• Non ci sono risultati.

Role of Xrx1 in Xenopus eye and anterior brain development. Development 1999, 126: 2451-2460.

N/A
N/A
Protected

Academic year: 2021

Condividi "Role of Xrx1 in Xenopus eye and anterior brain development. Development 1999, 126: 2451-2460."

Copied!
1
0
0

Testo completo

(1)

Bibliografia

1. Andreazzoli M, Gestri G, Angeloni D, Menna E, Barsacchi G.:

Role of Xrx1 in Xenopus eye and anterior brain development. Development 1999, 126: 2451-2460.

2. Appelbaum L, Toyama R, Dawid IB, Klein DC, Baler R, Gothilf Y.: Zebrafish serotonin-N-acetyltransferase-2 gene regulation: pineal-restrictive downstream module contains a functional E-box and three photoreceptor conserved elements. Mol Endocrinol. 2004, 18 : 1210-21.

3. Appelbaum L, Anzulovich A, Baler R, Gothilf Y. : Homeobox- clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem. 2005, 280: 11544-51.

4. Besharse JC, Iuvone PM.: Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase.

Nature 1983, 305: 133–135.

5. Casarosa S., Andreazzoli M., Simeone A., Barsacchi G.: Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mechanisms of Development 1997, 61: 187-198.

6. Cau E., Wilson S.W.: Ash1a and Neurogenin1 function downstream of Floating Head to regulate epiphysial neurogenesis. Development 2003, 130: 2455-2466.

7. Charlton H.M. : The pineal gland of Xenopus laevis, Daudin : a histological, histochemical, and electron microscopic study. General and Comparative Endocrinology 1968, 11: 465-480.

8. Chen W., Baler R.: The rat arylalkylamine N-acetyl- transferase E-box: differential use in a master vs. a slave oscillator. Brain Res. Mol. Brain Res. 2000: 81:43-50.

9. Chong NW, Bernard M, Klein DC.: Characterization of the

chicken serotonin N-acetyltransferase gene.

(2)

Activation via clock gene heterodimer/E box interaction. J Biol Chem. 2000, 275: 32991-8.

10. Cremona M., Colombo S., Andreazzoli M., Cossu G., Broccoli V.: Bsx, an evolutionary conserved Brain Specific homeoboX expressed in the septum, epyphysis, mammillary bodies and arcuate nucleus.

Gene Expression Patterns 2004.

11. Eagleson GW, Harris WA.: Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. Journal of Neurobiology 1990, 21: 427- 440.

12. Falcon J.: Cellular circadian clocks in the pineal.

Prog Neurobiol. 1999, 58: 121-62. Review.

13. Gamse J.T., Shen Y.C., Thisse C., Thisse B., Raymond P., Halpern M.E., Liang J.O.: Otx5 regulates genes that show circadian expression in the Zebrafish pineal complex.

Nature genetics 2002, 30:117-121.

14. Gilbert S.: Biologia dello sviluppo, Zanichelli 2000.

15. Gont L.K., Fainsod A., Kim S.H., De Robertis E.M.:

Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus. Development Biology 1996, 174: 174-178.

16. Gonzalez-Fernandez F, Kittredge KL, Rayborn ME, Hollyfield JG, Landers RA, Saha M, Grainger RM.:

Interphotoreceptor retinoid-binding protein (IRBP), a major 124 kDa glycoprotein in the interphotoreceptor matrix of Xenopus laevis. Characterization, molecular cloning and biosynthesis. J Cell Sci. 1993, 105

17. Green C.B., Besharse J.C.: Tryptophan hydroxylase

expression is regulated by a circadian clock in

Xenopus laevis retina. Journal of Neurochemistry 1994,

62: 2420-2428.

(3)

18. Green CB, Cahill GM, Besharse JC.

:

Regulation of tryptophan hydroxylase expression by a retinal circadian oscillator in vitro. Brain Res. 1995; 677: 283- 90.

19. Green CB, Liang MY, Steenhard BM, Besharse JC.:

Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos. Brain Res Dev Brain Res. 1999, 117: 109-16.

20. Green CB.: Molecular control of Xenopus retinal circadian rhythms. J Neuroendocrinol. 2003, 15: 350-4.

21. Hardeland R, Pandi-Perumal SR, Cardinali DP.:

Melatonin.

Int J Biochem Cell Biol. 2006, 38: 313-316. Review.

22. Heasman J.: Morpholino oligos: making sense of antisense? Developmental Biology 2002, 243: 209-214.

23. Helfrich-Forster C, Edwards T, Yasuyama K, Wisotzki B, Schneuwly S, Stanewsky R, Meinertzhagen IA, Hofbauer A.:

The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function.

