• Non ci sono risultati.

PREDICTION OF DISEASE OUTCOME IN GLIOBLASTOMA PATIENTS BY MOLECULAR ANALYSIS

N/A
N/A
Protected

Academic year: 2021

Condividi "PREDICTION OF DISEASE OUTCOME IN GLIOBLASTOMA PATIENTS BY MOLECULAR ANALYSIS"

Copied!
123
0
0

Testo completo

(1)

           

UNIVERSITY  OF  PISA  

 

Research  Doctorate  School  in  

BIOLOGICAL  AND  MOLECULAR  SCIENCES  

 

Course  in  

MOLECULAR  AND  EXPERIMENTAL  ONCOLOGY  

SSD:  MED/06  

XXVI  CYCLE  (2011-­‐2013)  

 

THESIS  TITLE:  

 

PREDICTION  OF  DISEASE  OUTCOME  

IN  GLIOBLASTOMA  PATIENTS  BY  

MOLECULAR  ANALYSIS  

 

Candidate:  Sara  Franceschi  

 

Supervisor:  Prof.  Generoso  Bevilacqua  

Tutor:  Dr.  Katia  Zavaglia    

(2)

Index  

 

Abstract  ...  III

 

Introduction  ...  1

 

1.1  The  Central  Nervous  System  ...  1  

1.1.1  Neurons  ...  2  

1.1.2  Glia  ...  3  

1.2  Tumors  of  the  CNS  ...  5  

1.2.1  WHO  classification  of  Brain  Tumors  ...  6  

1.2.2  Astrocytic  Tumors  ...  8  

1.3  Glioblastoma  ...  10  

1.3.1  Clinical  features  ...  11  

1.3.2  Macroscopy  ...  12  

1.3.3  Spread  and  metastasis  ...  13  

1.3.4  Primary  and  secondary  glioblastoma  ...  14  

1.3.5  Histopathology  ...  17  

1.3.6  Tumor  progression  and  aggressive  behavior  ...  20  

1.3.7  Molecular  Pathogenesis  ...  23  

1.3.8  Treatment  and  prognostic  factors  ...  31  

1.4  TCGA  molecular  subtypes  of  glioblastoma  ...  36  

1.5  MicroRNAs  in  Glioblastoma  ...  40  

1.6  Fusion  Genes  ...  42  

Aim  ...  44

 

Materials  and  Methods  ...  46

 

3.1  Glioma  sample  database  ...  46  

3.2  Analysis  setup  ...  46  

3.2.1  Italian  gliomas  samples  collection  ...  46  

3.2.1.1  Analysis  of  15  molecular  markers  panel  involved  both  in  glioma   tumor  progression  and  radiotherapy  response  ...  47  

3.2.1.2  PCR  Array  analysis  and  time  of  first  recurrence  correlation  ...  47  

3.2.1.3  RNA-­‐Seq  analysis  and  correlation  with  time  of  first  recurrence  ..  47  

3.2.2  American  GMB  samples  collection  and  Nanostring  analysis  ...  48  

3.3  DNA  extraction  ...  48  

3.4  Pyrosequencing  analysis  ...  48  

3.4.1  Mutational  and  genotyping  SNPs  analysis  ...  50  

3.4.2  Methylation  analysis  ...  50  

3.5  Copy  number  variation  analysis  ...  50  

3.6  Codeletion  analysis  ...  51  

3.7  RNA  extraction  ...  51  

(3)

3.9  Ion  Proton  Technology  for  RNA-­‐seq  ...  54  

3.9.1  Library  preparation  ...  55  

3.9.2  Template  preparation  ...  57  

3.9.3  Sequencing  on  the  Ion  Proton  ...  58  

3.9.4  Mapping  of  RNA-­‐Seq  reads  using  TopHat  2  ...  58  

3.9.5  Transcript  assembly  and  differential  analysis  with  Cuffmerge  and   Cuffdiff  ...  59  

3.9.6  Gene  Ontology  annotation  and  molecular  networks  design  ...  60  

3.9.7  Fusion  Trancripts  analysis  ...  60  

3.10  Nanostring  analysis  ...  60  

3.11  Statistical  analysis  ...  63  

Results  ...  64

 

4.1  Analysis  of  15  molecular  markers  involved  both  in  glioma   tumor  progression  and  radiotherapy  response  ...  64  

4.1.1  WHO  IV  grade  samples  molecular  markers  alterations  frequency  64   4.1.2  WHO  IV  grade  molecular  marker  alteration  association  ...  66  

4.1.3  Lower  grade  glioma  samples  molecular  alterations  frequency  ...  67  

4.1.4  Lower  grade  and  grade  IV  gliomas  molecular  alterations   comparison  ...  67  

4.2  PCR  Array  analysis  and  time  of  first  recurrence  correlation  ..  69  

4.3  RNA-­‐Seq  analysis  ...  70  

4.3.1  Gene  expression  level  differences  related  to  time  of  first   recurrence  ...  70  

4.3.2  Fusion  gene  transcripts  ...  73  

4.3.2.1  Fusion  gene  transcripts  related  to  the  time  of  first  recurrence  ....  73  

4.3.2.2  Gene  transcript  fusions  frequencies  in  GBM  ...  73  

4.4  Nanostring  Analysis  and  outcome  correlation  with  TCGA   molecular  classification  ...  74  

4.4.1  TCGA  molecular  classification  and  time  of  first  recurrence  ...  75  

4.4.2  TCGA  molecular  classification  and  survival  after  Bevacizumab   therapy  ...  82  

4.4.3  TCGA  molecular  classification  and  overall  survival  (OS)  ...  85  

4.4.4  TCGA  molecular  classification  and  therapy  response  ...  90  

4.4.4.1  1st  and  2nd  line  therapies  with  the  same  survival  response  ...  91  

4.4.4.2  1st  and  2nd  line  therapies  with  completely  different  survival   response  ...  93  

Discussion  ...  96

 

Conclusions  ...  104

 

Future  Prespectives  ...  105

 

(4)

Abstract  

 

 

Malignant  gliomas,  especially  glioblastoma  (GBM),  represent  the  most  common   primary   malignant   tumors   of   the   adult   central   nervous   system.   Surgical   resection,  radiotherapy  and  adjuvant  chemotherapy  are  currently  the  standard   of   care   for   GBM.   However,   despite   progress   in   recent   years,   due   to   the   infiltrative   and   dispersive   nature   of   the   tumor,   recurrence   rate   remains   high   and   typically   results   in   very   poor   prognosis.   From   a   practical   perspective,   controlling  growth  and  dispersal  of  the  recurrence  may  have  a  greater  impact   on  disease-­‐free  survival.  Our  study  had  the  intent  to  provide  novel  information   on  GBM  tumor  aggressive  behavior  by  connecting  multiple  molecular  markers,   that  could  play  an  important  role  in  tumor  progression,  with  the  outcome  of  the   patients   meant   as   the   time   of   recurrence,   time   of   survival   after   a   specific   therapy  and  overall  survival.  In  this  work  we  collected  a  total  of  205  formalin   fixed  paraffin  embedded  (FFPE)  first-­‐surgery  glioma  samples  from  two  different   populations,  Italian  and  American.  

