• Non ci sono risultati.

Experimental setup for the identification of mitochondrial protease substrates by shotgun and top-down proteomics

N/A
N/A
Protected

Academic year: 2021

Condividi "Experimental setup for the identification of mitochondrial protease substrates by shotgun and top-down proteomics"

Copied!
3
0
0

Testo completo

(1)

Experimental

setup

for

the

identi

fication

of

mitochondrial

protease

substrates

by

shotgun

and

top-down

proteomics

Alice

Di

Pierro

a

,

Heather

Bondi

a,b

,

Chiara

Monti

a,b

,

Luisa

Pieroni

c,d

,

Enrico

Cilio

c,d

,

Andrea

Urbani

c,d

,

Tiziana

Alberio

a,b,

*

,

Mauro

Fasano

a,b,

*

,

Maurizio

Ronci

e

aDepartmentofScienceandHighTechnology,UniversityofInsubria,I-21052BustoArsizio,Italy b

CenterofNeuroscience,UniversityofInsubria,I-21052BustoArsizio,Italy

c

SantaLuciaIRCCSFoundation,I-00143Rome,Italy

d

DepartmentofExperimentalMedicineandSurgery,UniversityofRome“TorVergata”,I-00133Rome,Italy

e

Dept.ofMedical,OralandBiotechnologicalSciences,University“G.D'Annunzio”ofChieti-Pescara,I-66013Chieti,Italy

ARTICLE INFO Articlehistory:

Received18November2015

Receivedinrevisedform25January2016 Accepted16February2016

Availableonline22February2016 Keywords: Mitochondria Protease Shotgun Top-down Electroelution ABSTRACT

Mitochondriapossessaproteolyticsystemthatcontributestotheregulationofmitochondrialdynamics, mitochondrialbiogenesisandmitophagy.Weaimedattheidentificationbybottom-upproteomicsof altered protein processingdue totheactivationof mitochondrialproteases in acellular modelof impaireddopaminehomeostasis.Moreover,weoptimizedtheconditionsfortop-downproteomicsto identifythecleavagesitesequences.

ã2016TheAuthors.PublishedbyElsevierB.V.onbehalfofEuropeanProteomicsAssociation(EuPA).This isanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/

4.0/).

Proteomicsandgenomicsinvestigationsfortheidentification andcharacterizationofproteasesandtheirsubstratesareglobally referredtoasdegradomics.Proteasesarenotonlyinvolvedinthe degradationofunfoldedordamagedproteins,butservetoprovide asystembywhichproteinfunctionisregulated.Indeed,proteases catalyzeanirreversiblehydrolysisreactionregulatingactivityand localisationofmanyproteins[1].Mitochondriapossessahighly conserved, intraorganelle proteolytic system that conducts the surveillanceof proteinquality controlwithin mitochondria[2]. These proteases degrade damaged or unfolded proteins to peptides, which are subsequently either transferred out of the organelle orfurtherdegradedbymitochondrial oligopeptidases

[3]. Inadditiontotheirconventionalrole inthedegradationof misfoldedordamaged mitochondrial proteins,many mitochon-drial proteases take part in the regulation of proteins that orchestrate mitochondrial dynamics, mitochondrial biogenesis and mitophagy [4]. An alteration of mitochondrial proteases activityisdetrimentaltocellhealthandhasbeenlinkedtoaging

and to various diseases, including neurological disorders like spinocerebellarataxiaandParkinson'sdisease(PD)[5,6].Indeed, mutationsinthemitochondrialserineproteaseHTRA2havebeen associatedwithPDinsporadicpatients[7].Wepreviouslyreported a selective degradation of voltage-dependent anion-selective channel proteins (VDACs) induced by dopamine toxicity, in a cellularmodelofPD[8].However,bythecombinationofgel-based andgel-freetechniques,weobservedanaccumulationofVDACs proteolyticfragmentsinsidemitochondria,togetherwith proteo-lytic fragments belonging to other mitochondrial proteins [9]. These findings suggested that the impairment of dopamine homeostasis, one of the putative causes of sporadic PD, could induceanalterationofmitochondrialproteasefunctions,deeply compromising themitochondrial quality control systems.From this point of view, a more comprehensive characterization of mitochondrial proteases could provide new insights into PD pathogenesis.

