• Non ci sono risultati.

Design and Validation of the Unsprung Masses of a Formula SAE vehicle

N/A
N/A
Protected

Academic year: 2023

Condividi "Design and Validation of the Unsprung Masses of a Formula SAE vehicle"

Copied!
196
0
0

Testo completo

(1)

POLYTHECNIC OF TURIN

Department of Mechanical and Aerospace Engineering Master of Science in AUTOMOTIVE ENGINEERING

Thesis Project

Design and Validation of the Unsprung Masses of a Formula SAE vehicle

Supervisor Candidate

Prof. Andrea Tonoli Luis Daniel Medina Querecuto

April 2020

(2)
(3)

ABSTRACT

(4)
(5)

ACKNOWLEDGEMENTS

(6)
(7)
(8)

TABLE OF FIGURES

“ ”

(9)
(10)
(11)
(12)
(13)
(14)
(15)

LIST OF TABLES

(16)
(17)

INTRODUCTION

i. Context and motivation

(18)

5

(19)
(20)

ii. Problem Statement

(21)

iii. Aim and Objectives

(22)

iv. Delimitation

(23)
(24)

v. Method and processes

(25)
(26)

Sep-17 Oct-17 Nov-17 Dec-17 Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18

1- 2017 season outcome 2- 2018 target setting 3- Recruitment 4- Budget and partners definition 5- PRELIMINARY DESIGN 5.1- Veichle dynamics 5.2- Battery pack 5.3- Packaging 6- DESIGN 6.1- System-level analyses 6.2- CAD modelling and simulation 7- PROTOTYPING, TESTING AND VALIDATION 8- COLLABORATIVE DEVELOPMENT 9- PRODUCTION 9.1- Components sourcing 9.2- Lamination 9.3- Machining 9.4- PCB production 9.5- Wiring 10- CAR ASSEMBLY 11- BENCH TEST AND DEBUGGING 12- TRACK TESTS 12.0- Track tests on SC17 12.1- Reliability tests 12.2- Installation laps 12.3- Dynamic events simulation 13- FSAE Italy

14- Tack tests 15- FSS Spain

(27)

vi. Background and literature review

𝜇𝑥 =𝐹𝑥

𝐹𝑧

𝜇𝑦=𝐹𝑦

𝐹𝑧

(28)

𝑆𝑅 =𝛺−𝛺0

𝛺0

𝛺 𝛺0

α

(29)
(30)

vii. Unsprung Mass

(31)

viii. Role of the unsprung mass in vehicle performance

Road holding

(32)

𝜔𝑢𝑠= √𝐾𝑚𝑠+𝐾𝑡

𝑢𝑠

(33)
(34)

Suspension geometry

(35)
(36)

ix. Yaw inertia

𝐼𝑍𝑍= 𝐼𝑧𝑧+ 𝑚 𝑑2

(37)

𝑀𝑧 = 𝐽𝑧𝜓̈ = 𝐹𝑦𝑓𝑎 − 𝐹𝑦𝑟𝑏 +1

2𝐶𝑀𝑧𝑆𝜌𝑉2

𝜓̈

(38)

𝛽

𝛼𝑖 𝑟

𝑚𝑉(𝛽̇ + 𝑟) + 𝑚𝑉̇𝛽 = 𝑌𝛽𝛽 + 𝑌𝑟𝑟 + 𝑌𝛿𝛿 + 𝐹𝑦𝑒 𝐽𝑧𝑟̇ = 𝑁𝛽𝛽 + 𝑁𝑟𝑟 + 𝑁𝛿𝛿 + 𝑀𝑧𝑒

𝑌𝛽 𝑌𝑟 𝑌𝛿 𝑁𝛽 𝑁𝑟 𝑁𝛿 𝐹𝑦𝑒

𝑀𝑧𝑒

𝑃𝑟̈ + 𝑄𝑟̇ + 𝑈𝑟 = 𝑆′′𝛿 + 𝑇′′𝛿̇+ 𝑁𝛽𝐹𝑦𝑒− 𝑌𝛽𝑀𝑧𝑒+ 𝑚𝑉𝑀̇𝑧𝑒 9

𝑃 = 𝐽𝑧𝑚𝑉 𝑆′′= 𝑌𝛿𝑁𝛽− 𝑁𝛿𝑌𝛽

𝑄 = −𝐽𝑧𝑌𝑏− 𝑚𝑉𝑁𝑟 𝑇′′= 𝑚𝑉𝑎𝐶1 𝑈 = 𝑁β(𝑚𝑉 − 𝑌𝑟) + 𝑁𝑟𝑌𝛽

(39)

x. Thermal capacity of brake rotors and calipers

Δ𝐸𝑏 =𝑚2(𝑉12− 𝑉22) +𝐼

2(𝜔12− 𝜔22) − 𝐹𝑑𝑟𝑎𝑔𝑑𝑏𝑟𝑎𝑘𝑒

𝑚 𝐼 𝑉

𝜔

(40)

