• Non ci sono risultati.

A one-parameter group of automorphisms of L(F∞)⊗B(H) scaling the trace

N/A
N/A
Protected

Academic year: 2021

Condividi "A one-parameter group of automorphisms of L(F∞)⊗B(H) scaling the trace"

Copied!
6
0
0

Testo completo

(1)

Analysefonctionnelle/.Fwwcfr'0Ha/Analysis

A

one

parameter

group

of

automorphisms

of if

(F00)(x)B(H)

scaling

the trace

FlorinRÂDULESCU

Abstract — Weprovein thispaperthe existenceofaone realparameter, continuous group a,of

automorphismsofthe von Neumannalgebra S£(Foe)®B(H), scaling the trace by(. Hère

if

(Foe)

isthevonNeumannalgebra associatedtoafreenonabeliangroupwith infmitely manygenerators,

while B(H) is the algebra ofail boundedlinear operators on a separable, infinité dimensional

Hilbertspace H,andxisthecanonical trace.

In particular it follows that there exists a type III, factor having a core isomorphic to J5f(Foe)®B(H), obtainedby takingthe crossproduct of.S?(FM)®B(H) by thegivengroup of

automorphisms.

Un groupe

à un paramètre d'automorphismes

de

module

R*

sur l'algèbre du

groupe

libre

à une

infinité

de

générateurs

Résumé— Nous montrons l'existence d'un groupe a,,àunparamètre teR%,d'automorphismesde l'algèbreSC(FJ®B(H),telque x(O,(X))=tx(x), t>0,

xeif

(FJ®B(H).IciSC

(FJ

est l'algèbre

de vonNeumann associéàungroupelibre noncommutatifavec une infinité degénérateurs, tandisque

B(H) est l'algèbre des opérateurs bornéssur un espace hilberlien separable H et % est la trace

canonique.

En particulier, il s'ensuitqu'ilexisteunfacteurM,detypeIIIj telquel'algèbredes élémentslaissés

fixésparlegroupe modulaire (associéàunetrace généralisée sur M) soit isomorpheàS£(Foe)®B(H)

[i.e.M estleproduitcroisé deS£(Foe)®B(H)parlegroupeàunparamètred'automorphismes].

VersionfrançaiseabrégéeDans cette Note nous utilisons une description de l'algèbre

de von Neumann .S?(F00)®B(H)à l'aide des travaux de Voiculescu [8] sur les algèbres de

von Neumann associées à des groupes libres.

On montrera que ^f(Foe)®B(H) est engendrée par une algèbre abélienne diffuse A

=

L°°(R) (avecla trace donnée par la mesure de Lesbegue) et par des parties finies

pXp,

p est une projectionfinie dans A, et X un élément symétrique non-borné. En outre, la

trace sur toute sous-algèbre engendrée parpL°°(U)et

pXp

(où l'unité p est une projection finiedans A) est uniquement déterminée parles valeurs qu'elle prend sur />L°°(R) et X (les

deuxalgèbres sont indépendantes par rapportàla trace, ausens des probabilités non

commu-tatives de [7]).

De façon intuitive, si Y est le générateur de A, on peut dire que .5?(Foe)®B(H) est

l'algèbredes quantités mesurablesassociéeà deux observablesY, X, la deuxième ne

permet-tant de mesurer que des quantités qui sont finies par rapport à Y (i.e. de la forme

pXp,

p est un idempotent de mesure finie, dans l'algèbre de Y).

De plus, pour toute projection finiep dans l'algèbre de Y, les observables

pYp

et

pXp

sont indépendantes pour la mesure(au sens où la mesure est uniquement déterminée par ses

valeurs sur les algèbres engendrées par

pXp

et pYp).

Les résultats de [7], permettent de retrouver le comportement de X, Y par rapportà la

trace, en considérant X comme une matrice aléatoire, quand Y est contenu dans l'algèbre des matrices diagonales. Si l'on considèrela limite de la représentation matricielle,la trace

est maintenant calculée comme la composée de l'espérance conditionnelleavec la trace (non normalisée) sur les matrices.

Note présentée par Alain CONNES.

(2)

Tout automorphisme de A donne un automorphisme de

if

(F00)®B(H) qui laisseX fixe.