This work was developed in the contextof the biology and diseaseactionofthemitochondrialhumanproteomeproject (mt-HPP) [10]. To understand protease functions it is of primary importancetodeterminetheirsubstratesandtheircleavagesite(s). Inordertoidentifywhichsubstratesweredifferentiallyprocessed bymitochondrialproteasesinacellularmodelfortheimpairment of dopamine homeostasis [11], we combined an in-gel

* Corresponding authors at: Department of Science and High Technology, UniversityofInsubria,I-21052BustoArsizio,Italy.Fax:+390332395599.

E-mailaddresses:tiziana.alberio@uninsubria.it(T.Alberio),

mauro.fasano@uninsubria.it(M.Fasano).

http://dx.doi.org/10.1016/j.euprot.2016.02.002

2212-9685/ã2016TheAuthors.PublishedbyElsevierB.V.onbehalfofEuropeanProteomicsAssociation(EuPA).ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

EuPAOpenProteomics11(2016)1–3

ContentslistsavailableatScienceDirect

EuPA

Open

Proteomics

(2)

fractionation of mitochondrial proteins, followed by shotgun proteomicsofselectedmolecularweightranges.

SH-SY5Yhumanneuroblastomacellsweretreatedornotwith 250

m

Mdopamine,inthepresenceof700U/mLofcatalasefor24h, in three independent replicates per condition. Mitochondrial enriched fractions were obtained by differential centrifugation accordingtostandardized guidelines developed bythe mt-HPP team[9].SampleswerelysedinRIPAbuffer(50mMTris-HClpH 7.6,150mMNaCl,1%sodiumdeoxycholate,1%NP-40and0.1%SDS) and30

m

gofmitochondrialproteinswereseparatedbySDS-PAGE electrophoresisonacrylamide/bisacrylamide16%gel.Threeslices indifferentmolecularweightranges(i.e.,40–25,25–15and15 10kDa) were manually excised (Fig. 1A), washed twice with 100mMNH4HCO3 in50% v/vacetonitrile (ACN)for 10min and subjectedtotrypsindigestion.Cysteineswerereducedwith10mM DTTin100mMNH4HCO3for45minat56Candalkylatedwith 55mM iodoacetamide (IAA) in 100mM NH4HCO3 at room temperaturefor30mininthedark.Gelsliceswerewashedtwice asdescribedaboveanddriedinavacuumcentrifuge.Thedrygel pieceswere incubated with digestion buffer(12ng/

m

L porcine trypsin,100mMNH4HCO3,10mMCaCl2and5%ACN)overnightat 37C.Afterabriefcentrifugation,supernatantscontaining

hydro-phylic peptides were saved in a new microcentrifuge tube. Hydrophobicpeptideswereextractedbyadding1%trifluoroacetic acid(TFA)andincubatingatroomtemperaturefor10minutesin agitation.Supernatantswerecollectedandpooledwiththefirst ones.Eventually,60%v/vACNand0.1%v/vTFAwereaddedtothe gelpiecesandafter10minutesvortexingthesupernatantswere collected,pooledtogetherandvacuumdried.Thedigestedsamples wereanalyzed by nano LC-MS/MS using a Proxeon EASY-nLCII (ThermoFisherScientific,Milan,Italy)coupledtothemaXisHD UHR-TOFmassspectrometer(BrukerDaltonics).Five