𝛥 𝑇 =

𝐸𝑏𝑖𝑝

𝑚𝑑𝑖𝑠𝑐𝐶𝑝 𝐸𝑏𝑖

𝑖 𝑚𝑑𝑖𝑠𝑐 𝐶𝑝

𝑝

𝐵𝑖 =

ℎ𝐿𝑐

𝑘

≪ 0.1

ℎ 𝑘

𝐿𝑐

𝐹𝑜 =

𝛼𝑡

𝐿𝑐2

𝛼 𝑡

𝑇−𝑇

𝑇𝑖−𝑇

= 𝑒

−𝐵𝑖⋅𝐹𝑜

(41)

𝑖

xi. PoliTo Racing 2018

(42)
(43)

CHAPTER 1. PROJECT DEFINITION

(44)

End of 2017 season

(45)

1.1 Evaluation of the 2017 season

(46)

PROS CONS Good mechanical reliability

Adequate battery pack capacity Flexibility in suspension configuration Adjustable aerodynamic package

Excessive weight and inertia Sub-optimal use of the tire forces

Low downforce compared to competitors Excessive steering compliance

Difficult maintenance

(47)

1.2 Top-Level Concept definition and target setting

(48)

1.2.1 Requirements and targets for systems involving unsprung components

𝑁𝑚 𝑟𝑎𝑑

(49)
(50)
(51)
(52)

Additional competition regulations

(53)

Tilt test

Brake test procedure

(54)

1.2.2 Results from the preliminary analyses

1.2.2.1 Suspension geometry and loads

(55)

1.2.2.2 Transmission envelope

(56)

(57)

1.2.2.3 SC17 brakes performance

(58)
(59)
(60)

1.2.2.4 Steering system

(61)

CHAPTER 2. DESIGN PHASE

2.1 Brakes system design

(62)

2.1.1 Possibilities for weight saving on the brake calipers

(63)

★★★★★ ★★★★★ ★★ ★★★★★ ★★★★★

★★★★ ★★★★ ★★★★ ★★★ ★★ ★★★

★★★★★ ★★★★ ★★★ ★★ ★★

★★★ ★★★★★ ★★★★★ ★★ ★★★★ ★★★★★

2.1.2 Brake caliper selection

(64)

𝐹𝑧1𝑏𝑟𝑎𝑘𝑒𝑑 = 𝐹𝑧1𝑠𝑡𝑎𝑡𝑖𝑐+ Δ𝐹𝑧 𝐹𝑧2𝑏𝑟𝑎𝑘𝑒𝑑 = 𝐹𝑧2𝑠𝑡𝑎𝑡𝑖𝑐− Δ𝐹𝑧

Δ𝐹𝑧

Δ𝐹𝑧 = 𝑚𝑎𝑥(𝐶𝐺

𝑙 )

𝑎𝑥𝐶𝐺

𝑙

(65)

Δ𝐹𝑧 𝐹𝑧1𝑏𝑟𝑎𝑘𝑒𝑑 𝐹𝑧2𝑏𝑟𝑎𝑘𝑒𝑑 𝐹𝑥1 𝐹𝑥2

𝑖

𝑇

𝑏𝑟𝑎𝑘𝑒𝑖

=

𝐹𝑥𝑖

2

𝑅

𝑙𝑖 𝑅𝑙

𝑝𝑙𝑖𝑛𝑒𝑖=𝑇𝑏𝑟𝑎𝑘𝑒𝑖 𝑟𝑝𝑎𝑑𝑖

𝐴 1

𝑐𝑖𝜇𝑝𝑎𝑑𝑠𝑖 𝑟𝑝𝑎𝑑

𝑟𝑝𝑎𝑑

𝐴𝑐

𝜇𝑝𝑎𝑑𝑠

(66)

0 200 400 600 800 1000 1200

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

P4 32/26 P4 30/34 P4 26/28 P4 24 P2 24 P4-24 P2-24

Front Axle Rear Axle

Mass [g]

Pressure [bar ]

Mass Pressure (best case) [bar] Pressure (worst case) [bar]

