lt;;=;=;=;>;=;=;=;&gt gt;;=;=;=;=;>;=;=;=;>;=;=;=;&gt A07$B9;=;=;=;>;=;=;=;=;&gt gt;;=;=;=;>;=;=;=;>;=;=;=;=;&gt

Testo completo

(1) 

(2)  . "!$#%%'&. ()+*-,/.0)21. 3 !456!4798:8-56!4798<;=;=;=;>;=;=;=;>;=;=;=;=;?;=;=;=;>;=;=;=;=;>;=;=;=;>;=;=;=;>;=;=;=;=;?;=;(@A07$B9;=;=;=;>;=;=;=;=;>;=;=;=;?;=;=;=;=;>;=;=;=;>;=;=;=;>;=;=;=;=;>;=;=;=;?;=; 3 !4ADCD!FE,GBHAD8IBJ ♦ 1LKNMO,QP ♦ 3 .SR-,QP TVUXWXY[Z\>]_^'`] a[bdcegf-h6ikjlmnporq-s4qDtvuxwysztxwX{Xw0|zwX}=uxw~=HwX€kuxwd‚€kuvtxHƒVr„[}H †‚}Fs4q‡tvux‚{X„[orq‡txw? U0ˆ[Y[]Š‰‹zYD‹Œˆ?^4'`^Ž:‹‹Œ`^'Ž‹p‘k]’`“UXWX”4Ž• – ”HWX‹z—’—_^'˜D™6šY[Ž:”HYD‹›‹›UX‹I'`”HYD‹›]’— – YD^ – Y‡]_^$ˆ?^4Y‡UX^Fœ]—Š”ZYD‹I” ž=bdŸ c mi ¡¢n6m@n I‚}L£d„I|z„¤‚}H{V„?}=uvtx„D¥>wVtvux‚¦H‚o‚w? oŠqQtx‚€vs„?€kuSqO}HwVoro‚„¤€vs4q[ƒVr„§oŠq‡€v{Xrq‡ux„|z„?s„§„[¨?} ~=HwV€v‚ux„z©zr}ª{0q[€v„O| '{X„[tvtxwVƒX‚„?}Hw[ ¦Hq‡tvtSqDtxwgoŠq§tx‚€vs„[€kuSqOwVtvtSq‡uSq§wg€v{«txr¥?wVtxwQq[{X{Xq[}=ux„OorqO}IH„D¥?qgtx‚€vs„?€kuSqIb ¬Ib§i h†­®¢¯n°g°@iq‡uvuvtx‚¦ H±uxsw«torq¤tx‚€vs„[€kuSqOwX€xq‡uvuSqO€v„[}H„O‚}4|z‚{0q‡uxq[o‚orq§²4} wg| ³„?¨[}H~I wX€v±ux„ b ´ bOh6mGe@ikµik¯/epH€xqDtxwgo‚r¦ztx ~=4q[| wVtx} " z{0q‡o‚{X„?orq‡ux„‡tx uxwXo‚wV¶’„[}H³{XwXo‚o‚Horq‡txb ·=bdce@®¢Ÿ n°@®¢lGm@n¹¸ Z‹zUXWX^»º¼^4—’]Š^F‹+WDZWXW0]/] º¼^4—_]œ] – YD^4WX^³ˆ?^4—’—_^ b ½IbO¯n6®¢n6mn‚o³¶_„?¨[or‚„yµ¾{X„[£dw¢s tx„[£dwX£d„[txrq§|zwXo‚o‚w¢txr€vs„[€kuxw |Hq‡uxw[b ¿=bO¯nf-he“qO|z‚€vs„?€v‚ƒX‚„?} w?ÀaX½?ÁO£d‚}b  ;yÃL8>ÄD8>A07F5†BHAD8. Å. inf A sup A. ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzɤÔ6ÕXÖ. 8=EÆ8>Ç'8>5³Ä0†BH798>5ÄD8. Å 8=CDC‡8>56E!. Å. min A max A      n+1 , n≥1 . A = 3 arctan log n2. #;L×Ø>A0Ç'8>AD8›5¾Ùv!4A07$BFØIBHA0ÄD8=C0¼BH5†B"8+A‡B4E"Ø>GÄD8>A0ÚI8›E8>5³798>AD!Ø=!47FÛ"8=CDCD! √ w= 2. ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzɤÔ6ÕXÖ Ü ;yÃL8>ÄD8>A07F5†BHAD8/6!4'!F'8=!4798>Ä0A0"Ø=!E8>. . z∈C. 4 − 4i |2 − 2i|. . −2. ćBHG؇Ý68. (z + 2z)2 + |z − 3|2 − 10(Re z)2 = 0.. ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzɤÔ6ÕXÖ Þ ; 3 BH"Ø=!4¼BHAD8 lim n→+∞. ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzɤÔ6ÕXÖ. (. ". # ) log(1 + n2 ) 2n + cos n  exp + 3n sin n3. ; 3 BH"Ø=!4¼BHAD8›7FÄD8 lim. ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzɤÔ6ÕXÖ. x→0. [4 sin(1 − cos x)]2 √ √  x sinh(2 3 3 x) − sin(2 3 3 x) .

