• Non ci sono risultati.

Choice of a low operating temperature for the DEMO EUROFER97 divertor cassette

N/A
N/A
Protected

Academic year: 2021

Condividi "Choice of a low operating temperature for the DEMO EUROFER97 divertor cassette"

Copied!
4
0
0

Testo completo

(1)

FusionEngineeringandDesign124(2017)655–658

ContentslistsavailableatScienceDirect

Fusion

Engineering

and

Design

j ou rn a l h o m epa g e : w w w . e l s e v i e r . c o m / l o c a t e / f u s e n g d e s

Choice

of

a

low

operating

temperature

for

the

DEMO

EUROFER97

divertor

cassette

Giuseppe

Mazzone

a,∗

,

J.

Aktaa

b

,

C.

Bachmann

c

,

D.

De

Meis

a

,

P.

Frosi

a

,

E.

Gaganidze

b

,

G.

Di

Gironimo

d

,

G.

Mariano

e

,

D.

Marzullo

d

,

M.T.

Porfiri

a

,

M.

Rieth

f

,

R.

Villari

a

,

J.H.

You

g

aDepartmentofFusionandTechnologyforNuclearSafetyandSecurity,ENEAC.R.Frascati,viaE.Fermi45,00044Frascati,Roma,Italy

bKarlsruheInstituteofTechnology,InstituteforAppliedMaterials,Hermann-von-Helmholtz-Platz1,76344Eggenstein-Leopoldshafen,Germany

cEUROfusion,PPPT,BoltzmannStr.2,85748Garching,Germany

dCREATEConsortium/UniversityofNaplesFedericoII,DepartmentofIndustrialEngineering(DII),PiazzaleTecchio80,80125Napoli,Italy

eDepartmentofAstronautics,ElectricalandEnergeticsEngineering,SapienzaUniversityofRomePalazzoBaleani,CorsoVittorioEmanueleII,244,00186

Rome,Italy

fKarlsruheInstituteofTechnology,IAM-AWP,POB3640,76021Karlsruhe,Germany

gMaxPlanckInstituteforPlasmaPhysics,BoltzmannStr.2,85748Garching,Germany

h

i

g

h

l

i

g

h

t

s

•InthisarticlethelowerlimitofallowedoperationtemperaturewindowwasdefinedforreducedactivationsteelEUROFER97asstructuralmaterialof DEMOdivertorbody.

•Theunderlyingrationaleandsupportingexperimentaldatafromanumberofirradiationtestswerepresented.

•ThemotivationofthisstudywastoexplorethepossibilitytouseEUROFER97forwater-cooleddivertorcassetteattemperaturesbelow350◦C.

•LiteraturedatashowedthattheFTTTofEUROFER97at6dpa(theexpectedmaximumdoseofcassettebodyafter2fpy)isabout180◦C.

•Thisresultimposestheguidelineonthecoolantinlettemperatureofthedivertorcassette.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22September2016

Receivedinrevisedform19January2017

Accepted5February2017

Availableonline10February2017

Keywords: DEMO Divertorcassette EUROFER97 Neutronfluence

a

b

s

t

r

a

c

t

Oneofthefundamentalinputparametersrequiredforthethermohydraulicandstructuraldesignofa divertorcassetteistheoperationtemperaturerange.Inthecurrentdesignactivitiestodevelop Euro-peanDEMOdivertorintheframeofEUROfusion,reducedactivationsteelEUROFER97waschosenas structuralmaterialforthedivertorcassettebodyconsideringitslowlong-termactivationandsuperior creepandswellingresistanceunderneutronirradiation(Youetal.,2016)[1].Forspecifyinganoperation temperaturerange(i.e.coolingcondition)various,oftenconflictingrequirementshavetobeconsidered. InthisarticlethelowerlimitofallowedoperationtemperaturewindowisdefinedforEUROFER97for structuraldesignofDEMOdivertorcassettebody.Theunderlyingrationaleandsupportingexperimental datafromanumberofpreviousirradiationtestsarealsopresented.Themotivationofthissurveystudy istoexplorethepossibilitytouseEUROFER97forwater-cooleddivertorcassetteattemperaturesbelow 350◦Cwhichhasbeenregardedaslimittemperaturetopreserveductilityunderirradiation.Basedonthe literaturedataofFTTT(FractureToughnessTransitionTemperature)calibratedbyMasterCurvemethod, itisconcludedthatEUROFER97attheenvisagedmaximumdoseof6dpawillhavetobeoperatedabove 180◦Ctakingtheembrittlementduetoheliumproductionintoaccount.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