(67)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 50 100 150 200 250 300 350 400 450

Friction Coefficient

Temperature [°C]

Z04 CC SA LA RC SC

(68)
(69)

2.1.3 Load distribution study

𝐹

𝑝𝑒𝑑𝑎𝑙

𝐾

𝑏

=

𝑇brake1

𝑇brake2

=

𝐹pedal 𝐴MC1× 𝑙2

𝐿bar×𝑟pad1×𝐴𝐶1×𝜇𝑝𝑎𝑑𝑖 𝐹pedal

𝐴MC2× 𝑙1

𝐿bar×𝑟pad2×𝐴𝐶2×𝜇𝑝𝑎𝑑𝑖 𝐴𝑀𝐶1 𝐴𝑀𝐶2

𝐿𝑏𝑎𝑟

𝑙1 𝑙2

𝐾

𝑏

= (

𝑙2

𝑙1

) (

𝐴MC2×𝑟pad1×𝐴𝐶1

𝐴MC1×𝑟pad2×𝐴𝐶2

)

(70)

%𝐹𝑟𝑜𝑛𝑡 𝐵𝑖𝑎𝑠 =

𝑙2

𝐿𝑏𝑎𝑟

× 100

𝐹𝑥

2𝑟𝑒𝑎𝑙

=

𝐹𝑥1𝑖𝑛𝑝𝑢𝑡

𝐾𝑏

(𝐹𝑥1𝑖𝑛𝑝𝑢𝑡− 𝐹𝑥2𝑖𝑑𝑒𝑎𝑙) = 𝜇𝑥(𝑚 𝑔

𝑙 (𝑏 − 𝑎 + 𝜇𝑥 2 ℎ𝑐𝑔) + (𝐹𝑧𝑎𝑒𝑟𝑜1− 𝐹𝑧𝑎𝑒𝑟𝑜2) −2 𝐹𝑑𝑟𝑎𝑔𝑐𝑔

𝑙 +2𝜇𝑥(𝐹𝑧𝑎𝑒𝑟𝑜1+ 𝐹𝑧𝑎𝑒𝑟𝑜2) ℎ𝑐𝑔

𝑙 )

𝜇𝑥 = 𝐹𝑥1𝑖𝑛𝑝𝑢𝑡 +𝐹𝑥2𝑖𝑑𝑒𝑎𝑙

𝑚𝑔+𝐹𝑧𝑎𝑒𝑟𝑜1+𝐹𝑧𝑎𝑒𝑟𝑜2

(71)

𝐹𝑧𝑎𝑒𝑟𝑜𝑖 =1

2𝜌𝑎𝑖𝑟𝐶𝑧𝑖𝑆𝑉2 𝐶𝑧1𝑆 𝐶𝑧2𝑆 𝐹𝑥2𝑖𝑑𝑒𝑎𝑙

(72)

𝐾𝑏

(73)

2.1.3.1 Proportional valve

(74)

2.1.3.2 Effects of Regenerative Braking

(75)

2.1.4 Brake rotors design

(76)

2.1.4.1 Determining the energy converted into heat by the brake rotors

Φ =

𝐹𝑥2

𝐹𝑥2+𝐹𝑥1

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑓𝑖𝑛𝑎𝑙

Δ𝐸

𝑏1

= (1 − Φ) (

𝑚

2

(𝑉

𝑖𝑛𝑖𝑡𝑖𝑎𝑙2

− 𝑉

𝑓𝑖𝑛𝑎𝑙2

) − 𝐹

𝑑𝑟𝑎𝑔

𝑑

𝑏𝑟𝑎𝑘𝑒

) +

𝐼1

2

(

𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙2 − 𝜔𝑓𝑖𝑛𝑎𝑙2

)

Δ𝐸

𝑏2

= Φ (

𝑚

2

(𝑉

𝑖𝑛𝑖𝑡𝑖𝑎𝑙2

− 𝑉

𝑓𝑖𝑛𝑎𝑙2

) − 𝐹

𝑑𝑟𝑎𝑔

𝑑

𝑏𝑟𝑎𝑘𝑒

) +

𝐼1

2

(

𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙2 − 𝜔𝑓𝑖𝑛𝑎𝑙2

)

𝑑𝑏𝑟𝑎𝑘𝑒 𝑎𝑥

𝑑

𝑏𝑟𝑎𝑘𝑒

=

𝑉𝑓𝑖𝑛𝑎𝑙

2 −𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙2 2𝑎𝑥

(77)