 

Italian   glioma   samples   were   molecularly   characterized   investigating   15   of   the   most   studied   candidate   molecular   markers   involved   both   in   glioma   tumor   progression   and   radiotherapy   response   :   IDH1   and   IDH2   mutations,   SNPs   (XRCC1,   XRCC3,   RAD51,   GSTP1),   EGFR   and   ERBB2   amplification,   deletion   of   PTEN,   TP53   and   CDK2NA   genes,   presence   of   the   active   mutant   form   of   EGFR   (EGFRvIII),   MGMT   promoter   methylation   and   1p19q   codeletion.   To   better   understand   the   dynamics   of   genomic   alterations   associated   with   GBM   recurrence  in  more  detail  we  selected  19  GBM  samples  with  specific  recurrence   free  survival  outcome;  by  using  real-­‐time  PCR  we  profiled  the  expression  of  84   genes  important  for  cell-­‐cell  and  cell-­‐matrix  interactions,  the  expression  of  84   miRNAs   known   to   alter   their   expression   during   nervous   system-­‐related   carcinogenesis   and   a   copy   number   variation   analysis   of   23   genes   reported   to   undergo  frequent  genomic  alterations  in  human  glioma  tumor  DNA.  In  order  to   have  even  more  selected  samples  with  differences  in  time  of  first  recurrence  we  

(5)

chosen   6   GBM;   on   those   samples   we   performed   a   whole   transcriptome   sequencing  analyses  (RNA-­‐seq)  by  using  Ion  Proton  System  technology.  

 

American  GBM  samples  were  analyzed  using  Nanostring  technology.  We  used  a   customized  gene  panel  to  evaluate  the  expression  levels  of  151  genes  involved   in  glioblastoma  and  classified  our  samples  into  one  of  the  four  TCGA  molecular   classes:  Classical,  Mesenchymal,  Neural  and  Proneural.  

 

We   found   strong   correlation   between   expression   levels   of   different   genes   related  to  cellular  migration  and  invasion  and  patient  outcome.  Those  genes  had   also  high  power  to  predict  patient  outcome  on  the  basis  of  the  combination  of   their   expression   levels.   By   using   RNA-­‐seq,   we   found   several   genes   with   statistically  significant  expression  level  differences  in  GBM  patient  with  distinct   outcomes,  and  we  were  able  to  identify  specific  molecular  functions  networks   into   those   groups   of   tumors.   Moreover   we   were   able   to   identify   specific   gene   fusion  transcripts  with  high  probability  of  a  “driver”  behavior  in  the  oncogenic   process;   we   also   detected   exclusively   gene   fusion   transcripts   in   GBM   patient   with  distinct  outcomes.  

Furthermore   we   found   strong   correlation   between   TCGA   molecular   classification   and   patient   outcome   and   we   selected   characteristic   genes   with   expression  levels  related  both  to  the  molecular  TCGA  subclass  and  the  survival.      

In   conclusion   our   study   shows   how   the   integration   of   miRNA   and   mRNA   espression  and  genomic  alterations  can  define  a  GBM  molecular  profile  related   to   patient   outcome.   Investigation   of   diagnostic   and   prognostic   value   of   these   molecular  markers  could  be  useful  to  allow  better  predictions  of  GBM  patients   prognosis  and  response  to  therapies.  

(6)

1  

Introduction  

   

1.1  The  Central  Nervous  System  

The   human   central   nervous   system   (CNS)   is   an   enormously   complex   tissue   serving   the   organism   as   a   processing   center   linking   information   between   the   outside   world   and   the   body.   The   principal   functional   unit   of   the   CNS   is   the   neuron;  the  best  estimates  are  that  there  are  about  1011  neurons  in  the  human  

brain.   Neurons,   although   similar   in   many   ways   to   other   cells   in   the   body,   are   unique  in  their  ability  to  receive,  store,  and  transmit  information.  Neurons  differ   greatly   from   one   another   in   many   important   properties:   their   functional   roles   (sensory,   motor,   autonomic),   the   distribution   of   their   connections,   the   neurotransmitters   they   use   for   synaptic   transmission,   their   metabolic   requirements,  and  their  levels  of  electrical  activity  at  a  given  moment.  A  set  of   neurons,  not  necessarily  clustered  together  in  a  region  of  the  brain,  may  thus  be   singled   out   for   destruction   in   a   pathologic   condition   (selective   vulnerability)   because   it   shares   one   or   more   of   these   properties.   Furthermore,   and   of   particular   importance   in   medicine,   most   mature   neurons   are   postmitotic   cells   that   are   incapable   of   cell   division,   so   destruction   of   even   a   small   number   of   neurons  responsible  for  a  specific  function  may  leave  the  patient  with  a  severe   clinical  neurologic  deficit.  In  comparison  to  other  organ  systems  of  the  body,  the   nervous   system   has   several   unique   anatomic   and   physiologic   characteristics:   the  protective  bony  enclosure  of  the  skull  and  spinal  column  that  contains  it,  a   specialized  system  of  autoregulation  of  cerebral  blood  flow,  metabolic  substrate   requirements,   the   absence   of   a   conventional   lymphatic   system,   a   special   cerebrospinal   fluid   (CSF)   circulation,   limited   immunologic   surveillance,   and   distinctive  responses  to  injury  and  wound  healing.  As  a  result  of  these  special  

(7)

characteristics,   the   CNS   is   vulnerable   to   unique   pathologic   processes,   and   the   reactions   of   CNS   tissue   to   injury   differ   considerably   from   those   encountered   elsewhere   [1,2].   The   principal   cells   of   the   CNS   are   neurons,   glia,   and   the   cells   that  compose  the  meninges  and  blood  vessels.  

 

1.1.1  Neurons  

In  the  CNS,  neurons  are  topographically  organized  either  as  aggregates  (nuclei,   ganglia)  or  as  elongated  columns  or  layers  (such  as  the  intermediolateral  gray   column   of   the   spinal   cord   or   the   six-­‐layered   cerebral   cortex)[3].   Functional   domains  are  located  in  many  of  these  anatomically  defined  regions  (such  as  the   hypoglossal  nucleus  of  the  medulla  for  motor  fibers  of  the  twelfth  cranial  nerve;   calcarine  cortex  of  the  occipital  lobe  for  primary  visual  cortex).  In  addition,  as  a   further   dimension   of   anatomic   functional   specificity,   some   cortical   and   subcortical  neurons  and  their  projections  are  arranged  somatotopically  (such  as   motor  and  sensory  homunculi)[4].  

Neurons  vary  considerably  in  structure  and  size  throughout  the  nervous  system   and  within  a  given  brain  region.  With  conventional  histologic  preparations,  an   anterior   horn   neuron   in   the   spinal   cord   has   a   cell   body   (perikaryon)   that   is   about  50  µm  wide,  a  relatively  large  and  somewhat  eccentrically  placed  nucleus,   a  prominent  nucleolus,  and  abundant  Nissl  substance;  the  nucleus  of  a  granule   cell   neuron   of   the   cerebellar   cortex   is   about   10   µm   across,   and   its   perikaryon   and  nucleolus  are  not  readily  visible  by  light  microscopy.  Electron  microscopic   study  reveals  further  variability  among  neurons  in  cytoplasmic  content  and  the   shape  of  the  cells  and  their  processes  [5].  Characteristic  ultrastructural  features   common   to   many   neurons   include   microtubules,   neurofilaments,   prominent   Golgi  apparatus  and  rough  endoplasmic  reticulum,  and  synaptic  specializations.   Despite   these   shared   structures,   axon   length   may   vary   greatly   (hundreds   of   microns   for   interneurons   versus   a   meter   for   an   upper   motor   neuron).   Immunohistochemical  markers  for  neurons  and  their  processes  commonly  used   in  diagnostic  work  include  neurofilament  protein,  NeuN,  and  synaptophysin[6].  