ThedesignofaDemonstrationFusionPowerReactor(DEMO)to followITER,withthecapabilityofgeneratinghundredsofMWnet

∗ Correspondingauthor.

E-mailaddress:giuseppe.mazzone@enea.it(G.Mazzone).

electricity,isviewedbyfusioncommunityasaremainingcrucial steptowardstheexploitationoffusionpower.TherecentEUfusion roadmapHorizon2020[2]advocatesforapragmaticapproachand considersapulsed“lowextrapolation”DEMO.Thisshouldbebased onmaturetechnologiesandreliableregimesofoperation,asmuch aspossibleextrapolatedfromtheITERexperienceandontheuse ofmaterialsandtechnologiesadequatefortheexpectedlevelof

http://dx.doi.org/10.1016/j.fusengdes.2017.02.013

0920-3796/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

(2)

656 G.Mazzoneetal./FusionEngineeringandDesign124(2017)655–658

neutronfluence.IntheConsortiumEUROfusionacorresponding pre-conceptualdesignactivityhasnowbeenlaunched.

AnimportantcomponentofDEMOistheDivertor(CADcontour modelillustratedinFig.1).TheessentialfunctionoftheDivertor istocontrolthecontentofheliumashandotherimpuritiesinthe burningplasmacorebyremovingplasmaparticlesfromthe scrape-offlayeroftheplasmaboundary.Theremovaloftheedgeplasma isachievedby intenseparticlebombardment ontotheDivertor Targetplateproducing neutralgasbeingpumpedout.This pro-cessgenerateshighheatfluxontotheTargetsurfacethathasto becontinuouslyremovedfromtheDivertorTarget.Therequired powerexhaustamountstoroughly20%ofthetotalthermalpower ofthefusionplasma(includingalphapower).Asoneofthemajor in-vesselcomponentsinterfacingbetweentheplasmaandthe Vac-uumVessel,theDivertorshalltoleratetheresultingheatfluxloads whileprovidingneutronshieldingtotheVacuumVesselandthe superconductingmagnetsinthevicinityatthesametime.

Inthepre-conceptualdesignactivitiesfortheEuropeanDEMO divertor,manymaterialshavebeenproposedasforPlasmaFacing componentsasforthedivertorcassettebasingononeofthe funda-mentaldesignparameterssuchastheoperationtemperaturerange ofthedivertorcassette.

Ingeneralformaterialselection thestarting pointwasbeen tryingtousethesameITERmaterialifpossible.FortheITER diver-torcassettetheausteniticstainlesssteelAISI316L(N)IGhasbeen usedasstructuralmaterial.Whenthenuclearfluencesincrease,as inITERTBM(TestBlanketModule)orinDEMOin-vessel compo-nents,itisnotpossibletouseAISI316,becauseofhighcontentof nickel,itissubjecttostrongactivation.Alsotheswellingbehaviors offerriticandausteniticsteelsunderneutronirradiationarevery different(seeFig.2).

9CrsteelEUROFER97iscurrentlyconsideredasthestructural materialforthecassettebodyasisthecaseforthebreeding blan-ket[1].ThisuseofEUROFER97 steelhassignificantadvantages owingtobeneficialpropertiessuchasreducedlong-term

activa-Fig.1.CADofDEMOdivertorcassetteasof2015.

Fig.2. Comparativeswellingbehaviorunderfissionneutronirradiationforferritic

andausteniticsteels[6].

Fig.3.YieldStress(Rp0,2)behaviourofirradiatedEUROFER97ondependenceof

testtemperaturecomparedtounirradiateddata(thetemperatureinthelegend

indicatestheirradiationtemperature)[9].