En particulier on prouve le résultat suivant:

THÉORÈME. II existe un groupe à un paramètre (oc,)IeK*+ d'automorphismes de

5£ (Foe)®B(H), tel que les a, multiplientpar t la tracecanonique x sur

if

(Foe)®B (H) [i.e.

T(a,00)

=

fT(x),

*ei?(FJ®B(H),

t>0].

La classification [1] de A. Connes des facteurs de type

III

montre que l'existence d'un

automorphisme de

if

(Foe)®B(H), multipliant la trace par t est équivalente à l'existence d'un facteur M de typeIII,, tel que l'algèbre des éléments fixés par le groupe modulaire (associé à une trace généralisée sur M) soit isomorphe au facteur £C(Fco)®B(FL)

[/e(0,

1)].

Comme nous avons par ailleurs trouvé un groupe (a,),eM»+ d'automorphismes de

if

(Foe)®B(H) nousavons montré (à l'aide du travail de M. Takesaki[6]) qu'il existe aussi un facteur M de type

IIIj,

tel que l'algèbre des éléments fixés par le groupe modulaire (associé à une trace généralisée sur M) soit isomorphe au facteur

if

(Foe)®B(H).

COROLLAIRE. 77existe unfacteur M de type III1 telque l'algèbredes éléments invariants

par le groupe modulaire (associée à une trace généraliséesur M) soit isomorphe au facteur »2'(Foo)®B(H). Ici M est leproduit croisé de <£(F00)®B(H) parle groupe d'automorphismes

(ai)t

6 K +•

Inthis paperwe find

a

new description forthe vonNeumannalgebra «S?(Foe)®B(H)

which is a conséquence

of

Voiculescu'srandom matrix picture for the von Neumann algebras associatedtofree groups. We will prove

that

if

(Foe)®B(H) is generated by a diffuse abelian algebra

A=

{Y}"

=

L°°(IR) and the finite parts

pXp,

of

an unbounded

symétrie élément X [which is

not

affiliated to

if

(F00)®B(H)]. Hère

p

runs over the finite projections in A (offinite Lebesgue measure).

From an heuristical point

of

view, we may say

that

we are given two symmetric observables X, Y and

that

if

(Foe)®B(H) is the algebra

of

measurable observables, where only finite

"parts"

pXp

(with respecttoY; i. e.

p

is afinite measure projectionin thealgebragenerated by Y) may be measuredout

of

X. In additiontheposition

of

the observables is so

that

for anyfinite trace projection

p

eA,

p

Yp

and

p

Xp

behave freely withrespectto the measure (in the sensé

of

the noncommutativeprobability introduced by D. Voiculescu in[8]).

The matrixpicture

of

D. Voiculescuforfreeproductsshows

that

wemay assume,

that

asymptotically,Xis a matrix

of

very large size with independent random entries, while Yconsists

of

constant diagonalmatrices. Themeasure is then computedby composing the expectation value with the (nonnormalized)matrixtrace.

The mainresults

that

weobtainin this wayarethe following:

THEOREM. There exists a one parameter continuous group (a,)(eK*+

of

automor-phisms

of

i?(Foe)®B(H)

such that ex, scales the trace x on

if

(F00)®B(H) by t [i.e.

x(a,(x))

=

tx(x),

xeif

(FJ®B(H),

t>0].

By Connes's classification

of

type

III

factors [1] it is well known

that

any such

automorphisma, on if(F0O)®B(H) scaling trace by

te(0,

1), gives a typeIII, factor with a core isomorphicto

if

(F00)®B(H).

The fact

that

we hâve a continuousone parameter group

of

automorphismsshows (by the work

of

M. Takesaki[6])

that

we may now in addition find a type

IIIj

factor havingacore isomorphicto

if

(Foe)®B(H).

(3)

COROLLARY. There exists

a

typeïïï1

factor

M having

a

core [1] isomorphic to

if

(Foe)®B(H). Equivalently M is thecrossedproduct

o/if

(Foe)®B(H)with the action

of

Uinduced by the oneparametergroup

of

automorphisms.

In particularwe reprove in this way

that

the fundamental group

of

if

(Foe) is R+/0 [equivalently

that

for any selfadjoint nonnull idempotent e in i?(Fa>)>

e&ÇF^e

^£C(Fm)].This coverspartlythe main resuit in [9].