     

(8)

1.1.2  Glia  

Glial   cells   are   derived   from   neuroectoderm   (macroglia:   astrocytes,   oligodendrocytes,  ependyma)  or  from  bone  marrow  (microglia).  Glial  cells  have   important   structural   and   metabolic   interactions   with   neurons   and   their   dendritic  and  axonal  processes;  they  also  have  a  primary  role  in  a  wide  range  of   normal   functions   and   reactions   to   injury,   including   inflammation,   repair,   fluid   balance,  and  energy  metabolism.  The  size  and  shape  of  the  nucleus  helps  in  the   light   microscopic   distinction   of   one   glial   cell   type   from   another,   as   their   cytoplasmic  processes  are  often  not  apparent  on  H&E  preparations  and  can  be   demonstrated   only   with   the   use   of   metallic   impregnation,   immunohistochemical,   or   electron   microscopic   methods.   Astrocytes   typically   have  round  to  oval  nuclei  (10  µm  wide)  with  evenly  dispersed,  pale  chromatin;   oligodendrocytes   have   a   denser,   more   homogeneous   chromatin   in   a   rounder   and   smaller   nucleus   (8   µm);   and   microglia   have   an   elongated,   irregularly   shaped  nucleus  (5  to  10  µm)  with  clumped  chromatin.  Ependymal  cells,  on  the   other   hand,   do   have   visible   cytoplasm;   seen   with   H   &   E,   they   are   columnar   epithelial-­‐like   cells   with   a   ciliated/microvillous   border   facing   the   ventricular   surface  with  pale,  vesiculated  nuclei  (each  about  8  µm)  located  at  the  abluminal   end  of  the  cell.  

Astrocytes.  This  glial  cell  is  found  throughout  the  CNS  in  both  gray  and  white  

matter.   Protoplasmic   astrocytes   occur   mainly   in   the   gray   matter;   fibrous   astrocytes   occur   in   white   and   gray   matter.   The   cell   derives   its   name   from   its   star-­‐shaped   appearance,   which   is   imparted   by   the   multipolar,   branching   cytoplasmic   processes   that   emanate   from   the   cell   body   containing   the   characteristic   cytoplasmic   intermediate   filament   protein   called   glial   fibrillary   acidic  protein  (GFAP).  These  are  seen  well  in  tissue  sections  only  with  metallic   impregnation   techniques   (for   example   the   Golgi   method)   or   immunohistochemical  preparations  (Figure  1.1).  

(9)

 

 

Figure   1.1   A,   Astrocytes   and   their   processes.   Some   processes   extend   toward  

blood   vessels.   B,   Immunoperoxidase   staining   for   glial   fibrillary   acidic   protein   shows   astrocytic   perinuclear   cytoplasm   and   well-­‐developed   processes   (brown)[7].  

 

The  filaments  are  either  aggregated  in  fascicles  (in  protoplasmic  astrocytes)  or   dispersed   diffusely   throughout   the   cytoplasm   (in   fibrous   astrocytes).   Some   astrocytic   processes   are   directed   toward   neurons   and   their   processes   and   synapses,   where   they   are   believed   to   act   as   metabolic   buffers   or   detoxifiers,   suppliers  of  nutrients,  and  electrical  insulators.  Others  surround  capillaries  or   extend   to   the   subpial   and   subependymal   zones,   where   they   contribute   to   barrier  functions  controlling  the  flow  of  macromolecules  between  the  blood,  the   CSF,  and  the  brain.  Astrocytes  are  also  the  principal  cells  responsible  for  repair   and  scar  formation  in  the  brain.  Fibroblasts,  which  have  a  major  role  in  wound   healing  elsewhere,  are  located  mainly  around  large  CNS  blood  vessels  and  in  the   meninges;  they  participate  in  wound  healing  only  to  a  limited  extent  (primarily   in   the   organization   of   subdural   hematomas   and   the   formation   of   abscess   cavities).  

Oligodendrocytes.   Oligodendroglial   cytoplasmic   processes   wrap   around   the  

axons  of  neurons  to  form  myelin  in  a  manner  analogous  to  the  Schwann  cells  of   the  peripheral  nervous  system.  Unlike  Schwann  cells,  which  form  the  myelin  of   a   single   internode,   each   oligodendrocyte   myelinates   numerous   internodes   on   multiple   axons.   In   routine   sections,   oligodendroglia   are   recognizable   by   their   small,   rounded,   lymphocyte-­‐like   nuclei,   often   in   linear   arrays.   Injury   to   oligodendroglial   cells   is   a   feature   of   acquired   demyelinating   disorders   (for   example,   multiple   sclerosis);   it   is   also   seen   in   the   leukodystrophies.  

(10)

Oligodendroglial   nuclei   may   harbor   viral   inclusions   in   progressive   multifocal   leukoencephalopathy.  

Ependymal  Cells.  Ependymal  cells  line  the  ventricular  system.  They  are  closely  

related   to   the   cuboidal   cells   comprising   the   choroid   plexus.   Disruption   of   ependymal  cells  is  often  associated  with  a  local  proliferation  of  subependymal   astrocytes   to   produce   small   irregularities   on   the   ventricular   surfaces   termed   ependymal   granulations.   Certain   infectious   agents,   particularly   cytomegalovirus,  may  produce  extensive  ependymal  injury,  and  viral  inclusions   may  be  seen  within  ependymal  cells.  

Microglia.  Microglia  are  mesoderm-­‐derived  cells  whose  primary  function  is  to  

serve   as   a   fixed   macrophage   system   in   the   CNS.   They   express   many   surface   markers  in  common  with  peripheral  monocytes/macrophages  (such  as  CR3  and   CD68).   They   respond   to   injury   by   (a)   proliferation;   (b)   developing   elongated   nuclei  (rod  cells),  as  in  neurosyphilis;  (c)  forming  aggregates  about  small  foci  of   tissue  necrosis  (microglial  nodules);  or  (d)  congregating  around  cell  bodies  of   dying   neurons   (neuronophagia).   In   addition   to   resident   microglia,   blood-­‐ derived  macrophages  are  the  principal  phagocytic  cells  present  in  inflammatory   foci  [8,9,10].  

 

1.2  Tumors  of  the  CNS  

The  annual  incidence  of  tumors  of  the  CNS  ranges  from  10  to  17  per  100,000   persons  for  intracranial  tumors  and  1  to  2  per  100,000  persons  for  intraspinal   tumors;   about   half   to   three-­‐quarters   are   primary   tumors,   and   the   rest   are   metastatic.  