𝐹

𝑑𝑟𝑎𝑔

=

1

2

𝜌

𝑎𝑖𝑟

 𝐶

𝑥

 𝑆 (

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙+𝑉𝑓𝑖𝑛𝑎𝑙

2

)

2

𝐸𝑏 Φ 𝑎𝑥 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑓𝑖𝑛𝑎𝑙 𝐶𝑥𝑆

𝑝

(78)

2.1.4.2 Thermal analysis of the brake rotors

𝑝 =

√(𝑘𝑑𝑖𝑠𝑐 𝐶𝑝𝑑𝑖𝑠𝑐 𝜌𝑑𝑖𝑠𝑐) 𝑆𝑑𝑖𝑠𝑐

√(𝑘𝑑𝑖𝑠𝑐 𝐶𝑝𝑑𝑖𝑠𝑐 𝜌𝑑𝑖𝑠𝑐) 𝑆𝑑𝑖𝑠𝑐+ √(𝑘𝑝𝑎𝑑𝑠 𝐶𝑝𝑝𝑎𝑑𝑠 𝜌𝑝𝑎𝑑𝑠) 𝑆𝑝𝑎𝑑𝑠

ρ

𝑑𝑖𝑠𝑐 𝑝𝑎𝑑𝑠

𝑃 =

𝑑(𝐸𝑏𝑖)

𝑑𝑡

𝑃𝑖(𝑡)= 𝑇𝑏𝑟𝑎𝑘𝑒⋅ 𝜔𝑖(𝑡)

(79)

Δ𝑇 = (𝑇

𝑏𝑟𝑎𝑘𝑒

⋅ 𝜔

𝑖(𝑡)

⋅ 𝑝 − 𝑄̇

𝑐𝑜𝑛𝑣𝑖

− 𝑄̇

𝑟𝑎𝑑𝑖

) 𝑡

𝑖

𝑚

𝑑𝑖𝑠𝑐

𝐶

𝑝𝑑𝑖𝑠𝑐

𝑄̇

𝑐𝑜𝑛𝑣𝑖

𝑄̇

𝑟𝑎𝑑𝑖

𝑄̇

𝑟𝑎𝑑𝑖

= 𝜖 ⋅ 𝜎 ⋅ 𝐴

𝑑𝑖𝑠𝑐

⋅ 𝑇

𝑑𝑖𝑠𝑐4

𝐴

𝑑𝑖𝑠𝑐

𝜎 =

5.670 × 10−8 W

m2 K

𝜖

𝑄̇

𝑐𝑜𝑛𝑣

= ℎ̅ ⋅ 𝐴

𝑑𝑖𝑠𝑐

⋅ (𝑇

− 𝑇

𝑑𝑖𝑠𝑐

) 𝑇

𝑁𝑢 ̅̅̅̅ =

̅𝐿

𝑘𝑎𝑖𝑟

2.1.4.3 Analytical estimation of the average heat transfer coefficient

(80)

Cylindrical body

𝑐𝑦𝑙

̅̅̅̅̅ =

𝐶 𝑅𝑒𝐷

𝑚𝑃𝑟𝑓13𝑘𝑎𝑖𝑟𝑓

2 𝑟𝑑𝑖𝑠𝑐

Planar body

𝑝𝑙𝑎𝑡𝑒

̅̅̅̅̅̅̅̅ =

0.664 𝑅𝑒𝐿

1/2 𝑃𝑟𝑓1/3 𝑘𝑎𝑖𝑟𝑓

2 𝑟𝑑𝑖𝑠𝑐 𝑃𝑟 ≥ 0.6

𝑝𝑙𝑎𝑡𝑒

̅̅̅̅̅̅̅̅ =

0.680 𝑅𝑒𝐿

1/2 𝑃𝑟𝑓1/3 𝑘𝑎𝑖𝑟𝑓 2 𝑟𝑑𝑖𝑠𝑐

Rotating thin disc

𝑟𝑜𝑡

̅̅̅̅̅ =

√(0.036 𝑅𝑒𝑈0.8)

2+(0.556 𝑅𝑒𝜔0.5)2 𝑘𝑎𝑖𝑟𝑓

2 𝑟𝑑𝑖𝑠𝑐

𝑅𝑒𝜔

𝑅𝑒𝐿

> 0.18

(81)