The results suggests

that

apossible connection could be realized betweenthe noncom-mutativeprobability theoryrecently introduced by D. Voiculescuand thework([3], [4], [5], [2])on algebraicquantumfieldtheory.

The (verynatural)question about thepossible existence

of

atype III1 factorhaving

a

core isomorphic to

if

(Foe)®B(H) was first raised to me by M. Takesaki. We are indebtedtoD. Voiculescuforseveral usefulremarks.

We will first construct

a

semifinite algebra

se

which we show to be isomorphic to

if

(Foe)®B(H) and then show

that se

has a one parameter group

of

automorphisms scalingtraceby t, t

e

U.

The idea istoconsider firstthesubalgebra

J/0

of

thefreeproductL00(R)*C[X](X is

hère an undetermined variable, assumed to be selfadjoint) generated by L00(U) and the

finite parts

pXp

of

X, where

p

runs over the set

of

ail finite Lebesgue measure

projections in Loe(U).

If

one requiresthat

p Xp

is semicircular (withthecorresponding normalization conditions coming from Proposition2.3 in [7]) andfree with the algebra

pLx(U),

one gets in this way a well defined trace x on sé0. We réfèreto [7] for the définitions regardingnoncommutativeprobability.

We let

se

be the von Neumannalgebra coming from G.N.S. construction forsé0 and

x. Clearly anyautomorphism

a

of

L00(U),scalingtraceby / inducesan automorphism

oc0ofstf0 (mapping Xinto t~1,2X). Moreover, by proposition2.3 in [7],<x0also scales

trace byt.

It

remainsto show

that

se

isisomorphicto

if

(Foe)®B(H). Thisis done exactly by the same technics as the one used in the

proof

ofTheorem 3.2 in[7].

Werecall first

a

fewdéfinitions from [7], [8]. Let (A, cp) be a C*-algebra withunit1

equiped with

a

trace cp. A family

of

subalgebras 1e

A,£

A

(ieï)

iscalledafree family

of

subalgebras

if

q>(a1a2.

. .a„)

=

0 whenever0,-eA,-.with

ij^ij+1,

l^j-^n—l,

(p(aj)

=

0,

7=1,

2.

..n. A family

of

subsets(n;),-eI is called free

if

the family

of

the subalgebras

generated by theCîtand 1 is free. Moreoverafamily(/j)i6lis free

if

the family

{f,

1}"

is free. A free family (fi)i is called semicircularif

f

areselfadjointand

if

thedistributions

of

theyj-,

ieï,

are given bythesemicirclelaw

In particular it follows

that

the von Neumannalgebra generated by an infinité free semicircular family C/î),eS is isomorphic to if(FcardS). To observe that, one has to consider unitaries F;

that

generate the same abelian (diffuse) von Neumannalgebra as

f,

for each

ieS.

It

follows

that

the family (F,)ieS is also free andhence

that

the von

Neumannalgebra generated by them isisomorphicto

i?

(Fcards) (see[7]). BycardS we

dénote the cardinality

of

S.

CONSTRUCTION OF THE ALGEBRA

JJ.

-

Let A

=

Loe(IR) with the trace <ï> comming

from the canonical Lesbegue measure on U and let

Lf(U)

be the subalgebra

(4)

L2(R)

H

L°°(R). Let X be an arbitrary variable and let sé0 be the subalgebra

of

the freealgebraicproduct

generatedby

Lf

(U) and

{pXp\p

projectionin

Lf(U)}.

srf0 has

a

canonical involutivestructure

if

we requirefor X tobe selfadjoint.

We now definea traceT onsé0 which is uniquely determined subjectto thefollowing

conditions:

(1) xrestrictedto

Lf

(R)

=

O.

(2)

pXp

and

p

L00(R) are free with respecttotherestriction

of

x to

psé0p

(3) <!)(p)~ll2pXpis semicircular with respectto thetrace(TQ?)-1)T

onpsé^p.

In the conditions(2) and (3) above

p

runs over the set

of

ail finitetraceprojections in L00(R).

