SCUOLA NORMALE SUPERIORE DI PISA
Tesi di Perfezionamento in Matematica
Kolmogorov operators
in spaces of continuous functions
and equations for measures
Relatore:
PROF. Giuseppe Da Prato
Candidato:
Luigi Manca
Contents
Introduction v
Preliminaries 1
0.1 Functional spaces . . . 1
0.1.1 Gaussian measures . . . 2
0.2 The stochastic convolution . . . 4
0.2.1 Continuity in time of the stochastic convolution . . . . 7
0.2.2 Continuity in space and time of the stochastic convo-lution . . . 9
1 Measure valued equations for stochastically continuous Markov semigroups 13 1.1 Notations and preliminary results . . . 13
1.2 Stochastically continuous semigroups . . . 14
1.2.1 The infinitesimal generator . . . 16
1.3 The measure equation . . . 22
1.3.1 Existence of a solution . . . 23
1.3.2 Uniqueness of the solution . . . 23
2 Measure equations for Ornstein-Uhlenbeck operators 29 2.1 Introduction and main results . . . 29
2.2 Absolute continuity with respect to the invariant measure . . . 34
2.3 The adjoint of Rt in L2(H; Β΅) . . . 35
2.3.1 Absolute continuity of Β΅t . . . 38
2.3.2 The case of a symmetric Ornstein-Uhlenbeck semigroup 38 3 Bounded perturbations of OU operators 41 3.1 Introduction and main results . . . 41
3.2 The transition semigroup . . . 42
3.2.1 Comparison with the OU operator . . . 42
3.2.2 The Kolmogorov operator . . . 43 iii
3.3 A Ο-core for (K, D(K)) . . . 44
3.3.1 The case F β C2 b(H; H) . . . 45
3.3.2 The case when F is Lipschitz . . . 47
3.4 The measure equation for K0 . . . 48
4 Lipschitz perturbations of Ornstein-Uhlenbeck operators 49 4.1 Introduction . . . 49
4.1.1 The transition semigroup in Cb,1(H) . . . 51
4.2 Proof of Theorem 4.2 . . . 56
4.3 Proof of Theorem 4.3 . . . 59
4.3.1 The Ornstein-Uhlenbeck semigroup in Cb,1(H) . . . 59
4.3.2 Approximation of F with smooth functions . . . 65
4.4 Proof of Theorem 4.4 . . . 68
5 The reaction-diffusion operator 71 5.1 Introduction . . . 71
5.2 Main results . . . 73
5.3 The transition semigroup in Cb,d(L2d(O)) . . . 76
5.4 Some auxiliary results . . . 77
5.5 Proof of Theorem 5.2 . . . 80
5.6 Proof of Theorem 5.3 . . . 81
5.7 Proof of Theorem 5.4 . . . 86
6 The Burgers equation 87 6.1 Introduction and preliminaries . . . 87
6.2 Main results . . . 90
6.3 Further estimates on the solution . . . 93
6.4 The transition semigroup in Cb,V(L6(0, 1)) . . . 95
6.5 Proof of Theorem 6.3 . . . 97
6.6 The OU semigroup in Cb,V(L6(0, 1)) . . . 99
6.7 The approximated problem . . . 100
6.7.1 The differential DPtmΟ . . . 102
6.8 Proof of Theorem 6.4 . . . 111
6.9 Proof of Theorem 6.5 . . . 114
Bibliography 117
Introduction
Let us denote by H a separable Hilbert space with norm |Β·| and inner product hΒ·, Β·i and consider the stochastic differential equation in H
ο£± ο£² ο£³ dX(t) = AX(t) + F (X(t))dt + BdW (t), t β₯ 0 X(0) = x β H, (1)
where A : D(A) β H β H is the infinitesimal generator of a strongly continuous semigroup etA, F : D(F ) β H β H is nonlinear, B : H β H is
linear and continuous and (W (t))tβ₯0 is a cylindrical Wiener process, defined
on a stochastic basis (β¦, F , (Ft)tβ₯0, P) and with values in H.