Tumors  of  the  nervous  system  have  several  unique  characteristics  that  set  them   apart   from   neoplastic   processes   elsewhere   in   the   body.   First,   the   distinction   between  benign  and  malignant  lesions  is  less  evident  in  the  CNS  than  in  other   organs.   Some   glial   tumors   with   histologic   features   of   a   benign   neoplasm,   including  low  mitotic  rate,  cellular  uniformity,  and  slow  growth,  may  infiltrate   large  regions  of  the  brain,  thereby  leading  to  serious  clinical  deficits  and  poor   prognosis.   Second,   the   ability   to   surgically   resect   infiltrating   glial   neoplasms   without  compromising  neurologic  function  is  limited.  Third,  the  anatomic  site  of   the   neoplasm   can   have   lethal   consequences   irrespective   of   histologic  

(11)

classification;  for  example,  a  benign  meningioma,  by  compressing  the  medulla,   can  cause  cardiorespiratory  arrest.  Finally,  the  pattern  of  spread  of  primary  CNS   neoplasms   differs   from   that   of   other   tumors:   even   the   most   highly   malignant   gliomas  rarely  metastasize  outside  the  CNS.  The  subarachnoid  space  provides  a   pathway   for   spread,   so   seeding   along   the   brain   and   spinal   cord   can   occur   in   highly  anaplastic  as  well  as  in  well-­‐differentiated  neoplasms  that  extend  into  the   CSF  pathways.  

 

1.2.1  WHO  classification  of  Brain  Tumors  

Histological   grading   is   a   means   of   predicting   the   biological   behavior   of   a   neoplasm.   In   the   clinical   setting,   tumor   grade   is   a   key   factor   influencing   the   choice  of  therapies,  particularly  determining  the  use  of  adjuvant  radiation  and   specific   chemotherapy   protocols.   Since   its   first   publication   in   1979,   the   WHO   Classification  of  Tumors  of  the  Nervous  System  has  included  a  grading  scheme   that  is  a  “malignancy  scale”  ranging  across  a  wide  variety  of  neoplasms  rather   than  a  strict  histological  grading  system  [11,12].  

WHO   grading   is   widely   used,   having   incorporated   or   largely   replaced   other   previously   published   grading   systems.   Although   it   is   not   a   requirement   for   application   of   the   WHO   classification   for   some   tumors,   including   gliomas   and   meningiomas,  numerical  WHO  grades  are  useful  additions  to  the  diagnosis.     Grade  I  lesions  generally  include  tumors  with  low  proliferative  potential  and  the   possibility  of  cure  following  surgical  resection  alone.  Lesions  designated  grade   II  are  generally  infiltrative  in  nature  and,  despite  low  level  proliferative  activity,   often   recur.   Some   type   II   tumors   tend   to   progress   to   higher   grades   of   malignancy,   for   example,   low-­‐grade   diffuse   astrocytomas   that   transform   to   anaplastic   astrocytoma   and   glioblastoma.   Similar   transformation   occurs   in   oligodendroglioma   and   mixed   gliomas.   The   designation   grade   III   is   generally   reserved  for  lesions  with  histological  evidence  of  malignancy,  including  nuclear   atypia  and  brisk  mitotic  activity.  In  most  settings,  patients  with  grade  III  tumors   receive   adjuvant   radiation   and/or   chemotherapy.   The   designation   grade   IV   is   assigned   to   cytologically   malignant,   mitotically   active,   necrosis-­‐prone   neoplasms  often  associated  with  rapid  pre-­‐  and  postoperative  disease  evolution  

(12)

and  a  fatal  outcome.  Examples  of  grade  IV  neoplasms  include  glioblastoma,  most   embryonal  neoplasms  and  many  sarcomas  as  well.  

Grading   has   been   systematically   evaluated   and   successfully   applied   to   a   spectrum  of  diffusely  infiltrative  astrocytic  tumors.  These  neoplasms  are  graded   in  a  three-­‐tiered  system  similar  to  that  of  the  Ringertz  [13],  St.  Anne-­‐Mayo  [14]   and  the  previously  published  WHO  schemes[15].  

As   currently   defined   by   the   WHO,   tumors   with   cytological   atypia   alone   are   considered   grade   II   (diffuse   astrocytoma),   those   also   showing   anaplasia   and   mitotic   activity   are   considered   grade   III   (anaplastic   astrocytoma),   and   tumors   additionally   showing   microvascular   proliferation   and/or   necrosis   are   WHO   grade  IV  (Table  1.1).  

Atypia   is   defined   as   variation   in   nuclear   shape   or   size   with   accompanying   hyperchromasia.   Mitoses   must   be   unequivocal,   but   no   special   recognition   is   given  to  their  number  or  morphology.  Since  the  finding  of  a  solitary  mitosis  in   an   ample   specimen   does   not   confer   grade   III   behavior,   separation   of   grade   II   from  grade  III  tumors  may  be  more  reliably  achieved  by  determination  of  MIB-­‐1   labelling  indices  [16,17,18].  

Endothelial  proliferation  is  defined  as  apparent  multi-­‐layering  of  endothelium,   rather  than  simple  hypervascularity,  or  glomeruloid  vasculature.  Necrosis  may   be  of  any  type;  perinecrotic  palisading  need  not  be  present.  Simple  apposition  of   cellular   zones   with   intervening   pallor   suggestive   of   incipient   necrosis   is   insufficient.    

WHO   grade   is   one   component   of   a   combination   of   criteria   used   to   predict   a   response  to  therapy  and  outcome.  Other  criteria  include  clinical  findings,  such   as   age   of   the   patient,   performance   status   and   tumor   location;   radiological   features   such   as   contrast   enhancement;   extent   of   surgical   resection;   proliferation   indices;   and   genetic   alterations.   For   each   tumor   entity,   combinations   of   these   parameters   contribute   to   an   overall   estimate   of   prognosis.  Despite  these  variables,  patients  with  WHO  grade  II  tumors  typically   survive  more  than  5  years,  and  those  with  grade  III  tumors  survive  2-­‐3  years.   The   prognosis   of   patients   with   WHO   grade   IV   tumors   depends   largely   upon   whether   effective   treatment   regimens   are   available.   The   majority   of  

(13)

glioblastoma  patients,  particularly  the  elderly,  succumb  to  the  disease  within  a   year.  

 

11

II IIII IIIIII IIVV A

Assttrrooccyyttiicc ttuummoouurrss Subependymal giant cell

astrocytoma • Pilocytic astrocytoma • Pilomyxoid astrocytoma • Diffuse astrocytoma • Pleomorphic xanthoastrocytoma • Anaplastic astrocytoma • Glioblastoma •

Giant cell glioblastoma •

Gliosarcoma •

O

Olliiggooddeennddrroogglliiaall ttuummoouurrss

Oligodendroglioma •

Anaplastic oligodendroglioma • O

Olliiggooaassttrrooccyyttiicc ttuummoouurrss

Oligoastrocytoma •

Anaplastic oligoastrocytoma •

EEppeennddyymmaall ttuummoouurrss

Subependymoma •

Myxopapillary ependymoma •

Ependymoma •

Anaplastic ependymoma •

C

Chhoorrooiidd pplleexxuuss ttuummoouurrss

Choroid plexus papilloma • Atypical choroid plexus papilloma •

Choroid plexus carcinoma •

O

Otthheerr nneeuurrooeeppiitthheelliiaall ttuummoouurrss

Angiocentric glioma •

Chordoid glioma of

the third ventricle •

N

Neeuurroonnaall aanndd mmiixxeedd nneeuurroonnaall--gglliiaall ttuummoouurrss

Gangliocytoma •

Ganglioglioma •

Anaplastic ganglioglioma •

Desmoplastic infantile astrocytoma

and ganglioglioma •

Dysembryoplastic

neuroepithelial tumour •

II IIII IIIIII IIVV

Central neurocytoma •

Extraventricular neurocytoma • Cerebellar liponeurocytoma • Paraganglioma of the spinal cord • Papillary glioneuronal tumour • Rosette-forming glioneuronal

tumour of the fourth ventricle • PPiinneeaall ttuummoouurrss

Pineocytoma •

Pineal parenchymal tumour of

intermediate differentiation • •

Pineoblastoma •

Papillary tumour of the pineal region • • EEmmbbrryyoonnaall ttuummoouurrss

Medulloblastoma •

CNS primitive neuroectodermal

tumour (PNET) •

Atypical teratoid / rhabdoid tumour • TTuummoouurrss ooff tthhee ccrraanniiaall aanndd ppaarraassppiinnaall nneerrvveess