Fig.4. IrradiationhardeningvsirradiationdoseforEUROFER97andotherRAFM

steels[3].

tionandstrongresistanceagainstcreepandswellingunderintense neutronirradiation.Theoptimaloperationtemperature(thusthe coolingcondition)forthecassetteisidentifiedconsidering differ-entandoftenconflictingrequirementssuchasthetypeandallowed pressureofcoolant,possibleconsequencesof LOCAevents(loss ofcoolant accident),limitationby designcoderules andpower conversionefficiency.

Inthispaper,amaterial-basedrationaletoidentifythe allow-ableoperationtemperaturerangeisdiscussedfocusingonfracture mechanicalproperties.

2. EUROFER97swellingandtensileproperties

Asdiscussed,reducedactivationEUROFER97andRAFMsteels aretheprimarychoicematerialsforfirstwallandbreedingblanket forfuturefusionpowerplants[3–5].Thismainlybecausemetals andalloys with“Body-centredcubic(Bcc)”crystal lattice struc-ture,includingironandferriticsteels,showbetterresistanceto prolongedirradiationthanmetalswith“Face-centred-cubic(Fcc)” lattices[6].Furthermore,relevantadvantagesintermsofswelling behaviorhavebeendemonstratedunderfissionirradiationfor fer-riticsteel(Fig.2).

Lot’sinformationonEUROFER97canbefoundinRefs.[5,7]and

[8].

Asregardstensileproperties,EUROFER97YieldStress(Rp0.2) showsdependencesfromtemperatureandirradiationcondition.

Fig.3[9]showsYieldStressvstesttemperatureforEUROFER97 intheunirradiatedconditionandafterneutronirradiationin dif-ferentmediumandhighdoseEuropeanirradiationprogrammesat targetirradiationtemperature(Tirr)between250and350◦C.

(3)

G.Mazzoneetal./FusionEngineeringandDesign124(2017)655–658 657

Fig.5.DBTTvsirradiationtemperatureforselectedRAFMsteelsfromSPICEtests

(averagedamagedoseinSpicewas16.3dpa)[3].

YieldStressofRAFMsteelswiththedamagedose.TheYieldStress increaseisrathersteepatdosesbelow10dpa.Thehardeningrate appearstobesignificantlydecreasedattheachieveddamagedoses andacleartendencytowardssaturationisidentified.Forthe anal-ysisofhighdoseirradiationbehaviorofEUROFER97differentiation hastobedonebetweendifferentproductformsaswellas differ-entheattreatmentconditions.Infactthereisastrongsensitivity ofmaterials’mechanicalpropertiesandirradiationperformanceto metallurgicalparameters.

Thehatchedareamarksthescatteringbandofhighdose hard-eningfordifferentRAFMsteels.

3. EUROFER97fracturemechanicalpropertiesandhelium

effect

For defining the allowableoperation temperature range for DEMOdivertorcassette,irradiationembrittlementhastobetaken intoaccount.

Inparticulartheeffectsoftemperature,irradiationandHelium production onDuctileto BrittleTransition Temperature (DBTT) andFractureToughnessTransitionTemperature(FTTT)havebeen investigated.

TheDBTTisdefinedasthetemperatureatwhichthefracture energypassesbelowapredeterminedvalue(Charpyimpacttest).

Fig.5[3]showstheDBTTvsirradiationtemperatureforEUROFER97 andotherRAFMsteels.

TheDBTTisinfluencedmostatlowirradiationtemperature(T irr<330).Theevolutionoftheneutronirradiationinduced embrit-tlementwithdoseatdifferentirradiationtemperaturesisshown inFig.6[3].AllRAFMsteelsshowincreaseintheDBTTwithdose below15dpa.

TheresultsonF82Hand F82H-mod areplotted togetherfor different heat treatments and material compositions. The pre-irradiationheattreatment(HT)ofEUROFER97leadstoconsiderable improvementoftheirradiationresistanceatdosesupto30dpa.At theachieveddamagedoses,however,theembrittlementof EURO-FER97 HT becomes comparable to that of Eufofer97. AllRAFM steelsshowsteepincreaseintheDBTTwithdosebelow15dpa. Withfurtherincreasingthedamagedosetheembrittlementrate decreasesandacleartendencytowardssaturationisobservedat theachieveddamagedoses.