𝐴𝑒𝑑𝑔𝑒= 2𝜋 𝑟𝑜𝑢𝑡𝑒𝑟𝑡𝑑𝑖𝑠𝑐 𝑡𝑑𝑖𝑠𝑐

𝑒𝑞𝑢𝑖𝑣

̅̅̅̅̅̅̅̅ = (ℎ̅̅̅̅̅ + 2 ℎ𝑟𝑜𝑡 ̅̅̅̅̅̅̅̅)𝑅𝑝𝑙𝑎𝑡𝑒 𝑠𝑖𝑑𝑒+ ℎ̅̅̅̅̅ 𝑅𝑐𝑦𝑙 𝑒𝑑𝑔𝑒

𝑅𝑠𝑖𝑑𝑒= 𝐴𝑠𝑖𝑑𝑒

2 𝐴𝑠𝑖𝑑𝑒+ 𝐴ℎ𝑜𝑙𝑒𝑠 + 𝐴𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒= 𝐴𝑒𝑑𝑔𝑒

2 𝐴𝑠𝑖𝑑𝑒+ 𝐴ℎ𝑜𝑙𝑒𝑠 + 𝐴𝑒𝑑𝑔𝑒

(82)
(83)

𝑅𝑒𝐿= 𝑅𝑒𝑈= 𝑅𝑒𝐷 𝑅𝑒𝜔

(84)
(85)

2.1.4.4 Simplified model: temperature response during continuous operation

𝑇𝑑𝑖𝑠𝑐(𝑛)= 𝑇+(1 − e(−𝑛 𝐵𝑖 𝐹𝑜))Δ𝑇𝑑𝑖𝑠𝑐(𝑛−1) 1 − e(− 𝐵𝑖 𝐹𝑜)

Φ 𝑎𝑥 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑓𝑖𝑛𝑎𝑙

𝐶𝑥𝑆

(86)
(87)
(88)

2.1.4.5 Calculation of disc temperatures using telemetry data from SC17

𝑝

𝑟𝑒𝑎𝑟

= 𝑝

𝑓𝑟𝑜𝑛𝑡

(

100−%𝐹𝑟𝑜𝑛𝑡𝑏𝑖𝑎𝑠

%𝐹𝑟𝑜𝑛𝑡𝑏𝑖𝑎𝑠

) (

𝐴MC1

𝐴MC2

)

(89)
(90)

2.1.4.6 CFD analysis of the SC17 front brake rotor

(91)

2.1.4.7 Material selection and design exploration

(92)
(93)
(94)
(95)

Boundary conditions

0 20 40 60 80 100

0 2000 4000 6000 8000 10000 12000 14000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Heat transfer coefficient [W/m2K]

Heat Flow [W]

Time [s]

Heat Flow [W] Heat transfer coefficient [W/m2K]

(96)
(97)

Mesh used for the design exploration study

Response surface

(98)

2.1.4.8 Detailed design of the rotors

(99)

µ𝑝𝑣 𝑝 𝑣

𝜔𝑟

(100)
(101)

Constraints

Applied loads

(102)
(103)
(104)

Meshing

-20 0 20 40 60 80 100 120

0 5000 10000 15000 20000 25000

41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Heat Transfer Coefficient [W/m2K]

Heat Flux [W]

Time [s]

Heat Flux

Heat transfer coefficient - Calculated Heat transfer coefficient - Reference

(105)

2.1.4.9 Simulations results

(106)
(107)
(108)
(109)
(110)
(111)
(112)

2.1.4.10 Summary of the brake rotors design

(113)

0 0.2 0.4 0.6 0.8

1Mass

Iyy

Max.

Endurance Temp.

Max Auto X Temp.

Safety Factor at Max.

Braking cond.

Min. Life (Autocross Lap Loading Cycle)

Front Brake Rotors

SC17F SC18F V6

0 0.2 0.4 0.6 0.8

1Mass

Iyy

Max. Auto X Temp.

Safety Factor at Max.

Braking cond.

Min. Life (Autocross Lap Loading Cycle)

Rear Brake Rotors

SC17R SC18R V5

(114)

Considerations for the brake carriers

(115)

■ Wheel Spacer

■ Center pins

■ Wheel hub/Transmission planetary carrier

■ Wheel center nut

■ Brake rotor (friction ring)

■ Mounting bell

■ Wheel rim

(116)

Rear carrier

Front carrier

(117)

Floating buttons

𝐹𝑏𝑢𝑡𝑡𝑜𝑛=𝑇𝑏𝑟𝑎𝑘𝑒𝑟𝑒𝑎𝑟

3 𝑟𝑏𝑢𝑡𝑡𝑜𝑛

(118)

2.1.5 Manufacturing specification

(119)
(120)

(121)
(122)