Schwannoma •

Neurofibroma •

Perineurioma • • •

Malignant peripheral nerve

sheath tumour (MPNST) • • •

M

Meenniinnggeeaall ttuummoouurrss

Meningioma •

Atypical meningioma •

Anaplastic / malignant meningioma •

Haemangiopericytoma •

Anaplastic haemangiopericytoma •

Haemangioblastoma •

TTuummoouurrss ooff tthhee sseellllaarr rreeggiioonn

Craniopharyngioma •

Granular cell tumour

of the neurohypophysis •

Pituicytoma •

Spindle cell oncocytoma

of the adenohypophysis •

WHO grades of CNS tumours

 

 

Table  1.1  WHO  grades  of  CNS  tumors  [19].    

 

1.2.2  Astrocytic  Tumors  

Pilocytic   astrocytoma   (WHO   grade   I)   is   relatively   circumscribed,   slowly   growing,   often   cystic   astrocytoma   occurring   in   children   and   young   adults,  

(14)

histologically   characterized   by   a   biphasic   pattern   with   varying   proportions   of   compacted   bipolar   cells   associated   with   Rosenthal   fibers   and   loose-­‐textured   multipolar   cells   associated   with   microcysts   and   eosinophilic   granular   bodies/hyaline  droplets.  

Subependymal  giant  cell  astrocytoma  (WHO  grade  I)  is  a  benign,  slowly  growing   tumor   typically   arising   in   the   wall   of   the   lateral   ventricles   and   composed   of   large  ganglioid  astrocytes.  

Pleomorphic  xanthoastrocytoma  (WHO  grade  II)  is  an  astrocytic  neoplasm  with   a  relatively  favourable  prognosis,  typically  encountered  in  children  and  young   adults,  with  superficial  location  in  the  cerebral  hemispheres  and  involvement  of   the   meninges;   characteristic   histological   features   include   pleomorphic   and   lipidized  cells  expressing  GFAP  and  often  surrounded  by  a  reticulin  network  as   well  as  eosinophilic  granular  bodies.  

Diffuse  astrocytoma  (WHO  grade  II)  is  a  diffusely  infiltrating  astrocytoma  that   typically  affects  young  adults  and  is  characterized  by  a  high  degree  of  cellular   differentiation   and   slow   growth;   the   tumor   occurs   throughout   the   CNS   but   is   preferentially   located   supratentorially   and   has   an   intrinsic   tendency   for   malignant  progression  to  anaplastic  astrocytoma  and,  ultimately,  glioblastoma.   Anaplastic   astrocytoma   (WHO   grade   III)   is   a   diffusely   infiltrating   malignant   astrocytoma   that   primarily   affects   adults,   is   preferentially   located   in   the   cerebral   hemispheres,   and   is   histologically   characterized   by   nuclear   atypia,   increased  cellularity  and  significant  proliferative  activity.  The  tumor  may  arise   from  diffuse  astrocytoma  WHO  grade  II  or  de  novo,  without  evidence  of  a  less   malignant   precursor   lesion,   and   has   an   inherent   tendency   to   undergo   progression  to  glioblastoma.  

Glioblastoma  (WHO  grade  IV)  is  the  most  frequent  primary  brain  tumor  and  the   most   malignant   neoplasm   with   predominant   astrocytic   differentiation;   histopathological   features   include   nuclear   atypia,   cellular   pleomorphism,   mitotic  activity,  vascular  thrombosis,  microvascular  proliferation  and  necrosis.   It   typically   affects   adults   and   is   preferentially   located   in   the   cerebral   hemispheres.   Most   glioblastomas   manifest   rapidly   de   novo,   without   recognizable   precursor   lesions   (primary   glioblastoma).   Secondary   glioblastomas   develop   slowly   from   diffuse   astrocytoma   WHO   grade   II   or  

(15)

anaplastic   astrocytoma   (WHO   grade   III).   Due   to   their   invasive   nature,   glioblastomas   cannot   be   completely   resected,   and   despite   progress   in   radio/chemotherapy,  less  than  half  of  patients  survive  more  than  a  year,  with   older  age  as  the  most  significant  adverse  prognostic  factor.  

Gliomatosis   cerebri   is   a   diffuse   glioma   (usually   astrocytic)   growth   pattern   consisting  of  exceptionally  extensive  infiltration  of  a  large  region  of  the  central   nervous  system,  with  involvement  of  at  least  three  cerebral  lobes,  usually  with   bilateral  involvement  of  the  cerebral  hemispheres  and/or  deep  gray  matter,  and   frequent   extension   to   the   brain   stem,   cerebellum,   and   even   the   spinal   cord.   Gliomatosis  cerebri  most  commonly  displays  an  astrocytic  phenotype,  although   oligodendrogliomas   and   mixed   oligoastrocytomas   can   also   present   with   the   gliomatosis  cerebri  growth  pattern.  

 

1.3  Glioblastoma  

Glioblastoma   is   the   most   frequent   brain   tumor,   accounting   for   approximately   12–15%  of  all  intracranial  neoplasms  and  60-­‐75%  of  astrocytic  tumors  [20,21].   In  most  European  and  North  American  countries,  the  incidence  is  in  the  range  of   3-­‐4   new   cases   per   100   000   population   per   year   [20].   The   incidence   rate   of   glioblastoma   in   the   USA,   adjusted   to   the   US   Standard   Population,   is   2.96   new   cases   per   100   000   population   per   year   [22].   The   corresponding   rate   in   a   population-­‐based   study   in   Switzerland   was   3.55   new   cases,   adjusted   to   the   European  Standard  Population  [21].  Glioblastoma  may  manifest  at  any  age,  but   preferentially  affects  adults,  with  a  peak  incidence  at  between  45  and  75  years   of   age.   In   a   population-­‐based   study   in   the   Canton   of   Zurich,   Switzerland,   the   mean   age   of   patients   with   glioblastoma   was   61.3   years:   more   than   80%   of   patients  were  older  than  50  years  [23]  whereas  only  7  out  of  715  cases  (1%)   were  diagnosed  in  patients  younger  than  20  years  old.  The  male:female  ratio  of   glioblastoma  patients  is  1.26  in  USA  and  1.28  in  Switzerland  (Figure  1.2)  [21].  

(16)

33 Glioblastoma

Definition

The most frequent primary brain tumour and the most malignant neoplasm with predominant astrocytic differentiation; histopathological features include nuclear atypia, cellular pleomorphism, mitotic activity, vascular thrombosis, microvascular proliferation and necrosis. It typically affects adults and is preferentially located in the cerebral hemispheres. Most

glio-blastomas manifest rapidly de novo,

without recognizable precursor lesions (primary glioblastoma). Secondary glio-blastomas develop slowly from diffuse astrocytoma WHO grade II or anaplastic astrocytoma (WHO grade III). Due to their invasive nature, glioblastomas cannot be completely resected and despite progress in radio/chemotherapy, less than half of patients survive more than a year, with older age as the most significant adverse prognostic factor.

