• Non ci sono risultati.

Effective Exploitation of the Information Content of Noisy Data in Inverse Scattering Problems: a Fuzzy-Logic-Based Strategy

N/A
N/A
Protected

Academic year: 2021

Condividi "Effective Exploitation of the Information Content of Noisy Data in Inverse Scattering Problems: a Fuzzy-Logic-Based Strategy"

Copied!
6
0
0

Testo completo

(1)

UNIVERSITY

OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo – Trento (Italy), Via Sommarive 14

http://www.disi.unitn.it

EFFECTIVE EXPLOITATION OF THE INFORMATION CONTENT

OF NOISY DATA IN INVERSE SCATTERING PROBLEMS: A

FUZZY-LOGIC-BASED STRATEGY

A. Casagranda, M. Donelli, D. Franceschini, and A. Massa

January 2011

(2)
(3)

CONTENT OF NOISY DATA IN INVERSE SCATTERING

PROBLEMS: A FUZZY-LOGIC-BASED STRATEGY

Aronne Casagranda*, Massimo Donelli*, Davide Fran es hini*, and Andrea Massa*

*ELEDIAResear h Group DIT

UniversityofTrento-ViaSommarive,14-38050Trento-ITALY

E-mail: {aronne. asagranda, massimo.donelli, davide.fran es hini, andrea.massa}dit.unitn.it Web-site: http://www.eledia.ing.unitn.it

Abstra t. One of the main drawba ks when dealing with inverse s attering problems is their in-trinsi ill- onditioned nature, emphasized by the presen e of the noise in the measured data. In order to avoid/limit this drawba k, this paper presents an innovative fuzzy-logi -based approa h. The proposed fuzzy system allows totake into a ount the orrupted nature of the data in a simple and ee tive way. The ee tiveness of the proposed inversion strategy is shown by omparing the a hieved results withthose obtained withstate-of-the-art inverse s attering te hniques.

1. Introdu tion

In the framework of the mi rowave imaging, some of the main di ulties in the re onstru tion pro ess are ertainlydue to theill-posedness oftheinverse problemand to thenoisynature ofthe available measureddata.

Inpra ti alsituations,experimentalandenvironmentalnoisesaddtothes atteredsignalsduetothe me hani al positioning of the ele tromagneti eld sensors or to the ele tromagneti interferen es in the test- hamber. These fa tors signi antly ae t the result of the ele tromagneti imaging pro ess ( hara terized byan highintrinsi instability), leading to ina urate re onstru tions ofthe s enariounder test.

In the framework of spatial-domain pro edures, this drawba k is generally over ome by reformu-latingtheoriginal inverse s attering probleminthe minimizationof asuitable ost fun tion. Su h a fun tion provides ameasure of the tting between there onstru ted and theavailable data or-ruptedbythenoise. Itis omposedoftwoterms: thedatatermandthestatetermwhi hdependon thes attered eldinthe observation domain andon thein ident eld intheinvestigation domain, respe tively. Suitable multipli ative regularization parameters allows one to weight more the one or theotherterm, dependingon theun ertainties asso iatedwith both of them.

In order to properly exploit the information- ontent available in thenoisy data, theproposed ap-proa h avoids a dire t estimation of the reliability of thes attering data (be ause of the ost and the omplexity of su h an estimate) and it takesinto a ount the presen e of thenoise through a strategy based ona fuzzy logi [1 ℄. The fuzzy systemdeterminesthe values of theweighting regu-larization parameters estimating, in an unsupervised way, the degree of reliability of theavailable data.

The paper is organizedasfollows. In Se tion 2, themathemati al formulation of theinverse s at-tering problem is briey resumedand ades ription of the fuzzy-logi -based approa h is presented (Se t. 3). Se tion4shows asetofsele tednumeri al resultsinordertopointout theimprovement brought by the fuzzysystem. Analdis ussionis reportedin Se tion 5.

2. Inverse Problem Formulation

Referringtoatwo-dimensional problem hara terized bya ylindri al geometry,asetof

T M

plane waves (

E

inc

(4)

ele tromagneti parameters(ortheobje tfun tion

τ (x, y)

)havetobedetermined. Theba kground mediumis assumedto be homogeneous ( hara terized by adiele tri permittivity

ε

0

)and lossless. Therelation between diele tri propertiesof theinvestigation domainand s atteredelds is math-emati ally des ribed through the well-known integral inverse s attering equations [2℄. Their dis- retized version, obtained subdividing the investigationdomain by

N

re tangular basisfun tions, isreported in(1)and (3):