Theexistenceand the unicity

of

x followsfrom the fact

that p Xp

and

p

L00(R) are

generating in

psi'0p

an algebra stfp (with unit p) which is

a

copy

of

the algebraic free product

while on thislastalgebra (withunit p) conditions(2), (3)are defininga uniquenormalized trace xp= (x(p))_1x [7]. Since s#0 is the union

of

the algebras sev, after ail finite projections

p

in

Lf

(R), weobtainin this waya trace onsrf0.

The fact

that

the trace is well defined followsfrom proposition2.3 [7] which asserts

that

wheneverD is an abelian algebra, free to the algebra generated by a semicircular élément Z, then for any nonnull projection

qeD,

the algebras generated by qT> and

qZq

are free, while %(q)~112qZq is semicircular with respect to the normalized trace

(x(<7))_1X(Xistne trace onthe algebra generated byD andZ).

To check

that

the traceis well defined we hâve to take two nonnullprojectionsp, q in

Lf

(R). We may assume

that

q^P-

The tracexp= (T(/?)_1)T defined by the condi-tions (2), (3) on the subalgebra sé°p

of

s/0

(with unit p) is so

that

x(p)"ll2pXp

is semicircularandso

that

L00(U)p and

pXp

arefree.

But the propositionrecalled before (from[7]) shows

that

in qstf°pq,

(xp(q))-ll2q((x(p))-ll2pXp)q=(x(q))-ll2qXp

is semicircular and

that

(T(q))~1,2qXq and qL°° (R) are free with respect to the trace

As for

p

let srf\ be the subalgebra

of

s40 (with unit q) generated by Loe(R) q and

qXq.

Letxq=(x(q)_1)xbe the tracedefined by conditions (2), (3) on ,s/° [Le. so

that

(T(q))~1!2qXqissemicircularandfree with qL°°(R)]. Clearlysé°q

£

qstfpqandwe only hâve to check

that

xpq restricted to

sé\

coincides with xq [as this will imply

that

xp

restricted to

sé\

is

(0(^)/0

(p))xg]. Butthis follows from the fact

that

both traces are making

qXq

semicircular and free with respect to qL™(R). Thus the restriction

of

0

(p)xptoséq coincideswith4>(q)xqandhencexis welldefined.

The algebra

se

is now obtainedby takingthe G.N.S. constructionassociated to

s/0

and x and by considering the weak closure

of

stf0 in this représentation. In this way we obtain a semifinite faithfull tracex on

se

which extendsthe given trace. A system

of

generators for

se

is L°°(R) and

\pXp\p

projectionin L*(R)}. [Note

that

now

(5)

Loe(R) is

a

subalgebra

of se

(containing the unit

of

se) and

that

the restriction

of

x to

L00(R) is$.]

PROPOSITION. With the notations above wehâve

J^

=

if

(F00)®B (H).

Proof. Let

eu

e2,

. . . be

a

partition

of

the unity in LM(R) with projections

of

equal finite trace. Let vt,

ieH

be the partialisometriesfrom the polar décomposition

of

eiXe1

=

vibi,

ieN,

i^>2. The behaviour

of

Xwhencutted offby finiteprojectionsin L°°(R) [Le. properties (2), (3) above] and by the

proof of

Theorem 3.2 in [7], shows

that

vfvi

=

e1;vtvf

=

et and moreover

that

the family

(4) {e1Lco(U)e1}U{vfReXvi,

vfïmXvtliJeN,2Si^j}U{bi, a,|ieN,

z^2} is free. Hère at is a semicircular generator for vfLao(U)vi. On the other hand, by construction

se

is generated as avonNeumannalgebra by L00(M)and

{pXp\p

projection in Lj?(R)}.

Hence it follows

that

the family (4) is indeed a System

of

generators for e1

se

ex and thus

that

psép

is isomorphic to

if

(Foe) for any projection

peLf(U).

Thus

se

is a

factorisomorphicto

if

(F00)®B(H).

Using this new description

of

if

(Foe)®B(H)

(^sé)

we are going to show

that

any isomorphism

of

L°°(R) induces an automorphism

of

if

(Foe)®B(H)^^/.

The automorphismis first defined algebraicallyonsé0 and thenextended bycontinuity to se.

PROPOSITION. With the notations above let 0 be an automorphism scaling trace by

t>0

o/L°°(U). Dénote byS the automorphisminducedon L00(R)*C[X],mapping L00(U)

onto L00(R) by 0andX into

t~m

X.

