• Non ci sono risultati.

Dispositivi e sensori a semiconduttore organico

N/A
N/A
Protected

Academic year: 2021

Condividi "Dispositivi e sensori a semiconduttore organico"

Copied!
37
0
0

Testo completo

(1)

Dispositivi e sensori a semiconduttore organico

Annalisa Bonfiglio

University of Cagliari, Italy

annalisa@diee.unica.it

(2)

1: Semiconduttori organici

2: Organic Thin Film Transistors (OTFT)

(3)

Outline prima parte

Proprieta’ degli orbitali del Carbonio Molecole coniugate

Semiconduttori organici: orbitali molecolari e bandgap

Portatori di carica e trasporto nei semiconduttori organici

Influenza della morfologia sul comportamento

elettrico dei film sottili organici

(4)
(5)

E

2s 2p

Fundamental

state hybrid sp3

sp3

hybrid sp

2p

sp

hybrid sp2

2p

sp2

c c c c c

1σ 1π

134 pm 1σ

154 pm 1σ 2π

120 pm

Hybridization of orbitals in Carbon

(6)

C C

H

H H

H Π bonding

σ bonding σ bonding

C C

H H

H H

H H C C H H

Carbon-Carbon bonding

(7)

fig.1.1: un atomo di carbonio ibridizzato sp2 [3].

Hybrid orbital sp2 Top view Side view

Hybridization of orbitals in Carbon

(8)

fig.1.2: la sovrapposizione orbitalica nel doppio legame carbonio-carbonio [3].

Molecular Orbital= linear combination of atomic orbitals (LCAO)

Carbon-Carbon bonding

(9)

C C

H

C C

C H

C H

H H

H

C C

H

C C

C H

C H

H H

H

C C

H

C C

C H

C H

H H

C6H6

H

C C

H

C C

C H

C H

H H

H

Real molecule Limit

formula

Coniugated molecules

Limit formula

(10)

MEH-PPV LPPPT PTV

A B C

D E F

fig.1.6: struttura molecolare di: A) trans-poliacetilene (PA); B) poli-para-fenilene (PPP); C) poli-fenile-vinilene (PPV); D) poli-pirrolo (PPy); E) poli-tiofene (PT); F) poli- furano (PF) [4].

Coniugated molecules

(11)

fig.1.7: orbitali molecolari π leganti e antileganti [3].

Band Gap

Legame Energia di legame (kJ • mol-1) C—C

C—H C—O C—S C—F C—Cl C—Br C—I

350 410 350 260 440 330 280 240

Legame Energia di legame (kJ • mol-1) Si—Si

Si—H Si—O Si—S Si—F Si—Cl Si—Br Si—I

180 300 370 230 540 360 290 210

(12)

fig.1.10: funzioni d’onda dell’elettrone π nella buca di potenziale profonda infinito [6].

L = coniugation length = length of the shortest molecular segment with a perfect alternation of single and double bonds; N= number of atoms (each with 2 electrons); d = atomic distance

2 2 2

8mL h

E

n

= n ( )

2 2 2

8 ) 2

( m Nd

N h HOMO

E

=

( )2

2 2

8 2 1 )

( m Nd

N h LUMO

E

+

=

( )

( ) md N

h Nd

m h HOMO N

E LUMO E

EG 2

2 2

2 2

8 8 ) 1 (

)

( +

=

=

The highest N, the lowest the gap

Band Gap

(13)

Charge transport in organic semiconductors

Å

nm

µm

(14)

Intrachain Interchain Intergrain

+

3 coesistent mechanisms+ charge injection from contacts

Measurements difficult to explain

Charge transport in organic semiconductors

(15)

Doping and charge transport

In inorganic semiconductor, doping is substitutional and causes an increase in free charge carrier concentration. These carriers move in a periodic potential with no interaction with the crystal (band model).

In organic, doping is not substitutional: supplementary charge physically interact with molecules causing a perturbation in the coniugated chain.

This perturbation (charge + deformation induced by the charge) is called polaron

(16)

In analogy with inorganic semiconductors, the polaron can be roughly described as a charge free of moving along the chain strongly interacting with the semiconductor lattice

m eff (polaron) >> m eff (free charge carrier)

è mobility (polaron) << mobility (free charge carrier)

Doping and charge transport

(17)

Intermolecular transport: hopping

hopping = tunneling between crossing chains

To move, the charge carrier needs energy that can be provided by phonons (increasing with temperature)

T k d e

B J

D ⋅ ⋅

= ⋅ µ τ

2

2 σ( T )= σo ( T )⋅exp[-( To /T )1/(1+d)]

(18)

But, in organic materials there is a great variety of behaviour from material to material. A unifying theory has not yet been developed.

Intermolecular transport: hopping

(19)

Materials for “Plastic Electronics”

Intergrain transport: Pentacene (C

22

H

14

)

•  5 benzene rings

•  Non soluble. Deposited by evaporation

•  Molecules stand perpendicular to the substrate.