m

Lofsample wereinjectedandconcentratedonatrappingC18-A1EASYColumn (2cm,100

m

mI.D.,5

m

mp.s.,ThermoFisherScientific).Trapped

peptidesweresubsequentlyseparatedonaC18-AcclaimPepMap (25cm,75

m

mI.D.,5

m

mp.s.,ThermoFisherScientific)at0.3

m

L/ minwithagradientfrom2to45%Bin20min(eluents:A,0.1%FAin H2O; B, 0.1% FAin CH3CN).The raw datawereprocessed with PEAKS 7.5 and searched against UniProt SwissProt database (release 2015_03 including common MS contaminants 20,441 entries). The tolerances for the mass errorwere set to 15ppmand0.05Daforprecursorsandfragmentsrespectively,two missedcleavageallowed,carboamidomethylationofCysasfixed modificationandoxidationofMet,deamidationofAsnandGlnand acetylationofLyswereselectedasvariablemodifications. 10logP valueforpeptideswasadjustedtoprovideanFDRlowerthan0.1% atpeptideandproteinlevel.

Weemployedabottom-upapproachtodetecttheproteinsthat were present at a lower molecular weight compared to their theoretical one, indicating a possible proteolytic processing. Amongallidentifiedproteolyticfragments,onlythemitochondrial 60kDaheatshockprotein(HSPD1)andthemitochondrialporin VDAC1showedadifferentbehaviourbetweendopaminetreated cells and controls. Although HSPD1 resulted processed by proteasesinbothconditions,withproteolyticfragmentspresent in all gel-fractions, dopamine induced an accumulation of HSPD1 peptides in the25–15kDa region(Fig.1B). In linewith ourpreviousreports[8,9],dopamineinduceda decreaseof full lengthVDAC1(30kDa)alongwithanaccumulationofVDAC1small peptides(inthe25–15kDafraction)insidemitochondria(Fig.1C). Since all peptides identified by shotgun proteomics were trypsindigested,wewerenotabletoreconstructtheaminoacidic sequenceofprocessedsubstrates,sotodetecttheconsensussiteof proteases.Toovercometheselimitationsandidentifyproteolytic fragmentsgenerated inthemitochondriaafterdopamine treat-ment,wemovedtowardsatop-downapproach,whereproteinsare separated by electrophoretic or chromatographic techniques without any prior digestion of the sample. However, the

Fig.1.Bottom-upanalysisofmitochondrialproteolyticfragments.(A)Schematicrepresentationofgelslicinginthreefractionswithdifferentmolecularweightrange(i.e., 40–25,25–15and15–10kDa).(B)HSPD1proteolyticpeptidelevelsinthe40–25kDafraction(bottom)and25–15kDa(top).(C)VDAC1proteolyticpeptidelevelsinthe40– 25kDafraction(bottom)and25–15kDa(top).CTR:cellsundercontrolconditions,DA:cellstreatedwith250mMdopamine.MeanandSEMrefertothreeindependent replicates.Forfurtherdetailsseetext.

(3)

measurement of intact proteins presents many technical chal-lenges, especially for complex multiprotein samples, thus we focusedourefforts onestablishing a reliableprocedure for the preparation of protein samples for top-down proteomics. We decidedtoseparateproteinsthroughSDS–PAGE,cutthinslicesat theleveloflowerMWandelectroeluteeachprotein(orfragments) out of thegel.To this purpose, a homemadeelectroeluter was designedandassembledusingapolymethylmethacrilatesupport, milledtoobtaintheelutioncell(120.2cm).Thecellwasthen drilledtoallowtheinsertionoftwoplatinumelectrodes,plugged toapowersupply.Electroelutionconditionsettingwasoptimized usingprestainedproteinMWmarkers(PageRulerPlusPrestained ProteinLadder,10to250kDa,Thermo-Scientific),separatedinan acrylamide/bisacrylamide16%gel.Proteinbandsweremanually excised,placedintheelutercellandcoveredwith200