2.2 Unsprung components of the suspension system

Wheels

(123)

2.2.1 Uprights

(124)

2.2.1.1 Constraints

(125)

2.2.1.2 Material and process selection

(126)
(127)

★★ ★★★★★ ★★★

★★★ ★★★

★★★ ★★★★★ ★★ ★★★ ★★

★★★★ ★★★ ★★ ★★

★★★★ ★★★★ ★★

★★★★ ★★★

Yield strength [MPa] Tensile strength [MPa] Young Modulus [GPa]

7075-T651 516 573

71.7

7075-T6 488 567

(128)

2.2.1.3 Geometry definition

(129)

Upright

Wheel hub/Planet gears carrier Shaft seal

Wheel bearings Ring gear

Planet gear assembly Bearing preload ring Sun gear

Motor flange

Camber adjustment plates Magnetic oil cap

Flange O-ring

(130)
(131)
(132)
(133)
(134)
(135)

σ

(136)

2.2.2 Structural analyses

(137)

2.2.2.1 Single-component analysis: compliant boundary conditions based on bearing stiffness data

(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)

2.2.2.2 Suspension assembly analysis

0 0.2 0.4 0.6 0.8 1 1.2

Mass Material Efficiency

Max. Von Mises Stress at max Load

Max. Bearing seat deformation Front Upright SC18 vs SC17 -

Normalized Parameters

SC17 SC18 0

0.2 0.4 0.6 0.8 1 1.2

Mass Material Efficiency

Max. Von Mises Stress at max Load

Max. Bearing seat deformation Rear Upright SC18 vs SC17 -

Normalized Parameters

SC17 SC18

(146)
(147)
(148)
(149)
(150)
(151)
(152)

2.2.2.3 Manufacturing specification

(153)
(154)

CHAPTER 3. MANUFACTURING AND ASSEMBLY

3.1 Brake discs and mounting bells

(155)
(156)
(157)
(158)

3.2 Suspension arms and tie rods

(159)
(160)

3.3 Uprights

(161)

3.4 Integration on SC18

(162)

CHAPTER 4. TESTING AND VALIDATION

4.1 Track tests on the SC17 car

4.1.1 Tested components and instruments used

(163)
(164)

4.1.2 Location of the tests

(165)

4.1.3 Data collection procedure and tests performed

µ

(166)
(167)
(168)

4.1.4 Analysis of collected data

4.1.4.1 Brake load balance

(169)

4.1.4.2 Deceleration capability

(170)

4.1.4.3 Brake discs temperatures

(171)

µ

µ

µ µ

µ

(172)

µ

µ

µ

(173)
(174)

4.2 FSAE Italy – 11

th

to 16

th

July 2018

(175)

4.3 Front brake calipers failure

(176)
(177)

4.4 Front brake discs failure

(178)

4.5 Test session of August 16

th

, 2018

4.5.1 Instruments used

4.5.2 Location of the tests

(179)

4.5.3 Tests performed and data collection procedure

- - - -

- - - -

- - - -

4.5.4 Analysis of collected data

(180)
(181)
(182)

4.6 Brake rotors failure during Formula Student Spain 2018

(183)

µ

(184)
(185)

DISCUSSION

(186)
(187)
(188)

CONCLUSIONS

(189)
(190)
(191)
(192)
(193)
(194)
(195)
(196)

Riferimenti

Documenti correlati

In order to minimize the volume of the gearbox it was chosen to use a dual stage planetary layout, with the input on the sun shaft, the output on the planetary carrier and the ring

It can be computed, in first approximation, as shown in equation 2.1, where R is the accumulator resistance equal to 0,5 Ω (value obtained starting from the SC18 battery pack

Design and implementation of an electric power steering system for a FSDV The main tuning strategies adopted for PID controllers are the pole placement technique (which will adopted

Since this thesis is focused on the validation of the overall dynamic behavior of the whole vehicle, the torque at each motor was chosen as input for the

Two high voltage relay 3 are used, the first in the positive terminal and the second in the negative in order to electrically disconnect the accumulator from the vehicle.. Nodes

This can be seen in Figure 2.25; If it is assumed that electric motors can apply much higher forces than what needed to decelerate the vehicle at 0.1 g rate, it is possible to see

Controllo dell'esposizione dei lavoratori: Produzione o raffinazione di sostanze chimiche in processo continuo chiuso con esposizione controllata occasionale o processi con

From that model, some look up tables that link the PWM to the pressure inside the braking lines have been extracted and with a close loop controller they brought to