(3) ;L×¼BFE6BHćB¼BCD8>68>5ÄD8+Ùk5Ú="!4568. f. AD8IBH"8E/Ç4BHA0¼B"8›AD8IBH"8›E865ćBFE6BJ f (x) = exp. . 8x + 1 x2 − 1. .   Ò  S Í kÉË Í

(4) ¢É¢Ì HÍ6ÎIÍ 'Í  Í Î Ï³ÉËÏÆÒ@Ó  Ï 'Í/ÒGÏ k É ÎIÏÎzÉ"!Í#

(5) $ËÏ%«Ò@Ó&É Í Ó f G ÉkӓÏ'³Í(

(6) Í 'ÍÓ É)4ÉËÊzÒ¼ÎIÏÎzɧ͆Î=ÎÓÒGÎzÉ+* ÃL8>ÄD8>A07F5†BHAD8GE!47F5"!9E f 8=EÆ8>Ç'8>5³Ä0†BH¢C07F798>Ä0A0"8; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó Îz-É ,ÕXÖ . 3 HB "Ø=!4¼BHAD8 7FÄ0BH¼BOÙkAD!45³Ä0"8>A‡BªE8>³E!47F5"!L8 E8>ÄD8>A07F5†BHAD8§8>Ç'8>5³Ä0†BHB4C05³ÄD!4Ä0.ËÇ'8>A0Ä0"ØIBH Å !4A0Ú=ÚI!45³Ä‡BH Å !/10³"2§Û8>A f ; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó Îz4É 3ÕXÖ 3 HB "Ø=!4¼BHAD8›¼B:Ùk5Ú="!4568›E8>A0Ç4BHćB9ÛA07$BFE f ; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzÉ-,ÕXÖ ×Ä06E¼BHAD8O¼BªØ>AD8=C‡Ø=8>5ÚzB-8§E8=Ø>AD8=C‡Ø=8>5ÚzB+E ØIBH"Ø=!4¼BH56E! 0³†BH"!4A‡B-8=C0"CDćBH56! Å Û5³Ä06E7$B4CDC079!5 7F579! AD8>¼BHÄ0Ç'!$8-Û5³Ä0E/7$B4CDC079!5 7F579!ŒB4fCDCDÅ !4ÄD!FÛ8>A f Å ; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó Îz4É 3ÕXÖ 3 HB "Ø=!4¼BHAD8›¼B:Ùk5Ú="!4568›E8>A0Ç4BHćB$CD8=Ø=!456E6BE ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzÉ43ÕXÖ. f. -à BHØIBH"Ø=!4"!9E8>/7FÄ0GE f 0 .kCD8>5ÚzBFC0Ä06E¼BHAD8›GCD8>56!FE f 00 2§C0ćBAD8+5 0†BH/CD!4Ä0ÄD!456C0"8>7F@E8>/C06! E!47F5"! f BH7F798>Ä0ÄD8C0"Ø>A‡BH798>5ÄD8:BH798>56!F5 Û5ÄD!9E6†8=CDC‡!; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó Îz4É 3ÕXÖ &;L×¼B. f : R −→ R. ¼B»Ùk5Ú="!4568›E865ćBFE6B f (x) =.   sin . 0. 1 x−7. . +. log[1 + (x − 8)2 ] (x − 8)3. DC 8 C‡8. :. ÃL8>ÄD8>A07F5†BHAD8:8+Ø>¼B4CDC07†ØIBHAD8:8>Ç'8>5³Ä0†BHGÛ5Ä0GEGE"CDØ=!45Ä05³Ä98E f ; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó ÎzɤÔ6ÕXÖ ;L×¼B. f : R −→ R. x 6= 7. ! x=7. ¼B»Ùk5Ú="!4568›E865ćBFE6B √ f (x) = (x − 2) 3 x + 2  98. 8. ÃL8>ÄD8>A07F5†BHAD8:8+Ø>¼B4CDC07†ØIBHAD8:8>Ç'8>5³Ä0†BHGÛ5Ä0GE/56!45 E8>A0ÇB Ä FE f ; ȌÉËÊIÌQÍÊ=ÎIÏÑВÌ@Ò@Ó Îz4É 3ÕXÖ. x 6= 8 x=8. Å Å.