m

Lelution buffer(500mMNH4HCO3).Byapplyingaconstantcurrent(10mA), weobservedthat20minwereneededtoelutethe25kDa protein-marker,25minforthe35kDaproteinand30minforthe70kDa protein.Thebufferwascollectedassoonasthegelbandsbecame colourlessindicatingthecompleteelutionoftheproteins.Inorder toremoveSDSresiduesthatcouldinterferewithsubsequentMS analysis,sampleswereaddedwith20%v/vethanolandloadedinto anultrafiltrationcell(Vivaspin500MWCO3000DaPES,Sartorius) and centrifugedat 15000gto a finalvolume of 50

m

L. Then, retainedsampleswerecollectedinnewtubesandvacuumdried. Toverifytheefficiencyoftheproteinelution,driedsampleswere re-suspended in Laemmlibuffer and loadedon anacrylamide/ bisacrylamide16%gel.Afterblue-silverstaining[12],weobserved singleproteinbandsatthesamemolecularweightoftheeluted proteins, confirming that proteins were correctly eluted and recovered(Fig.2).

Futureworkwillbedevotedtothefragmentationofisolated proteins to obtain sequence information. The availability of terminalsequencesofaproteolyticfragmentbytop-downanalysis couldbeusedtoidentifytheproteasepotentiallyresponsiblefor itsformationusingtheMeropsdatabase(http://merops.sanger.ac. uk/).Inthis database,fora specificproteasearereportedallits substrates and vice versa. The information in the database is retrievedfromtheliterature,thereforesomereporteddatamight nothavephysiologicalrelevance.

Asawhole,thepresentcommunicationdescribesastrategyfor theidentificationforcleavedproteasesubstratesbycombininga

shotgun analysisof pre-fractionatedlow-molecular-weight pro-tein components with electroelution of full-lengthproteins for top-down characterization. The proposed procedure should constitute a basis for both identification and quantification of proteins that migrate at a molecular weight lower than that expected, and theidentification oftheirsequence termini,thus permittingtheassessmentof putativeproteasesresponsiblefor theircleavage.

References

[1]C.López-Otín,C.M.Overall,Proteasedegradomics:anewchallengefor proteomics,Nat.Rev.Mol.CellBiol.3(2002)509–519.

[2]M.Koppen,T.Langer,Proteindegradationwithinmitochondria:versatile activitiesofAAAproteasesandotherpeptidases,Crit.Rev.Biochem.Mol.Biol. 42(2007)221–242.

[3]T.Tatsuta,T.Langer,Qualitycontrolofmitochondria:protectionagainst neurodegenerationandageing,EMBOJ.27(2008)306–314.

[4]R.Anand,T.Langer,M.J.Baker,Proteolyticcontrolofmitochondrialfunction andmorphogenesis,Biochim.Biophys.Acta1833(2013)195–204. [5]R.Shanbhag,G.Shi,J.Rujiviphat,G.A.McQuibban,Theemergingroleof

proteolysisinmitochondrialqualitycontrolandtheetiologyofParkinson's disease,ParkinsonsDis.2012(2012)382175.

[6]P.Martinelli,E.I.Rugarli,Emergingrolesofmitochondrialproteasesin neurodegeneration,Biochim.Biophys.Acta1797(2010)1–10.

[7]K.M.Strauss,L.M.Martins,H.Plun-Favreau,F.P.Marx,S.Kautzmann,D.Berg,T. Gasser,Z.Wszolek,T.Müller,A.Bornemann,H.Wolburg,J.Downward,O. Riess,J.B.Schulz,R.Krüger,Lossoffunctionmutationsinthegeneencoding Omi/HtrA2inParkinson'sdisease,Hum.Mol.Genet.14(2005)2099–2111. [8]T.Alberio,C.Mammucari,G.D'Agostino,R.Rizzuto,M.Fasano,Altered

dopaminehomeostasisdifferentiallyaffectsmitochondrialvoltage-dependent anionchannelsturnover,Biochim.Biophys.Acta1842(2014)1816–1822. [9]T.Alberio,H.Bondi,F.Colombo,I.Alloggio,L.Pieroni,A.Urbani,M.Fasano,

Mitochondrialproteomicsinvestigationofacellularmodelofimpaired dopaminehomeostasis,anearlystepinParkinson'sdiseasepathogenesis,Mol. Biosyst.10(2014)1332–1344.

