peat (Dutch article), Geotechniek juli 2013 26-32) 5. Vries, de, G., Brake, ter, C.K.E., Bruijn, de, H., Koelewijn, A.R., Langius, E.A.F., Lottum, van, H. & Zomer, W.S. Dijkmonitoring: beoordeling van meettechnieken en visualisatiesystemen. (Dutch) Amersfoort: STOWA/Stichting IJkdijk, 2013 6. Weijers, J., Elbersen, G.T., Koelewijn, A.R., Pals, N, Macrostabiliteit IJkdijk: Sensor- en meettechnologie, Rijkswaterstaat, 2008 7. Putten, R. van, Dijk optimaliseren met sensoring, Geotechniek December 2013 p56-58, 2013 8. TAW, Onderzoeksrapport voor de bepaling van de actuele sterkte van rivierdijken (Dutch report), Technische Adviescommissie voor de Waterkeringen, 1996 9. Pyayt, A., Data-Driven methods in application to flood defence systems monitoring and analysis, 2014 10. Melnikova, N., Finite Element Analysis of Dike Stability for Flood Early Warning Systems, 2014. '  $           

(562) 

(563)  V  7 % & %          $

(564)  

(565)          $

(566)      

(567)  4   

(568)     *B I   +  

(569)   7    $  - 1  

(570)  % 

(571)         

(572)  +       

(573)        

(574) 

(575)        

(576)    .     $    4.8.2 Local to global  = % $     

(577)    .       

(578)  %   $+       >7   . $  

(579) H  

(580)   + 

(581) $

(582)  

(583)  

(584)  $   %    

(585)     ,       

(586) 

(587)    +7      + >%

(588)         

(589)       

(590)  7     

(591) 

(592) $   7    

(593) 

(594)   $.   4   >IG

(595) $  

(596) 

(597)        

(598)          7    

(599) . 6.

(600)

Riferimenti

Documenti correlati

Eligible papers had to assess the performance of the National early warning score in identifying sepsis or septic shock in the emergency department setting. The time frame for

The aim of this study was to investigate the relationship between magnetic and celestial compasses in two species of shorebirds, the curlew sandpiper (Calidris ferruginea;

This study also evaluate and compared sensory analysis, NIRS, Electronic nose (EN) and Electronic tongue’s (ET) ability in discriminating Atlantic salmon (Salmo salar L.)

Patients with even a single warning sign at 3 months (i.e. no PCyR or BCR-ABL1 &gt; 10% IS ) had a signifi- cantly lower chance to obtain a subsequent CCyR (37% com- pared to 85%

One of the problems that could emerge from the adoption of an early warning system required by the Italian Insolvency and Crisis Code could be linked to the fact that these systems

4 Delft-FEWS extensions for coastal applications Although the EWS will be site specific, the hydro/meteo model framework for most case study sites shows similarities.. The

From the data taken from the research, 15 students (of which 3 out of the 4 not native Italian speakers) ad- mitted owning a bilingual dictionary; 9 said they used it only for

In this work, by combining cutting edge high repetition rate laser technology and unique configuration of the HR- GHHG beamline using annular beam at ELI-ALPS, we gener- ated