ICD-O code 9440/3

Grading

Glioblastoma and its variants correspond to WHO grade IV.

Synonyms and historical annotation The term glioblastoma is used synony-mously with “glioblastoma multiforme”. Scherer {2013} and Kernohan {1093} were instrumental in developing the concept that glioblastoma is a malignant astrocytoma that sometimes develops by progression from a lower grade lesion.

Incidence

Glioblastoma is the most frequent brain tumour, accounting for approximately 12–15% of all intracranial neoplasms and 60-75% of astrocytic tumours {1260, 1625}. In most European and North American countries, the incidence is in the range of 3-4 new cases per 100 000 population per year {1260}. The incidence rate of glioblastoma in the USA, adjusted to the US Standard Population, is 2.96 new cases per 100 000 population per year {305}. The corresponding rate in a population-based study in Switzerland was 3.55 new cases, adjusted to the European Standard Population {1625}. Age and sex distribution

Glioblastoma may manifest at any age, but preferentially affects adults, with a peak incidence at between 45 and 75 years of age. In a population-based study in the Canton of Zurich, Switzerland, the mean age of patients with glioblastoma was 61.3 years: more than 80% of patients were older than 50 years {1620}, whereas only 7 out of 715 cases (1%) were diagnosed in patients younger than 20 years old. The male:female ratio of glioblastoma patients is 1.26 in USA and 1.28 in Switzerland {1624}.

Localization

Glioblastoma occurs most often in the subcortical white matter of the cerebral hemispheres. In a series of 987 glio-blastomas from the University Hospital

Zurich, the most frequently affected sites were the temporal (31%), parietal (24%), frontal (23%) and occipital lobes (16%). Combined fronto-temporal location is particularly typical. Tumour infiltration often extends into the adjacent cortex and through the corpus callosum into the contralateral hemisphere. Glioblastoma of the basal ganglia and thalamus is not uncommon, especially in children. Intraventricular glioblastoma is excep-tional {1281}. Glioblastoma of the brain stem (‘malignant brain stem glioma’) is infrequent and often affects children {478}. Cerebellum and spinal cord are rare sites for this neoplasm.

Clinical features

The clinical history of the disease is usually short (less than 3 months in more than 50% of cases), unless the neoplasm has developed from a lower grade astrocytoma (secondary glioblastoma). Symptoms and signs of raised intracranial pressure (for example headache, nausea/vomiting with papilledema) are common. Up to one third of patients will experience an epileptic seizure. Non-specific neuro-logical symptoms such as headache and personality changes can also occur. Macroscopy

Despite the short duration of symptoms in many cases of glioblastoma, the tumours are often surprisingly large at the time of presentation, and may occupy much of a lobe. The lesion is usually unilateral, but those in the brain stem and corpus callosum can be bilaterally symmetrical. Supratentorial bilateral extension is due to rapid growth along myelinated struc-tures, in particular across the corpus callosum and along the fornices toward the temporal lobes.

Glioblastomas are poorly delineated, the cut surface showing a variable colour with peripheral greyish tumour masses and central areas of yellowish necrosis from myelin breakdown. The peripheral hypercellular zone appears macroscopi-cally as a soft, grey rim or a grey band of tumour tissue. However, necrotic tissue

Glioblastoma

P. Kleihues P.C. Burger K.D. Aldape D.J. Brat W. Biernat D.D. Bigner Y. Nakazato K.H. Plate F. Giangaspero A. von Deimling H. Ohgaki W.K. Cavenee

Fig. 1.26 Age and sex distribution of glioblastoma, based on 715 cases from a population-based study, Canton of Zurich, Switzerland.

   

Figure  1.2  Age  and  sex  distribution  of  glioblastoma,  based  on  715  cases  from  a  

population-­‐based  study,  Canton  of  Zurich,  Switzerland  [19].  

 

Glioblastoma  occurs  most  often  in  the  subcortical  white  matter  of  the  cerebral   hemispheres.   In   a   series   of   987   glioblastomas   from   the   University   Hospital   Zurich,   the   most   frequently   affected   sites   were   the   temporal   (31%),   parietal   (24%),  frontal  (23%)  and  occipital  lobes  (16%)  [19].  Combined  fronto-­‐temporal   location   is   particularly   typical.   Tumor   infiltration   often   extends   into   the   adjacent   cortex   and   through   the   corpus   callosum   into   the   contralateral   hemisphere.    

 

1.3.1  Clinical  features  

The  clinical  history  of  the  disease  is  usually  short  (less  than  3  months  in  more   than   50%   of   cases),   unless   the   neoplasm   has   developed   from   a   lower   grade   astrocytoma   (secondary   glioblastoma).   Symptoms   and   signs   of   raised   intracranial   pressure   (for   example   headache,   nausea/vomiting   with   papilledema)   are   common.   Up   to   one   third   of   patients   will   experience   an   epileptic   seizure.   Non-­‐specific   neurological   symptoms   such   as   headache   and   personality  changes  can  also  occur.  

Glioblastoma  has  an  unfavorable  prognosis  mainly  due  to  its  high  propensity  for   tumor  recurrence.  It  has  been  suggested  that  GBM  recurrence  is  inevitable  after   a  median  survival  time  of  32  to  36  weeks  [24].  

The   natural   history   of   recurrent   GBM,   however,   is   largely   undefined   for   the   following   reasons:   a)   lack   of   uniform   definition   and   criteria   for   tumor   recurrence;   b)   institutional   variability   in   treatment   philosophy;   and   c)   the   heterogeneous   nature   of   the   disease,   including   location   of   recurrence   and   distinct   mechanisms   believed   to   contribute   to   known   subtypes   of   GBM.  

(17)

Essentially   all   patients   develop   recurrent   or   progressive   disease   after   initial   therapy,  after  which  the  median  survival  is  approximately  6  months  [25,26].     Once   a   patient   with   GBM   relapses   following   initial   surgery,   radiotherapy,   and   chemotherapy,   salvage   strategies   are   often   limited,   and   survival   is   short.   This   most   likely   is   the   result   of   molecular   and   genetic   changes   within   the   tumor   itself,  or  possibly  is  a  consequence  of  prior  therapies.  In  any  event,  the  tumor  is   much  more  resistant  to  treatment,  and  tumor  control  is  often  short.  

 

1.3.2  Macroscopy  

Despite   the   short   duration   of   symptoms   in   many   cases   of   glioblastoma,   the   tumors  are  often  surprisingly  large  at  the  time  of  presentation,  and  may  occupy   much  of  a  lobe.  The  lesion  is  usually  unilateral,  but  those  in  the  brain  stem  and   corpus   callosum   can   be   bilaterally   symmetrical.   Supratentorial   bilateral   extension   is   due   to   rapid   growth   along   myelinated   structures,   in   particular   across  the  corpus  callosum  and  along  the  fornices  toward  the  temporal  lobes.   Glioblastomas  are  poorly  delineated,  the  cut  surface  showing  a  variable  colour   with   peripheral   greyish   tumor   masses   and   central   areas   of   yellowish   necrosis   from   myelin   breakdown.   The   peripheral   hypercellular   zone   appears   macroscopically   as   a   soft,   grey   rim   or   a   grey   band   of   tumor   tissue.   However,   necrotic   tissue   may   also   border   adjacent   brain   structures   without   an   intermediate   zone   of   macroscopically   detectable   tumor   tissue.   The   central   necrosis  may  occupy  as  much  as  80%  of  the  total  tumor  mass.  