[10]A.Urbani,M.DeCanio,F.Palmieri,S.Sechi,L.Bini,M.Castagnola,M.Fasano,A. Modesti,P.Roncada,A.M.Timperio,L.Bonizzi,M.Brunori,F.Cutruzzolà,V.Di Ilio,C.DiIlio,G.Federici,F.Folli,S.Foti,C.Gelfi,D.Lauro,A.Lucacchini,F. Magni,I.Messana,P.P.Pandolfi,S.Papa,P.Pucci,,P.Sacchetta,ItalianMt-Hpp StudyGroup-ItalianProteomicsAssociation(www.itpa.it),Themitochondrial ItalianHumanProteomeProjectinitiative(mt-HPP),Mol.Biosyst.9(2013) 1984–1992.

[11]T.Alberio,L.Lopiano,M.Fasano,Cellularmodelstoinvestigatebiochemical pathwaysinParkinson'sdisease,FEBSJ.279(2012)1146–1155.

[12]G.Candiano,M.Bruschi,L.Musante,L.Santucci,G.M.Ghiggeri,B.Carnemolla, P.Orecchia,L.Zardi,P.G.Righetti,Bluesilver:averysensitivecolloidal CoomassieG-250stainingforproteomeanalysis,Electrophoresis25(2004) 1327–1333.

Fig.2. Validationoftheelectroelutionprocedure.PrestainedproteinMWmarkers(70and55kDa)wereexcisedfromanacrylamide/bisacrylamide16%gel.After elecroelution,sampleswerecleanedfromSDSresiduesbyultrafiltration(MWCO3kDa)with20%v/vethanol.Sampleswerevacuumdried,resuspendedwithLaemmlibuffer andseparatedbySDS-PAGE.Firstlane:55kDamarker;secondlane:70kDamarker.

Figura

Fig. 1. Bottom-up analysis of mitochondrial proteolytic fragments. (A) Schematic representation of gel slicing in three fractions with different molecular weight range (i.e., 40–25, 25–15 and 15–10 kDa)
Fig. 2. Validation of the electroelution procedure. Prestained protein MW markers (70 and 55 kDa) were excised from an acrylamide/bisacrylamide 16% gel

Riferimenti

Documenti correlati

The aim of our experiment was to compare the effectiveness of biodegradation of four different forms of polystyrene (raw material, processed polystyrene, construction material

The aim of our work was to identify new specific candidate biomarkers for PCA in tissue and plasma samples by means of affinity proteomics approaches such as reverse

This implies that the self-assembling process of PHEA-EDA-Sq 17 -PS 80 copolymer molecules, leading to micelles formation, strongly reduces the interfacial width between

The third important subject, connected to the fantasy tradition and to the motif of the Fier baiser, is the castle, the most polyvalent and suitable place for the

Keywords: methionine sulfoxide; human β-synuclein; dopamine oxidation; proteoforms relative quantitation; top-down mass

The fabricated prototype exhibites a 3-rd order intercept point of +30dBm, 2-nd order intercept point of +98dBm, conversion loss of 8dB, 1-dB compression point of +4 dBm and

Views of the Nölbling Formation in the field: a) global view of the Nölbling Formation exposed in the Oberbuchach I Section (photo H.p. S cHönlaub ); b) detail of the unit exposed

the rate of momentum transfer between quasiparticles in the two layers [16]... – a) b) Electrical connections for the experiment on Coulomb drag in graphene and in the 2DEG. c)