Dispositivi e sensori a semiconduttore organico
Annalisa Bonfiglio
University of Cagliari, Italy
[email protected]
1: Semiconduttori organici
2: Organic Thin Film Transistors (OTFT)
Outline prima parte
Proprieta’ degli orbitali del Carbonio Molecole coniugate
Semiconduttori organici: orbitali molecolari e bandgap
Portatori di carica e trasporto nei semiconduttori organici
Influenza della morfologia sul comportamento
elettrico dei film sottili organici
E
2s 2p
Fundamental
state hybrid sp3
sp3
hybrid sp
2p
sp
hybrid sp2
2p
sp2
c c c c c
1σ 1π
134 pm 1σ
154 pm 1σ 2π
120 pm
Hybridization of orbitals in Carbon
C C
H
H H
H Π bonding
σ bonding σ bonding
C C
H H
H H
H H C C H H
Carbon-Carbon bonding
fig.1.1: un atomo di carbonio ibridizzato sp2 [3].
Hybrid orbital sp2 Top view Side view
Hybridization of orbitals in Carbon
fig.1.2: la sovrapposizione orbitalica nel doppio legame carbonio-carbonio [3].
Molecular Orbital= linear combination of atomic orbitals (LCAO)
Carbon-Carbon bonding
C C
H
C C
C H
C H
H H
H
C C
H
C C
C H
C H
H H
H
C C
H
C C
C H
C H
H H
C6H6
H
C C
H
C C
C H
C H
H H
H
Real molecule Limit
formula
Coniugated molecules
Limit formula
MEH-PPV LPPPT PTV
A B C
D E F
fig.1.6: struttura molecolare di: A) trans-poliacetilene (PA); B) poli-para-fenilene (PPP); C) poli-fenile-vinilene (PPV); D) poli-pirrolo (PPy); E) poli-tiofene (PT); F) poli- furano (PF) [4].
Coniugated molecules
fig.1.7: orbitali molecolari π leganti e antileganti [3].
Band Gap
Legame Energia di legame (kJ • mol-1) C—C
C—H C—O C—S C—F C—Cl C—Br C—I
350 410 350 260 440 330 280 240
Legame Energia di legame (kJ • mol-1) Si—Si
Si—H Si—O Si—S Si—F Si—Cl Si—Br Si—I
180 300 370 230 540 360 290 210
fig.1.10: funzioni d’onda dell’elettrone π nella buca di potenziale profonda infinito [6].
L = coniugation length = length of the shortest molecular segment with a perfect alternation of single and double bonds; N= number of atoms (each with 2 electrons); d = atomic distance
2 2 2
8mL h
E
n= n ( )
2 2 2
8 ) 2
( m Nd
N h HOMO
E
⎟⎠
⎜ ⎞
⎝
⎛
=
( )2
2 2
8 2 1 )
( m Nd
N h LUMO
E
⎟⎠
⎜ ⎞
⎝
⎛ +
=
( )
( ) md N
h Nd
m h HOMO N
E LUMO E
EG 2
2 2
2 2
8 8 ) 1 (
)
( + ≈
=
−
=
The highest N, the lowest the gap
Band Gap
Charge transport in organic semiconductors
Å
nm
µm
Intrachain Interchain Intergrain
+
3 coesistent mechanisms+ charge injection from contacts
Measurements difficult to explain
Charge transport in organic semiconductors
Doping and charge transport
In inorganic semiconductor, doping is substitutional and causes an increase in free charge carrier concentration. These carriers move in a periodic potential with no interaction with the crystal (band model).
In organic, doping is not substitutional: supplementary charge physically interact with molecules causing a perturbation in the coniugated chain.