ThenS induces (by restriction) an automorphism

of

sé0, also denoted by S, which scales

the trace by t andthus an automorphismS

of se

scaling trace by t.

In addition the depencence8-»Sispoint-continuous.

Proof. Clearly we only hâve to prove

that

S scales trace by t.

It

is sufficientto

show

that

S restricted

to

psé0p

scales the trace by t. We may also assume

that

x(p)

=

$(p)=l.

Let

q=Q(p).

Let

eu

e2,

. .

.,

enbe any nnonnullprojections in

p

L°°(R). Dénotebyxp

=

(x(p))

~Jx,

xq= (x(#))-1x the trace on

psép,

respectivelyon

qstfq,

given by the conditions(2),

(3). [Inparticularx restrictedto

p

se

p

isx^while therestriction

of

x toq

se

qisx(q)xq.]

Moreover

forany

iu

. .

.,

ime{1,

...,«}

since 0 scalestrace onL™(U)by t.

Thus

Because

of

property(3)

of

x,

t~1/2qXq

is semicircularandfreewith respectto Lco(U)q

in the algebra

qsé

q (with trace xqand unitq).

The relation(5) and the fact

that

the trace is uniquely determined on a free product

[8]

if

it

is determined on his factors shows

that

we may continue the previous equality with

We hâve used hèrethefact

that p Xp

is semicircularandfree with

p

Loe(U)in se'p,with respectto the tracex . ThusSscales the trace onsé0 andhenceforth on se.

(6)

Thelasttwopropositionsgivethe

proof

of

our mainresuit.

Noteremisele5mars1992,acceptéele 15avril1992.

REFERENCES

[1] A.CONNES,Uneclassification des facteurs de typeIII,Ann.Sci. Ecole Norm. Sup.,6, 1973,pp. 133-252.

[2] S. DOPLICHER,R. HAAGandJ. E. ROBERTS,Local observablesand particlestatisticsII, Comm.Math.

Phys.,35, 1974,pp.49-85.

[3] K.FREDENHAGEN,K.REHRENandB.SCHROER,Superselection sectors withbraid groupstatistics,Comm.

Math.Phys.,125,pp.201-226.

[4] J.FRÔLICH,Statisticsoffields,The YangBaxteréquation and the theoryofknots,Proceedingsofthe

1987Cargese School.

[5] R. LONGO,Index of subfactors and statistics of quantum fields, Comm. Math. Phys., 126, 1989,

pp.217-247.

[6]M.TAKESAKI,Duality forcrossedproducts and the structureofvonNeumannalgebrasoftypeIII,Acta

Math.,131, 1973,pp.249-310.

[7] D.VOICULESCU,Circular andSemicircular SystemsandFreeProduct Factors,Invent.Math.,105, 1991.

[8] D.VOICULESCU,Limit lawsfor randommatricesandfreeproducts,Colloque inhonorofJ.Dixmier.

[9] F. RADULESCU,The fundamental groupofthevon Neumannalgebra ofa freegroup with infinitely

many generatorsis R+{0},J.Amer.Math.Soc.(toappear).

Riferimenti

Documenti correlati

[r]

giusti care le condizioni sotto le quali la comp onente della quantita' di moto di un.. punto P di massa m lungo la retta r

Gli Slave sono collegati e gestiti sempre dal Master, sul quale il segnale di controllo (1-10 o pulsante) continuerà ad essere presente. Case 2: Overload on

Con nota del 15 dicembre 1997, il dott. Giuseppe Ugo Tiani, Procuratore della Repubblica presso la Pretura Circondariale di Bergamo precisava che a) il controllo è imposto

Any interest on definitive Notes in bearer form (and any Notes in registered form issued by LBHI and having a maturity of 183 days or less) of a Series shall be payable by check

If so specified in the applicable Pricing Supplement, interests in the temporary global Note of any Tranche will be exchangeable for, in whole (i) interests in a permanent global

If so specified in the applicable Final Terms, interests in the temporary global Note of any Tranche will be exchangeable for, in whole (i) interests in a permanent global Note

If so specified in the applicable Final Terms, interests in the temporary global Note of any Tranche will be exchangeable for, in whole (i) interests in a permanent global Note