We shall assume that problem (1) has a unique solution X(t, x) and we denote by Pt, t β₯ 0, the corresponding transition semigroup, which is defined
by setting
PtΟ(x) = EΟ(X(t, x)), t β₯ 0, x β H (2)
where Ο : H β R is a suitable function. To fix the ideas, for k β₯ 0 we consider the space Cb,k(H) of all continuous mappings Ο : H β R such that
x β R, x 7β Ο(x)
1 + |x|k
is uniformly continuous and
kΟk0,k := sup xβH
|Ο(x)|
1 + |x|k < β.
We shall write Cb(H) := Cb,0(H). Under suitable conditions the semigroup
Pt acts on Cb,k(H).
It is well known that the function u(t, x) := PtΟ(x) is formally the solution
of the Kolmogorov equation
Dtu(t, x) = K0u(t, x), u(0, x) = Ο(x), (3)
where K0 is given by K0Ο(x) = 1 2TrBB β D2Ο(x) + hAx + F (x), DΟ(x)i, x β H, (4)
and Bβ is the adjoint of B. The expression (4) is formal: it requires that Ο is of class C2, that BBβD2Ο(x) is a trace class operator and that x β
D(A) β© D(F ). So, it is convenient to define K0 in a suitable domain D(K0).
We start by the set of exponential functions EA(H), which consists of the
linear span of the real and imaginary part of the functions H β C, x 7β eihx,hi, h β D(Aβ),
where D(Aβ) is the domain of the adjoint operator of A. By a simple com-putation we see that K0 is well defined in EA(H) and
K0Ο(x) = β|Bh|2Ο(x) + i (hx, Aβhi + hF (x), hi) Ο(x), (5)
for any Ο β EA(H) and x β D(F ). Notice that if D(F ) = H and |F (x)| β€
c(1 + |x|) for some c > 0 then K0Ο β Cb,1(H).
The semigroup Pt is not strongly continuous in Cb,k(H) in all interesting
cases. It is continuous with respect to a weaker topology, see, for instance, [8], [9], [29], [31], [40]. We shall follow the approach of Ο-semigroups introduced by Priola. In this approach we define the infinitesimal generator K of Pt in
the space Cb,k(H) as follows
ο£±         ο£²         ο£³ D(K) = Ο β Cb,k(H) : βg β Cb,k(H), lim tβ0+ PtΟ(x) β Ο(x) t = g(x), βx β H, sup tβ(0,1) PtΟ β Ο t 0,k < β KΟ(x) = lim tβ0+ PtΟ(x) β Ο(x) t , Ο β D(K), x β H. (6)
A problem which arises naturally is to investigate the relationships between the βabstractβ operator K and the βconcreteβ differential operator K0defined
in (5).
Introduction vii
A well known approach consists in solving equation (3) and look for an invariant measure Ξ½ for the semigroup Pt, that is, a probability measure on
H such that Z H PtΟ(x)Ξ½(dx) = Z H Ο(x)Ξ½(dx),
for any t β₯ 0, Ο β Cb(H). It is straightforward to check that for any p β₯ 1,
Ο β Cb(H) Z H |PtΟ(x)|pΞ½(dx) β€ Z H Pt(|Ο|p)(x)Ξ½(dx) = Z H |Ο|p(x)Ξ½(dx).
Hence, the semigroup Pt can be uniquely extended to a strongly continuous
contraction semigroup in Lp(H; Ξ½), for any p β₯ 1. Let us denote by Kp :
D(Kp) β Lp(H; Ξ½) β Lp(H; Ξ½) its infinitesimal generator. If the invariant
measure Ξ½ enjoys suitable regularity properties then Kp is an extension of
K0 and KpΟ = K0Ο, for any Ο β EA(H). The next step is to prove that
(K0, EA(H)) is dense in D(K) endowed with the graph norm. That is, that
EA(H) is a core for (Kp, D(Kp)). Many papers have been devoted to this
approach, see [3], [17], [19], [20], [36] and references therein.