• Molecules form separated domains (grains)

15Å

15Å

(20)

Conduction:

- hopping

-  thermically activated

-  limited by traps at grain boundaries

Correlation btw grain dimensions and mobility

traps bulk µ

µ µ

1 1

1 = +

Intergrain transport: Pentacene (C

22

H

14

)

(21)

8 10 12 14 16 18 20 0.000

0.005 0.010 0.015 0.020 0.025 0.030

Frequency

height (nm)

500 nm

Influence of surface morphology

(22)

1 µm 1 µm

Pentacene on Mica Pentacene on SiO

2

Influence of surface morphology

(23)

1 µm

Pentacene on SiO

2

Pentacene on Mylar

1 µm

Influence of surface morphology

(24)

Outline seconda parte

Organic Thin Film Transistors (OTFTs)

Contatti metallo-semiconduttore organico Comportamento elettrico degli OTFT

Modello elettrico del dispositivo

Tecnologia

(25)

++++++++++++++++++++++++++

Source Drain

semiconductor

Insulating layer

OTFT = ORGANIC THIN FILM TRANSISTOR

Field Effect Transistors

Interface metal - semiconductor

Gate

(26)

Charge injection from metal contacts

(27)

TFT model was first developed for poorly

conductive semiconductors like amorphous Si

Tipically p-type!

Thin Film Transistor

++++++++++++++++++++++++++

Source Drain

semiconductor

Insulating layer

0 -20 -40 -60 -80 -100 0

-10µ -20µ -30µ -40µ -50µ a)

Vg=100V Vg=80V Vg=60V Vg=40V Vg=20V Vg=0V Vg=-20V Vg=-40V Vg=-60V Vg=-80V Vg=-100V

I D(A)

VD(V)

(28)

How an OTFT works

(29)

Typical values:

µ ~ 10

-2

: 10

-1

Ion/Ioff ~10

4

:10

5

V

T

~ -10:+10 V Linear region:

Saturation region:

( )

( )

2

2 1

T G

ox D

D T G

ox D

V L V

C Z I

V V L V

C Z I

=

=

µ µ

off T

on

V

I

I , µ ,

Important parameters:

(

G T

)

ox G sat

D

V V

L C Z

V

I = −

∂ µ

100,0 50,0 0,0 -50,0 -100,0 0,0

-500,0n -1,0µ -1,5µ -2,0µ

-2,5µ Bottom Contact Au electrodes Vt=-7.5V

µ=5.2x10-3cm2/Vs Z/L=53

I D(A)

VG(V)

Ioff Ion

Equations and extraction of parameters

(30)

Structures and fabrication techniques

Bottom gate

Top gate

Si/SiO2 substrate

Substrate-free

Free- standing insulating

layer

S OSC D

G I

Contact scheme channel Top contact

Bottom contact Bottom contact Bottom contact

S OSC D

G I

Contact

scheme

channel

OSC

(31)

Materials and fabrication techniques

S OSC D

G I

Contact scheme channel Materials:

Electrodes: metals, conductive polymers Insulating layers: polyimide, PVA, PVP,…

Organic semiconductors

Solution processable

Polymers Small molecules

(deposited by

evaporation)

(32)

Low cost technique for liquid phase materials

Deposition

Spin up

Spin off Spin down

Process parameters:

1.  Spin up time 2.  Spin speed 3.  Spin off time 4.  Spin down time 5.  Dewetting time 6.  Dewetting T

Thermal annealing (dewetting)

Adv: simple and low cost

Fabrication techniques - Spin Coating

(33)

1) 2)

3) 4)

5) 6)

Fabrication technique – Soft Lithography

(34)

Inks instead of resist for patterning metals

Fabrication technique – Soft Lithography

(35)

MicroContact Printing

Fabrication technique – Soft Lithography

(36)

Printing & Roll to Roll

Printing

(37)

Possible applications for OTFTs

Riferimenti

Documenti correlati

[r]

The purpose of this study was, therefore, to verify the effect of these ionic liquids as enhancers of the in vitro transdermal permeation and skin retention of diltiazem, a drug

When compared with patients with both low GFR and albuminuria, diabetic patients with isolated reduction of GFR were more often females, showed similar age, shorter duration

Si confronti il risultato esatto con il risultato che si ottiene applicando la teoria delle perturbazioni dipendenti dal tempo al

ii) Si scriva lo stato corrispondente allo spin totale massimo come stato prodotto degli stati di spin delle singole particelle.. iii) Se al sistema di aggiunge una terza particella

Se nella fase precedente il sisma sono sostanzialmente Regenerative capabilities legate alla riconfigurazione delle proprie routine organizzative e manageriali le competenze

Così inteso, lo scenario ecosistemico della biodiversità quale proto-forma di una relazione estetica (dal momento che la stessa biodiversità può essere colta soltanto

Our data demonstrated that acibenzolar-S-methyl applied as seed treatment at 0.05 mg/kg of seeds significantly reduces downy mildew incidence on basil without any negative effect