J Neurosci. 2002; 22: 9255-66.

24. Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS.: Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res. 2005, 24: 433-56.

25. Jones B., McGinnis W.: A new Drosophila homeobox gene, bsh, is expressed in a subset of brain cells during embryogenesis. Development 1993, 117: 793-806.

26. Kemali M., De Santis A.: The extraretinal Portion of the pineal complex of the frog (Frontal Organ) is connected to the pineal, the Hypothalamus, the brain stem and the retina. Exp. Brain. Res. 1983, 53: 193-196.

27. Korf H.W., Liesner R., Meissl H., Kirk A.: Pineal

complex of the clawed toad, Xenopus laevis Daud. :

(4)

Structure and function. Cell Tissue Res. 1981, 216: 113- 130.

28. Leloup JC, Goldbeter A.: Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci U S A. 2003, 100: 7051-6.

29. Masai I., Heisenberg C.P., Barth K.A., Macdonald R., Amadek S., Wilson S.W.: floating head and masterblind Regulate Neuronal Patterning in the Roof of the Forebrain. Neuron 1997, 18: 43-57.

30. Hirayama J, Sassone-Corsi P.: Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev. 2005, 15: 548- 556.

31. Nieuwkoop P.D., Faber J.: Normal table of Xenopus laevis (Daudin).

32. Padoa E.: Manuale di Anatomia Comparata.

Edizione Feltrinelli, 1993.

33. Toller GL, Nagy E, Horvath RA, Klausz B, Rekasi Z.:

Circadian expression of Bmal1 and serotonin-N- acetyltransferase mRNAs in chicken retina cells and

pinealocytes in vivo and in vitro.

J Mol Neurosci. 2006; 28: 143-50.

34. Vignali R., Colombetti S., Lupo G., Zhang W., Stachel S., Harland R.M., Barsacchi G.: Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis. Mechanisms of Development 2000, 96: 3-13.

35. Von Dassow G., Schmidt J.E., Kimelman D.: Induction

of the Xenopus organizer: expression and regulation

of Xnot, a novel FGF and activin-regulated homeobox

gene. Gene and Development 1993, 7: 355-366.

(5)

36. Whitmore D, Cermakian N, Crosio C, Foulkes NS, Pando MP, Travnickova Z, Sassone-Corsi P.: A clockwork organ.

Biol Chem. 2000; 381: 793-800. Review.

37. Wolpert L., Beddington R., Brockes J., Jessel T., Lawrance P., Meyerowitz E.: Biologia dello sviluppo.

Zanichelli 2000.

38. Yasuo H., Lemaire P.: Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae. Development 2001, 128: 3783-3793.

39. Zhu H, LaRue S, Whiteley A, Steeves TD, Takahashi JS, Green CB.: The Xenopus clock gene is constitutively expressed in retinal photoreceptors. Brain Res Mol Brain Res. 2000, 75: 303-8.

40. Zhu H, Green CB.: Three cryptochromes are rhythmically expressed in Xenopus laevis retinal photoreceptors. Mol Vis. 2001, 7: 210-5.

41. Zhuang M, Wang Y, Steenhard BM, Besharse JC.:

Differential regulation of two period genes in the

Xenopus eye. Brain Res Mol Brain Res. 2000, 82: 52-64.

Riferimenti

Documenti correlati

Finally, I aim to test if Sox2 reintroduction in mutant cells could rescue the long-range interactions of a small number of identified target genes, lost in Sox2-deleted cells, by

This data could be added alongside data collected from traditional sources of epidemiological surveillance 18 such as call centres, hospital records, emergency

Yet the frontiers of science doctrine receives the Supreme Court's blessing in the Benzine Case. That it does so in the special context of the specific ‘best

F urthermore, to apply QHA s heme vibrational frequen ies have to be evaluated as a fun tion of the value of the stru tural parameters des ribing the system, and up to now, within a

To assess whether macrophages phagocytosed neuron- derived exosomes, resulting in functional transfer of miR-21-5p, we incubated peritoneal macrophages with exosome-enriched

At dermoscopic examination, the peripheral plaque showed slightly pig- mented network, arborizing thin vessels, hypopigmented unstructured areas on a pinkish background (Fig. 2,

The first objective of this research is to investigate, through empirical analysis, the status of the corporate governance composition and structure of Italian listed

3: Sound absorption coefficient determined in reverberation room for developed plywood frames (holes Ø 3 and 5 mm, drilling 1.41 %, cavity 40 mm, mat 40 mm) and absorption