(7)  

(8)   0132546748 9  :; 8<4.    !""# =. inf A sup A. 4?>4@4 : 6 A; 9!4 : 674. =. = 4B B 4 : >  3 arctan D log E. $&%('*),+-%/.. min A max A A=. C. n+1 n2. JLK M?NOPMQSRUT NV,WAQSKYXAZ<[. FHG. , n≥1. I. .. 13\]?8  @4?8<4  :_^` 8 9 ; ] ; 8<6 4?B  ;:;L 4(8 ; >  ]  6 4?8 a4b>A4 c: 9!48  ]  9!d  4B B  w =. √ 2. e. JLK M?NOPMQSRUT NV,WAQSKYXAZ<[ gA132546748 9  :; 8<4  , A 4  9!4678  ]  >4  . z∈. 4 − 4i. |2 − 2i|. f. −2. h 6 ;  ]7i4 2. 2. 2. (z + 2z) + |z − 3| − 10(Re z) = 0.. JLK M?NOPMQSRUT NV,WAQSKYXAZ<[ j 13k ; ]  ; 8 4. mn. lim n→+∞. JLK M?NOPMQSRUT NV,WAQSKYXAZ<[. l. exp. op. 2) log(1 + n. sin. q n3 t r su. +. 2n + cos n 3n. v wx.  13k ; ]  ; 8 4  ,  9  674 lim x→0. JLK MSNOPMQ?R3T NVcWAQKYXAZ<[ {A13\  ; > ; 6 ; ; B<4  4 : 76 4 `^ : a  : 4. f. [4 sin(1 − cos x)]2 √ √ x sinh(2 3 3 x) − sin(2 3 3 x). y. z. 8 4 ; 4(>  @ ; 8  ;|  4*8 4 ; 4b>4} :  6 ; > ;A~. E x8x2 +− 11 F  Vc€‚ƒOP„ € K O‡†KˆNc‰?OQSO&ŠO € € Oc‹

(9) Q?‰SRAŠŠK RA‰SŒV,WU„P‰SRŽ

(10) ŠO‡cV&RP€ K QSRQK AOU†,Œ€ € R‡‘VcW&’K O&W&Œ f ‹“K W3RŠŠOP‰S†cO ŠO&WUKˆ‰SK MSVc€ Q?RAQSKYOQ?Q?ŒW VPQKƒ” 2546748 9  :; 8<4   >  9  :  >  f 4?>•4@4 : 6 ;  B  9!9!4678  41 JLK MSNOPMQ?R3T NVcWAQK—–Z<[ f (x) = exp. k ;  ]  ; 8 4 ,  9  6 &;  ;!^ 8 : 6  48 ; >4  >  9  :  4(>46 4?8 9  :; 8 4*4@4 : 6 ; ,; B  : 6  6 ˆ˜ @4?8<6  ] ;  =  8  aa : 6 ;  = |A  ™ š d 4?8 f 1 JLK MSNOPMQ?R3T NVcWAQKY›AZ<[ k ;  ]  ; 8 4  ;!^`: a  : 4(>48  @ ; 6 ; d8  9 ; >  f 1 JLK MSNOPMQ?R3T NVcWAQK—–Z<[ \6  >  ; 8 4  ; ]8 4?B<]?4 : a ; 45>4]?8 4B ]4 : a ; >  f = ] ; ]  ;: >  = ™;  8 ; 4B  B<6 ;: = d : 6  >  9 ; B B  9 œ 9  : 9  8 4  ; 6  @  45d A: 6  >  9 ; B B  9 œ 9  : 9 (; B B   6  d 48 f 1 JLK MSNOPMQ?R3T NVcWAQKY›AZ<[ k ;  ]  ; 8 4  ;!^`: a  : 4(>48  @ ; 6 ; B 4] : > ; >  JLK MSNOPMQ?R3T NVcWAQKY›AZ<[ 2 ; ] ; ]   >4   9  6  >  d  : 6  > c 4B B  1 JLK MSNOPMQ?R3T NVcWAQKY›AZ<[ # 13\  ;. ž. f :. −→. f0. f. ˜ B<4 : a ; B<6  >  ; 8 4   B 4 : > . f 00. š B<6 ;|   8 4  :™;  B  6 6  : B  4?9  >4  B  >  9  : . ž  ;L^ : a  : 4*>4} : 6 ; > ; mn. 1 log[1 + (x − 8) sin E + x−7F (x − 8)3 Ÿl 0 2546748 9  :; 8<4(4(]  ; B B  } ] ; 8 44@4 : 6 A;  d A: 6  >  >  B Ÿ ] : 6  : 67 !>  f 1 JLK M?NOPMQSRUT NV,WAQSKYXAZ<[ f (x) =. ¡A13\  ;. f :. ž. −→. 2. ]. ž  ;L^ : a  : 4*>4} : 6 ; > ; √ f (x) = (x − 2) 3 x + 2. 2546748 9  :; 8<4(4(]  ; B B  } ] ; 8 44@4 : 6 A;  d A: 6  > ,:A: >48  @ ;|A   67 >  f 1 JLK MSNOPMQ?R3T NVcWAQKY›AZ<[. B 4. B 4. x 6= 7 x=7. . 4. x 6= 8 x=8. = =. f. ; 9!9!46<674bB  ]  8 ; 9!4 : 674 ; 9!4 :L:.

(11)

figura

Updating...

Riferimenti

Updating...

Argomenti correlati :