ST AT E

n

τ (x

n

, y

n

); E

v

tot

(x

n

, y

n

)

o

= E

v

tot

(x

n

, y

n

) − j

k

2

0

4

N

X

p=1

τ (x

p

, y

p

)E

v

tot

(x

p

, y

p

)G

v

2D

(x

n

, y

n

|x

p

, y

p

)

(1) where

G

v

2D

(x

m

, y

m

|x

n

, y

n

) =

(j/2)

h

πk

0

a

p

H

1

(2)

(k

0

a

p

) − 2j

i

if p = n

(jπk

0

a

n

/2)H

0

(2)

(k

0

ρ

v

mn

)J

1

(k

0

a

n

)

otherwise

(2) and

DAT A

n

τ (x

n

, y

n

); E

v

tot

(x

n

, y

n

)

o

= j

k

2

0

4

N

X

n=1

τ (x

n

, y

n

)E

v

tot

(x

n

, y

n

)G

v

2D

(x

m

, y

m

|x

n

, y

n

)

(3) where

G

v

2D

(x

m

, y

m

|x

n

, y

n

) = (jπk

0

a

n

/2)H

0

(2)

(k

0

ρ

v

mn

)J

1

(k

0

a

n

)

(4)

J

1

,

H

(2)

0

,and

H

(2)

1

beingtheBesselfun tionofrstkindandthe0-th andrst-orderHankelfun tion ofthese ondkind,respe tively;

E

tot

v

(x

n

, y

n

)

istheunknownele tri eldintheinvestigationdomain

and

ρ

v

mn

=

r



x

m

(v)

− x

n



2

+



y

m

(v)

− y

n



2

.

Through a multi-view/multi-illumination measurement system the data of the inverse s attering problemarea quired. Thes attered ele tri eld

E

scatt

v

(x

m

(v)

, y

m

(v)

)

is olle ted atea h view,

v =

1, ..., V

,in

M

(v)

measurementpointsequally-spa edalonga ir ularobservationdomain. Moreover, thein ident eld

E

inc

v

(x, y)

ismeasured, without thes atterer,intheinvestigation domain. Then, theobje tfun tion

τ (x

n

, y

n

)

aswellas

E

tot

v

(x

n

, y

n

)

areretrieved aftertheminimizationofa suitable ostfun tion dened,a ording to thefuzzy-logi approa h, inSe tion 3.

3. The Fuzzy-Logi -Based Approa h

Thefuzzy-logi systema tsbetweenthedataa quisitionandthedenitionofthe ostfun tiontobe minimized,bydeterminingthevaluesofasetofweighting oe ients(

α

m

v

and

β

n

v

,

m

(v)

= 1, ..., M

(v)

,

v = 1, ..., V

,

n = 1, ..., N

) that expressthe reliability ofea h sampleofthemeasured s atteredand in ident eld. Consequently, the arising ost fun tion turnsout to be

Φ



τ (x

n

, y

n

); E

v

tot

(x

n

, y

n

)

=

P

V

v

=1

P

M(v)

m

=1

α

m

v

|

E

scatt

v

(x

m

,y

m

)−ℑ

DAT A

{

τ(x

n

,y

n

);E

tot

v

(x

n

,y

n

)

}|

2

P

V

v=1

P

M(v)

m

=1

|E

scatt

v

(x

m

,y

m

)|

2

+

P

V

v

=1

P

N

n

=1

β

n

v

|

E

inc

v

(x

n

,y

n

)−ℑ

ST AT E

{

τ(x

n

,y

n

);E

tot

v

(x

n

,y

n

)

}|

2

P

V

v

=1

P

N

n

=1

|E

inc

v

(x

n

,y

n

)|

2

(5)

(5)

thefollowing oe ients

η

v

m

=

E

scatt

v

(x

m

,y

m

)

E

tot

v

(x

m

,y

m

)

max {η

m

v

}

ξ

v

n

=

E

v

inc

(x

n

, y

n

)

max {ξ

n

v

}

v = 1, ..., V ; m

(v)

= 1, ..., M

(v)

(6)

Then, the fuzzy ation step follows. Let us dene a set of heuristi ally-dened rules

, om-posed by a set of ante edents (

Λ

) and relative onsequen es (

C

). The system inputs (

η

m

v

, ξ

v

n

) are transformedinto theirfuzzy ounterparts(

ϕ (η

v

m

) , ϕ (ξ

n

v

)

)byasso iatingtoea hsampleagaussian membership fun tion [1℄. Su h a pro ess allows to a tivate a rule a ordingto thedegree of simi-larity between

ϕ(•)

and the ante edent of the rule in

Λ

. An a tivated rule is hara terized byan a tivationvaluethatdeterminesthe degreeoftruthofevery onsequen eof

C

. Finallya defuzzier providesthereliabilityindex(

α

v

m

, β

n

v

)by onsideringthe ompositionofthea tivated onsequen es of

C

.