TheFTTTisdefinedasmidpointtemperaturebetweencomplete brittlefractureandcompleteductiletearingbehavior.Fig.7shows theneutronirradiationinducedshiftinFTTT(FractureToughness TransitionTemperature)andKLST(specimenaccordingtoDIN50 115)andISO-VDBTT forEUROFER97vsirradiationdose. Irradi-ationinducedshiftsinFTTTaresignificantlylargerthanshiftsin

Fig.6. IrradiationshiftsoftheDBTTvsdoseforEUROFER97andotherRAFMsteels.

Fig.7.IrradiationinducedshiftinFTTTandKLSTandISO-VDBTTforEUROFER97

[3].

CharpyDBTTwhichindicatesanon-conservativeestimationson theembrittlementbyCharpytest.

There is significantuncertainty regarding the magnitude of additionalembrittlementthatmightbeintroducedduring fusion-relevantneutronirradiationthatwouldgenerate∼10appmHe/dpa insteelsduetohelium-inducedhardening.

Experimentsbasedonneutron-irradiatedB-dopedRAFMsteels (whereadditionalHegenerationiscontrolledbyboron transmu-tation)indicate theincrease in DBTT fromHe canapproach or exceedtheDBTTincreaseassociatedwithradiationhardeningat 250–350◦C.

Fig. 8 [3] shows the additional increment of DBTT increase attributabletoHeproductionfollowingfissionneutronirradiation ofB-dopedEUROFER97steels.

4. DBTTandFTTTforDEMOdivertorcassetteinirradiation

condition

(4)

658 G.Mazzoneetal./FusionEngineeringandDesign124(2017)655–658

Fig.8. Heliuminducedextraembrittlementvsextraheliumamountforirradiated

borondopedsteels.

thefracturetoughness(FTTT)transitiontemperaturesquantified inquasi-staticfracture-mechanicaltestsarecorrelatedbut experi-mentalresultsshowthatthetwotransitiontemperaturesdifferto somedegree.

TheDBTT of EUROFER97 varieswith thebatch number and productform.Forthe1stbatchofEUROFER97(EUROFER97-1)the averageDBTTisabout−80◦C(Fig.5).

TheFTTT of EUROFER97also varies withthe batch number andproductform.Inaddition,thereisanadditionaluncertainty in FTTT imposed by application of the standard Master Curve methodology.ForthefirstbatchofEUROFER97theFTTTisabout −108◦C.ApplicationofthemodifiedMasterCurveprocedure[11]

yieldsconsiderablyhighertransitiontemperatureof−78◦C.

How-ever,sincethemodifiedmastercurvemethodologyhasnotbeen validatedyetintheirradiatedstate,FTTTof−108◦C inthe

un-irradiatedconditionisconsideredhere.

Post-irradiationassessmentbothDBTTandFTTTconcludesthe followingregardingtheshiftoftheTransitionTemperatureafter irradiationat6dpa:

-AccordingtoFig.6theDBTTofEUROFER97shiftsfromthe un-irradiatedlevelat∼−80◦Cby∼123Kto∼43C;

-AccordingtoFig.7theFTTTofEUROFER97shiftsfromthe un-irradiatedlevelat∼−108◦Cby∼220Kto∼112C.

HoweversinceFigs.7and8arebasedonmaterialsamples irra-diatedinfissionreactors,Heliumproductioninthematerialthat willoccurduetoirradiationwithhighenergyneutronsgeneratedin thefusionreactionisnottakenintoaccount.InRef.[3]aDBTTshift intherange0.5–0.6K/appmHeisestimatedonthebaseofCharpy impactexperimentsonborondopedmodelsteels.Henceforour caseof100appmHeanadditionalshiftoftheDBTTof50–60Kis expected.Correspondingexaminationsofheliumeffectsonthe

FTTTshiftarenotknowntotheauthorsandareassumedhere tobeofsimilarmagnitude.Thisassumptionneedstobevalidated infuturebutisassumedtobeconservative.

