• Non ci sono risultati.

Show that X 0<i<j<k<p Fi ijk ≡ 0 (mod p)

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that X 0<i<j<k<p Fi ijk ≡ 0 (mod p)"

Copied!
1
0
0

Testo completo

(1)

Problem 11602

(American Mathematical Monthly, Vol.118, November 2011) Proposed by Roberto Tauraso (Italy).

Let p be a prime. Let Fn denote the nth Fibonacci number. Show that X

0<i<j<k<p

Fi

ijk ≡ 0 (mod p).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let p > 3 be prime (if p = 2, 3 the above sum is empty and it gives 0). For k = 1, . . . , p − 1

p k



= (−1)k−1p k

k−1

Y

j=1

 1 −p

j



≡ (−1)k−1p

k 1 − pHk−1(1) + p2Hk−1(1, 1)

(mod p4)

2p k



= (−1)k−12p k

k−1

Y

j=1

 1 − 2p

j



≡ (−1)k−12p

k 1 − 2pHk−1(1) + 4p2Hk−1(1, 1)

(mod p4)

p + k − 1 k



= p k

k−1

Y

j=1

 1 + p

j



≡ p

k 1 + pHk−1(1) + p2Hk−1(1, 1)

(mod p4)

where

Hk−1(1) = X

0<i<k

1

i , Hk−1(1, 1) = X

0<i<j<k

1 ij. Let us consider the following known identities: for any integer n ≥ 0

(1)

n

X

k=0

n k



Fn−k(−1)n−k= −Fn, (2)

n

X

k=0

2n k



Fn−k(−1)n−k= −

n

X

k=0

n + k − 1 k

 Fn−k.

Letting n = p, then (1) and (2) become (note that F0= 0 and p is odd)

(1) pS1− p2S2+ p3S3≡ 0 (mod p4) , (2) 2pS1− 4p2S2+ 8p3S3≡ −pS1− p2S2− p3S3 (mod p4) where

S1= X

0<i<p

Fp−i

i , S2= X

0<i<j<p

Fp−j

ij , S3= X

0<i<j<k<p

Fp−k ijk .

By subtracting 3 times (1) from (2) we obtain 6p3S3≡ 0 (mod p4), that is S3≡ 0 (mod p). Finally 0 ≡ S3= X

0<i<j<k<p

Fp−k

ijk = X

0<i<j<k<p

Fi

(p − k)(p − j)(p − i) ≡ − X

0<i<j<k<p

Fi

ijk (mod p).



Riferimenti

Documenti correlati

[r]

[r]

[r]

Analogamente, sia End A ( Q) l’insieme degli endomorfismi di anello del campo Q dei razionali, anch’esso un gruppoide (associativo unitario) per l’operazione

[r]

Corso di Laurea in Ingegneria Informatica e dell'Automazione. Anno

[r]

[r]