Glioblastomas   are   typically   stippled   with   red   and   brown   foci   of   recent   and   remote   haemorrhages.   Extensive   haemorrhages   may   occur   and   evoke   stroke-­‐ like   symptoms,   which   are   sometimes   the   first   clinical   sign   of   the   tumor.   Macroscopic  cysts,  when  present,  contain  a  turbid  fluid  and  represent  liquefied   necrotic  tumor  tissue,  quite  in  contrast  to  the  well-­‐delineated  retention  cysts  in   diffuse   astrocytomas   WHO   grade   II.   Most   glioblastomas   of   the   cerebral   hemispheres   are   clearly   intraparenchymal   with   an   epicentre   in   the   white   matter.   Infrequently,   they   are   largely   superficial   and   in   contact   with   the   leptomeninges   and   dura   and   may   be   interpreted   by   the   neuroradiologist   or   surgeon   as   metastatic   carcinoma,   or   as   an   extra-­‐axial   lesion   such   as  

(18)

meningioma.   Cortical   infiltration   may   produce   a   preserved   gyriform   rim   of   thickened  grey  cortex  overlying  a  necrotic  zone  in  the  white  matter  (Figure  1.3).    

35

Glioblastoma

that in approximately 3% of these, tumour foci vary in their histological appearance. True multifocal glioblastomas are most likely polyclonal if they occur infra- and supratentorially, i.e. outside easily accessible routes like the cerebrospinal fluid pathways or the median commissures {1977}. Multiple independently arising gliomas would, by definition, be of polyclonal origin and their existence can only be proven by application of molecular

markers which, in informative cases, allow a distinction between tumours of common or independent origin {141, 157, 1184}.

Primary and secondary glioblastoma The terms primary and secondary glioblastoma were first used by Scherer in 1940 who noted: “From a biological and clinical point of view, the secondary glioblastomas developing in

astrocy-tomas must be distinguished from ‘primary’ glioblastomas; they are probably responsible for most of the glioblastomas of long clinical duration” {2013}. The majority of glioblastomas (>90%) develop very rapidly with a short clinical history (usually <3 months), without clinical or histopathological evidence of a pre-existing, less malignant precursor lesion (primary or de novo glioblastoma). They typically develop in older patients (mean,

Fig. 1.29 Macroscopic features of glioblastoma (GBM). A Large GBM in the left frontal lobe extending into the corpus callosum and the contralateral white matter. B,C GBM of

the left fronto-temporal region with invasion of the fornices, spread to the lower horn of the left ventricle and (C) extension to the corpus callosum and adjacent parieto-occipital structures. D GBM of the left basal ganglia and spread into the right hemisphere with formation of a cystic necrosis. E GBM of the left hemisphere with extensive necrosis occupying most of the tumour mass. F Right fronto-temporal GBM with mass shifting and subfalcial herniation. G GBM with unusual intraventricular location. H Malignant brain stem GBM in a child. I GBM of the left hemisphere with extensive necrosis and spread to the right frontal lobe via the corpus callosum.

A B C

D E F

G H I  

 

Figure  1.3  Macroscopic  features  of  glioblastoma  (GBM).  A,  Large  GBM  in  the  left  

frontal   lobe   extending   into   the   corpus   callosum   and   the   contralateral   white   matter.  B,  GBM  of  the  left  fronto-­‐temporal  region  with  invasion  of  the  fornices,   spread   to   the   lower   horn   of   the   left   ventricle   and   C,   extension   to   the   corpus   callosum   and   adjacent   parieto-­‐occipital   structures.   D,   GBM   of   the   left   basal   ganglia  and  spread  into  the  right  hemisphere  with  formation  of  a  cystic  necrosis.  

E,   GBM   of   the   left   hemisphere   with   extensive   necrosis   occupying   most   of   the  

tumor   mass.   F,   Right   fronto-­‐temporal   GBM   with   mass   shifting   and   subfalcial   herniation.   G,   GBM   with   unusual   intraventricular   location.   H,   Malignant   brain   stem  GBM  in  a  child.  I,  GBM  of  the  left  hemisphere  with  extensive  necrosis  and   spread  to  the  right  frontal  lobe  via  the  corpus  callosum  [19].  

 

1.3.3  Spread  and  metastasis  

Although  infiltrative  spread  is  a  common  feature  of  all  diffuse  astrocytic  tumors,   glioblastoma   is   particularly   notorious   for   its   rapid   invasion   of   neighbouring   brain  structures  [27].  

(19)

A  very  common  feature  is  extension  of  the  tumor  through  the  corpus  callosum   into  the  contralateral  hemisphere,  creating  the  image  of  a  bilateral,  symmetrical   lesion   (‘butterfly   glioma’).   Similarly,   rapid   spread   is   observed   in   the   internal   capsule,  fornix,  anterior  commissure  and  optic  radiation.  These  structures  may   become   enlarged   and   distorted   but   continue   to   serve   as   a   ‘highway’,   allowing   the   formation   of   new   tumor   masses   at   their   opposite   projection   site,   thus   leading   to   the   neuroradiological   image   of   a   multifocal   glioblastoma.   Invading   cells  reside  outside  the  contrast-­‐enhancing  rim  of  the  tumor,  thereby  escaping   surgical  resection  and  evading  high  doses  of  radiation  during  radiotherapy.  This   likely  represents  the  source  for  local  recurrence  usually  seen  after  such  therapy.   Despite   its   rapid,   infiltrative   growth,   glioblastoma   tends   not   to   invade   the   subarachnoidal   space,   and   consequently   rarely   metastasizes   via   the   cerebrospinal   fluid   [28].   A   number   of   molecular   mediators   of   invasion   in   glioblastoma   have   been   described,   including   activation   of   the   TGF-­‐ß   and   AKT   pathways   [29,30].   Tumor   hypoxia   may   also   promote   invasion   through   the   activation  of  HIF-­‐1α  [31].  

An  important  aspect  of  glioblastoma  invasion  is  the  elaboration  of  a  migration-­‐ enhancing   extracellular   matrix   by   tumor   cells   [32]   as   well   as   secretion   of   proteolytic  enzymes  which  permit  invasion  through  this  matrix.  Consistent  with   this  notion  are  recent  gene  expression  profiling  studies  that  identify  a  subset  of   tumors  with  elevated  expression  of  extracellular  matrix  components  as  well  as   intracellular  proteins  associated  with  cell  motility  [33,34].  

The  interplay  between  the  variety  of  matrix  and  growth  factor  receptors  as  well   as  activation  of  signalling  pathways  which  facilitate  tumor  cell  invasion  is  being   recognized   as   a   composite,   dynamic   consequence   of   altered   cell-­‐cell   adhesion,   proteolytic   remodelling   and   synthesis   of   ECM,   as   well   as   selective   expression   and   activation   of   integrins   [35].   Activation   of   migration   (seen   at   the   leading   edge  of  the  neoplasm)  appears  to  be  associated  with  a  decrease  in  proliferation   rate  [36],  which  may  have  therapeutic  consequences  [37].  