Henceforanirradiationdamageof6dpatheDBTTof EURO-FER97isconsideredat∼100◦C,theFTTTat∼180C.

5. Conclusions

Inthis articlethelowerlimitof allowedoperation tempera-turewindowwasdefinedforreducedactivationsteelEUROFER97 as structural material of DEMO divertor body. The underlying rationale and supporting experimental data from a number of irradiationtests were presented.The motivation of this survey studywastoexplorethepossibilitytouseEUROFER97for water-cooleddivertorcassetteattemperaturesbelow350◦Cwhichhas beenregarded aslimit temperatureto preserveductilityunder irradiation.Literature databasedonthestandard MasterCurve methodologyshowedthattheFTTTofEUROFER97at6dpa(the expected maximum doseof cassette body after 2fpy) is about 180◦Ctaking theembrittlementdue toheliumproductioninto account. Thisresult imposes theguideline on thecoolant inlet temperatureofthedivertorcassette.Attentionshouldbepaidto off-normalshutdowneventswherethetemperaturepathmayfall belowFTTTafteralong-termnuclearoperation.

Acknowledgement

This work has been carried out within the framework of theEUROfusionConsortium and hasreceivedfundingfromthe Euratomresearchandtrainingprogramme2014–2018undergrant agreementNo633053.Theviewsandopinionsexpressedhereindo notnecessarilyreflectthoseoftheEuropeanCommission.

References

[1]J.H.You,etal.,FusionEng.Des.109–111(2016)1598–1603.

[2]F.Romanelli,FusionElectricity–RoadmaptotheRealizationofFusion Energy,EFDA,2012.

[3]E.Gaganidze,etal.,AssessmentofneutronirradiationeffectsonRAFMsteels, FusionEng.Des.88(2013)118–128.

[4]S.J.Zinkle,Multimodaloptionsformaterialsresearchtoadvancethebasisfor fusionenergyinITERera,Nucl.Fusion53(2013)104024.

[5]D.DeMeis,“StructuralMaterialsforDEMO,RT/2015/25/ENEA(2015).

[6]D.Stork,etal.,AssessmentoftheEUR&DProgrammeonDemoStructuraland High-heatFluxMaterials,EFDA,2012,EFDAD2MJ5EU.

[7]G.Aiello,etal.,Assessmentofdesignlimitsandcriteriarequirementsfor EuroferstructuresinTBMcomponents,J.Nucl.Mater.414(2011)53–68.

[8]N.Baluc,etal.,Onthepotentialityofusingferritic/martensiticsteelsas structuralmaterialsforfusionreactor,Nucl.Fusion44(January1)(2004) 56–61.

[9]C.Petersen,etal.,MechanicalPropertiesofReducedActivation Ferritic/martensiticSteelsAfterEuropeanReactorIrradiations,2006.

[10]WP-DIVNeutronicsloadsassessment2015 2MXM8Gv11.

Riferimenti

Documenti correlati

Per amministrazioni pubbliche si intendono tutte le amministrazioni dello Stato, ivi compresi gli istituti e scuole di ogni ordine e grado e le istituzioni educative, le aziende

Culture characteristics — (in the dark, 25 °C after 2 wk): Colonies on potato-dextrose agar, malt extract agar and oat- meal agar erumpent, spreading, with even, smooth margin

[r]

We searched for high-energy neutrinos from the first binary neutron star merger detected through GWs, GW170817, in the energy band of [∼10 11 eV, ∼10 20 eV ] using the A NTARES

Attraverso questa analisi si è cercato in primo luogo di definire le principali analogie e differenze delle politiche occupazionali adottate dagli Stati membri

There were 11 instruments onboard Rosetta, and we used data obtained by two remote sensing units to determine the thermal properties of the surface and subsurface: MIRO ( Gulkis et

Questo non succede però nei primi tempi, ad esempio nelle lettere al cardinale Colonna, che mostrano assoluto rispetto verso l’atteggiamento paternalistico del cardinale nei

Abstract — This paper emphasizes for the first time the link existing between some small-signal power gain circles and the output load of maximum power in GaAs HBTs.. We use