This perturbation (charge + deformation induced by the charge) is called polaron
In analogy with inorganic semiconductors, the polaron can be roughly described as a charge free of moving along the chain strongly interacting with the semiconductor lattice
m eff (polaron) >> m eff (free charge carrier)
è mobility (polaron) << mobility (free charge carrier)
Doping and charge transport
Intermolecular transport: hopping
hopping = tunneling between crossing chains
To move, the charge carrier needs energy that can be provided by phonons (increasing with temperature)
T k d e
B J
D ⋅ ⋅
= ⋅ µ τ
2
2 σ( T )= σo ( T )⋅exp[-( To /T )1/(1+d)]
But, in organic materials there is a great variety of behaviour from material to material. A unifying theory has not yet been developed.
Intermolecular transport: hopping
Materials for “Plastic Electronics”
Intergrain transport: Pentacene (C
22H
14)
• 5 benzene rings
• Non soluble. Deposited by evaporation
• Molecules stand perpendicular to the substrate.
• Molecules form separated domains (grains)
15Å
15Å
Conduction:
- hopping
- thermically activated
- limited by traps at grain boundaries
Correlation btw grain dimensions and mobility
traps bulk µ
µ µ
1 1
1 = +
Intergrain transport: Pentacene (C
22H
14)
8 10 12 14 16 18 20 0.000
0.005 0.010 0.015 0.020 0.025 0.030
Frequency
height (nm)
500 nm
Influence of surface morphology
1 µm 1 µm
Pentacene on Mica Pentacene on SiO
2Influence of surface morphology
1 µm
Pentacene on SiO
2Pentacene on Mylar
1 µm
Influence of surface morphology
Outline seconda parte
Organic Thin Film Transistors (OTFTs)
Contatti metallo-semiconduttore organico Comportamento elettrico degli OTFT
Modello elettrico del dispositivo
Tecnologia
++++++++++++++++++++++++++
Source Drain
semiconductor
Insulating layer
OTFT = ORGANIC THIN FILM TRANSISTOR
Field Effect Transistors
Interface metal - semiconductor
Gate
Charge injection from metal contacts
TFT model was first developed for poorly
conductive semiconductors like amorphous Si
Tipically p-type!
Thin Film Transistor
++++++++++++++++++++++++++
Source Drain
semiconductor
Insulating layer
0 -20 -40 -60 -80 -100 0
-10µ -20µ -30µ -40µ -50µ a)
Vg=100V Vg=80V Vg=60V Vg=40V Vg=20V Vg=0V Vg=-20V Vg=-40V Vg=-60V Vg=-80V Vg=-100V
I D(A)
VD(V)
How an OTFT works
Typical values:
µ ~ 10
-2: 10
-1Ion/Ioff ~10
4:10
5V
T~ -10:+10 V Linear region:
Saturation region:
( )
( )
22 1
T G
ox D
D T G
ox D
V L V
C Z I
V V L V
C Z I
−
=
−
=
µ µ
off T
on
V
I
I , µ ,
Important parameters:
(
G T)
ox G sat
D
V V
L C Z
V
I = −
∂
∂ µ
100,0 50,0 0,0 -50,0 -100,0 0,0
-500,0n -1,0µ -1,5µ -2,0µ
-2,5µ Bottom Contact Au electrodes Vt=-7.5V
µ=5.2x10-3cm2/Vs Z/L=53
I D(A)
VG(V)
Ioff Ion
Equations and extraction of parameters
Structures and fabrication techniques
Bottom gate
Top gate
Si/SiO2 substrate
Substrate-free
Free- standing insulating
layer
S OSC D
G I
Contact scheme channel Top contact
Bottom contact Bottom contact Bottom contact
S OSC D
G I
Contact
scheme
channel
OSC
Materials and fabrication techniques
S OSC D
G I
Contact scheme channel Materials:
Electrodes: metals, conductive polymers Insulating layers: polyimide, PVA, PVP,…
Organic semiconductors
Solution processable
Polymers Small molecules
(deposited by
evaporation)
Low cost technique for liquid phase materials
Deposition
Spin up
Spin off Spin down
Process parameters:
1. Spin up time 2. Spin speed 3. Spin off time 4. Spin down time 5. Dewetting time 6. Dewetting T
Thermal annealing (dewetting)