 

1.3.4  Primary  and  secondary  glioblastoma  

The   terms   primary   and   secondary   glioblastoma   were   first   used   by   Scherer   in   1940   who   noted:   “From   a   biological   and   clinical   point   of   view,   the   secondary  

(20)

glioblastomas  developing  in  astrocytomas  must  be  distinguished  from  ‘primary’   glioblastomas;   they   are   probably   responsible   for   most   of   the   glioblastomas   of   long  clinical  duration”  [38].  

The  majority  of  glioblastomas  (>90%)  develop  very  rapidly  with  a  short  clinical   history  (usually  <3  months),  without  clinical  or  histopathological  evidence  of  a   pre-­‐existing,  less  malignant  precursor  lesion  (primary  or  de  novo  glioblastoma).   They  typically  develop  in  older  patients  (mean,  62  years)  [39,40].  

Glioblastoma   may   also   develop   through   progression   from   diffuse   astrocytoma   (WHO   grade   II)   or   anaplastic   astrocytoma   (WHO   grade   III);   and   these   are   termed   “secondary   glioblastomas”.   They   are   much   less   frequent   than   primary   glioblastomas   (<10%   of   all   glioblastomas),   and   typically   develop   in   younger   patients   (mean,   45   years)   (Figure   1.4).   The   time   to   progression   from   diffuse   astrocytoma   WHO   grade   II   to   glioblastoma   varies   considerably,   with   time   intervals  ranging  from  less  than  1  year  to  >10  years,  the  mean  interval  being  4– 5  years.  Survival  of  patients  with  secondary  glioblastoma  is  significantly  longer   (median   survival   time,   7.8   months)   than   for   those   with   primary   glioblastoma   (4.7  months),  but  this  is  likely  to  be  the  reflection  of  younger  age  of  secondary   glioblastoma  patients  [21,39].                  

(21)

36 Astrocytic tumours

62 years) {1620, 1625A}. Neuroimages of the dynamic growth of a primary glioblastoma and a secondary glioblas-toma are shown in Fig. 1.30. Glio-blastoma may also develop through progression from diffuse astrocytoma (WHO grade II) or anaplastic astro-cytoma (WHO grade III); and these are termed “secondary glioblastomas”. They are much less frequent than primary glioblastomas (<10% of all glioblastomas) {486, 1620, 1625A}, and typically develop in younger patients (mean, 45 years). The time to progression from diffuse astrocytoma WHO grade II to

glio-blastoma varies considerably, with time intervals ranging from less than 1 year to >10 years {1627}, the mean interval being 4–5 years {1625, 2371}. Survival of patients with secondary glioblastoma is significantly longer (median survival time, 7.8 months) than for those with primary glioblastoma (4.7 months), but this is likely to be the reflection of younger age of secondary glioblastoma patients {1620, 1625}. Primary and secondary glioblastoma constitute relatively distinct disease entities that evolve primarily through different genetic pathways, show different expression

profiles {1625}, and are likely to differ in response to therapy, but share a high frequency of LOH 10q, which is likely to be associated with the overall glio-blastoma phenotype {620, 622, 1620, 1625A}.

Histopathology

Glioblastoma is an anaplastic, cellular glioma composed of poorly differentiated, often pleomorphic astrocytic tumour cells with marked nuclear atypia and brisk mitotic activity. Prominent microvascular proliferation and/or necrosis are essential diagnostic features.

As the term glioblastoma “multiforme” suggests, the histopathology of this tumour is extremely variable. While some lesions show a high degree of cellular and nuclear polymorphism with numerous multinucleated giant cells, others are highly cellular, but rather monotonous. The astrocytic nature of the neoplasms may be easily identifiable, at least focally, in some tumours, but difficult to recognize in others owing to the high degree of anaplasia. The regional heterogeneity of glioblastoma is remarkable and poses challenges to histopathological diagnosis on specimens obtained by stereotaxic needle biopsies {254}.

Tissue patterns

The diagnosis of glioblastoma is typically based on the tissue pattern rather than on the identification of certain cell types. The presence of highly anaplastic glial cells, mitotic activity and vascular proliferation and/or necrosis is required. The distribution of these key elements within the tumour is variable, but large necrotic areas usually occupy the tumour centre, while viable tumour cells tend to accumulate in the periphery. The circum-ferential region of high cellularity and abnormal vessels corresponds to the contrast-enhancing ring seen radio-logically. Vascular proliferation is seen throughout the lesion, often around necrotic foci and in the peripheral zone of infiltration.

Secondary structures

The migratory capacity of glioblastoma cells within the CNS becomes readily apparent when they reach borders that constitute a barrier: tumour cells line up and accumulate in the subpial zone of the cortex, in the subependymal region, around neurons (“satellitosis”), and about Fig. 1.30 Rapid evolution of a primary glioblastoma in a 79 year-old patient (upper). MRI shows a small cortical lesion

that within 68 days developed into a full-blown glioblastoma with perifocal edema and central necrosis. This is in contrast to the development of secondary glioblastoma through progression from low-grade astrocytoma (lower).

   

Figure  1.4  Neuroimages  of  the  dynamic  growth  of  a  primary  glioblastoma  and  a   secondary  glioblastoma.  Rapid  evolution  of  a  primary  glioblastoma  in  a  79  year-­‐ old   patient   (upper).   MRI   shows   a   small   cortical   lesion   that   within   68   days   developed   into   a   full-­‐blown   glioblastoma   with   perifocal   edema   and   central   necrosis.   This   is   in   contrast   to   the   development   of   secondary   glioblastoma   through  progression  from  low-­‐grade  astrocytoma  (lower)[19].  

 

Primary   and   secondary   glioblastoma   constitute   relatively   distinct   disease   entities   that   evolve   primarily   through   different   genetic   pathways,   show   different  expression  profiles,  and  are  likely  to  differ  in  response  to  therapy,  but   share   a   high   frequency   of   LOH   10q,   which   is   likely   to   be   associated   with   the   overall  glioblastoma  phenotype  (Figures  1.5  and  1.6)  [23,40].  

Riferimenti

Documenti correlati

Muramaki M, Miyake H, Terakawa T, Kusuda Y, Fujisawa M (2011) Expression profile of E-cadherin and N-cadherin in urothelial carcinoma of the upper urinary tract is associated with

The aim of this study was (1) to evaluate the incidence of cerebral in- jury in a large series of single twin survivors after the spontaneous death of one twin, occurring

In ricordo di Dieter Nörr, a poco più di un anno dalla sua scomparsa, il 19 e 20 feb- braio 2019 si è svolto nella Hörsaal W 201 (Lehrturm) della Ludwig-Maximilians-Uni-

lavoratori, anche il Responsabile della attività didattica o di ricerca in laboratorio, nell’ambito delle proprie attribuzioni, provvede direttamente, o avvalendosi di un

La sezione finale, Zone d’ombra, disobbedienza, verità, entra da un lato nel laboratorio teatrale tramite l’autopresentazione di Lisa Guez di una riscrittura recente del mito nella

uSense follows a cooperative sensing approach, in the sense that the data collected by each sensor node are uploaded to a remote server and shared among the users of the system,

Una pronuncia della Corte di giustizia dell’Unione europea 45 ha riconfermato l’importanza, alla luce della Convenzione di Aarhus, di partecipare quando tutte le alternative

To accomplish this, we obtained long- exposure (1800 s), long-slit spectra of the star forming (H ii ) re- gions within the host galaxies, by simultaneously placing the slit at the