Su essively, the ost fun tion (whereea h measured data ontributes a ording to own reliability index)is minimizedbymeans ofa suitablegradient-based minimization algorithm [3℄.

4. Numeri al Results

To assess the ee tiveness of the proposed fuzzy-based methodology, the referen e square (

1.2 λ

0

-sided) ylindri alprole(

τ = 1.0 + j0.0

)hasbeen onsidered(Fig. 1(a)). Theinvestigationdomain (

4 λ

0

in side),dis retizedin

N = 100

square ells, hasbeen illuminatedthrough asetof

V = 8

TM planewaves. Theinversiondata, hara terized byawhitegaussiannoise with

SN R = 10 dB

,have been olle ted in

M

(v)

= 35 (v = 1, .., V )

measurement points.

For omparison purposes, theresults when the fuzzy system is onsidered have been ompared to those of a standard approa h. The quality improvement inthe nal re onstru tion an be learly observed in Fig. 1( ) (with respe t to Fig. 1(b) where the prole retrieved with the standard pro edureisshown). For ompleteness,Figure2 showsa omparison between thede reasingofthe ost fun tionduring the iterative minimization pro esswithand without thefuzzysystem.

5. Con lusions

In this paper, an innovative approa h to inverse s attering problems has been presented. The approa h allowsasimple andee tiveintrodu tion oftheinformation onthereliabilityof olle ted noisy data. Su h an information is introdu ed into the ost fun tion to be minimized through suitableregularization oe ientsdetermined bymeansofafuzzy-logi system. Theadvantagesof thefuzzy-logi -based strategy overstandard inversionapproa hes have been preliminarilyassessed by onsidering aset ofnumeri al experiments.

(6)

x

y

x

y

x

y

1.0

Re {τ (x, y)}

0.0

1.0

Re {τ (x, y)}

0.0

1.0

Re {τ (x, y)}

0.0

(a) (b) ( )

Figure1. A tualprole(a). Re onstru tedproleobtainedwith(b)theStandardTe hniqueand( )with theFuzzyStrategy.

0.01

0.1

1

10

0

200

400

600

800

1000

1200

1400

Φ

iterations number

Standard

(Fuzzy-Logic)-based Approach

Figure 2. Behaviorofthe ostfun tion

Referen es

[1℄ L.A. Zadeh,Fuzzy Sets, Informationand Control, vol.8,pp.338-353, 1965.

[2℄ S. Caorsi, M. Donelli, D. Fran es hini, A. Massa, and M. Pastorino, Mi rowave imaging of two-dimensional s atterers using an iterative multi-s aling methodology, in Pro . Jina2002, pp.293-296, vol.2,Ni e,Fran e, 12-14November2002.

[3℄ H.Harada, D.J.Wall,T. T.Takenaka,andT. Tanaka,Conjugategradient methodapplied to inverse s attering problems, IEEE Trans. Antennas Propagat., vol. 43,pp.784-792, 1995.

Figura

Figure 1. A
tual prole (a). Re
onstru
ted prole obtained with (b) the Standard Te
hnique and (
) with the F uzzy Strategy.

Riferimenti

Documenti correlati

Tutto ciò assume particolare rilevanza alla luce dei cambiamenti climatici in atto, in particolare i cambiamenti nell’intensità e nella varianza dei processi che

Firstly, we analyzed a real dataset coming from the sequencing of an Ion Torrent targeted gene panel observing a high discrepancy between TVC and GATK, particularly for

Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks3. Taira Giordani, 1 Emanuele Polino, 1 Sabrina Emiliani, 1 Alessia Suprano, 1 Luca Innocenti,

Atomic resolution images (high-angle annular dark-field scanning TEM (HAADF-STEM)) were used to obtain the experimental strain fields of two different pairs of parallel threading

Studies included in the analysis relative to in situ L. monocytogenes inactivation in fermented sausages. Range a/a Reference No. monocytogenes strain Type of fermented sausage

A solution of freshly prepared bromo(methoxy)methyl trimethylsilane (4.24 mmol) (obtained from methoxymethyl trimethylsilane and bromine in CCl4) was slowly added at room

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing

Nella sua esperienza lavorativa, le aziende che si sono rivolte al suo studio presentavano, prima del turnaround e facendo riferimento alle caratteristiche sia