• Non ci sono risultati.

Let j0≡ −b/a (mod p) such that j0∈ {0, 1

N/A
N/A
Protected

Academic year: 2021

Condividi "Let j0≡ −b/a (mod p) such that j0∈ {0, 1"

Copied!
2
0
0

Testo completo

(1)

Problem 11721

(American Mathematical Monthly, Vol.120, August-September 2013]) Proposed by Roberto Tauraso (Italy).

Let p be a prime greater than 3, and let q be a complex number other than 1 such that qp = 1.

Evaluate

p−1

X

k=1

(1 − qk)5 (1 − q2k)3(1 − q3k)2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let a, b, d be non-negative integers such that gcd(a, p) = 1.

Let j0≡ −b/a (mod p) such that j0∈ {0, 1, . . . , p − 1}. Since

p−1

X

k=1

qk(aj+b)= −1 +

 p if p | (aj + b) 0 otherwise it follows that

p−1

X

k=1

qbk

(1 − qakz)d = =

p−1

X

k=1

qbkX

j≥0

j + d − 1 d − 1

 qakjzj

=X

j≥0

j + d − 1 d − 1

 zj

p−1

X

k=1

qk(aj+b)

= pX

s≥0

j0+ sp + d − 1 d − 1



zj0+sp− 1 (1 − z)d

=pPd−1

s=0cszj0+sp

(1 − zp)d − 1 (1 − z)d where

cs= [zj0+sp](1 − zp)d X

s2≥0

j0+ s2p + d − 1 d − 1

 zj0+s2p

= [zj0+sp] X

s1≥0

(−1)s1 d s1



zs1p X

s2≥0

j0+ s2p + d − 1 d − 1

 zj0+s2p

= X

s1+s2=s

(−1)s1 d s1

j0+ s2p + d − 1 d − 1



=

s

X

k=0

(−1)s−k

 d s − k

j0+ kp + d − 1 d − 1

 .

Let z = 1 + w, then

p−1

X

k=1

qbk

(1 − qak)d = lim

w→0

pPd−1

s=0cs(1 + w)j0+sp−1−(1+w)p

−w

d (1 − (1 + w)p)d

= lim

w→0

pPd−1

s=0cs j0+sp

d wd+ o(wd) − (−1)dPd

s=0(−1)s ds sp

2dwd+ o(wd) (−pw + o(w))d

= 1

pd (−1)dp

d−1

X

s=0

cs

j0+ sp d



d

X

s=0

(−1)sd s

sp 2d

! .

(2)

Hence

p−1

X

k=1

qbk (1 − q2k)3 =





−(p − 1)(p − 3)/8 if b = 0 (p − 1)(p + 1)/24 if b = 1, 4

−(p − 1)(p + 1)/24 if b = 2, 5

0 if b = 3

,

and

p−1

X

k=1

qbk (1 − q3k)2 =













−(p − 1)(p − 5)/12 if b = 0

(p + 5)(p − 1)/36 if b = 1, 5 and p ≡ 1 (mod 3) (p − 5)(p + 1)/36 if b = 1, 5 and p ≡ −1 (mod 3)

(p − 1)2/36 if b = 2, 4 and p ≡ 1 (mod 3) (p + 1)2/36 if b = 2, 4 and p ≡ −1 (mod 3)

−(p − 1)(p + 1)/12 if b = 3

.

Therefore

p−1

X

k=1

(1 − qk)5

(1 − q2k)3(1 − q3k)2 =

p−1

X

k=1

4 − 8qk+ q2k+ 5q3k− q4k− q5k (1 − q2k)3

+

p−1

X

k=1

−3 + 3qk+ 2q3k− q4k− q5k (1 − q3k)2

=

 −(55p − 1)(p − 1)/72 if p ≡ 1 (mod 3)

−(11p − 1)(5p − 1)/72 if p ≡ −1 (mod 3) .

Note that the result is always a negative integer. 

Riferimenti

Documenti correlati

[r]

[r]

[r]

[r]

[r]

[r]

2.2. it is well defined. This last fact will be used in the proof of the following statement... In this case Theorem 4 is just [32, Theorem 1] adapted to our situation. The existence

Corso di Laurea in Matematica Geometria Proiettiva, Curve e Superfici.. Esame scritto del 25-06-2013 Parte di