An other approach, based on Dirichlet forms, have been proposed to solve (3) directly in the space L2(H; Β΅), see [2], [30], [35], [44] and references therein. Here Β΅ is an infinitesimally invariant measure for K0. Differently
from the previous strategy, the solution is used to construct weak solution to (1), for instance in the sense of a martingale problem as formulated in [45].
We stress that in the described strategies equation (3) is considered in some Lp-space. Recently, increasing attention has been devoted to study
Kolmogorov operators like K0 in spaces of continuous functions. We mention
here the papers [41], [42], where the stochastic equation (
dXt= (βX(t) + F (X(t))) dt +
β
A dW (t)
X(0) = x β H, (7)
has been considered. Here H := L2(0, 1), W (t), t β₯ 0 is a cylindrical Wiener process on H, A : H β H is a nonnegative definite symmetric operator of trace class, β is the Dirichlet Laplacian on (0, 1), F : H1
0(0, 1) β H is a
measurable vector field of type F (x)(r) = d
dr(Ξ¨ β¦ x) (r) + Ξ¦(r, x(r)), x β H
1
Here H1
0(0, 1) denotes the usual Sobolev space in L2(0, 1) with Dirichlet
boundary conditions. The associated Kolmogorov operator is
LΟ(x) = 1
2Tr AD
2Ο(x) + hβx + F (x), DΟ(x)i ,
where Ο : H β R is a suitable cylindrical smooth function. Roughly speak-ing, the authors show that L can be extended to the generator of a strongly continuous semigroup in a space of weakly continuous functions weighted by a proper Lyapunov-type function. Then, they construct a Markov process which solves equation (7) in the sense of the martingale problem.
The goal of this thesis is twofold. First we want to show that K is the closure (in a suitable topology) of K0. To get our results, we need, of
course, suitable regularity properties of the coefficients and a suitable choice of D(K0). Second we want to study the following equation for measures Β΅t,
t β₯ 0 on H, d dt Z H Ο(x)Β΅t(dx) = Z H KΟ(x)Β΅t(dx), β Ο β D(K), t β [0, T ], (8)
where Β΅0 is given in advance. The precise definition will be given later. Since
the operator K is abstract, it is of interest to consider the concrete equation d dt Z H Ο(x)Β΅t(dx) = Z H K0Ο(x)Β΅t(dx), β Ο β D(K0), t β [0, T ]. (9)
For this problem uniqueness is difficult and existence is easier.
Let us give an overview on some recent developments about this problem in the finite and infinite dimensional framework.
In [5] (see also [6] for the elliptic case) a parabolic differential operator of the form Lu(t, x) = βtu(t, x) + d X i,j=1 aij(t, x)βxiβxju(t, x) + d X i=1 bi(t, x)βxiu(t, x),
is considered. Here (t, x) β (0, 1)ΓRd, u β C0β((0, 1)ΓRd) and aij, bi: (0, 1)Γ Rd β R are suitable locally integrable functions. The authors prove that if
there exists a suitable Lyapunov-type function for the operator L, then for any probability measure Ξ½ on Rdthere exists a family of probability measures {Β΅t, t β (0, 1)} such that Z 1 0 Z Rd Lu(t, x)Β΅t(dx)dt = 0
Introduction ix
for any u β C0β((0, 1) Γ Rd) and lim tβ0
R
RdΞΆ(x)Β΅t(dx) =
R
RdΞΆ(x)Ξ½(dx), for
any ΞΆ β C0β(Rd). Uniqueness results for this class of operators have been
investigated in [4].
Equations for measures in the infinite dimensional framework have been investigated in [7]. Here it has been considered a locally convex space X and an equation for measures formally written as
Z
X
HΟ(t, x)Β΅(dx) = 0, (10)
where Ο : X β R is a suitable βcylindricalβ function and H is an elliptic operator of the form
HΟ(t, x) = β X i,j=1 aij(t, x)βxiβxjΟ(x) + β X i=1 bi(t, x)βxiΟ(x), (t, x) β (0, 1) Γ X,
where aij, bi: (0, 1) Γ Rd β R are suitable locally Β΅-integrable functions. The
authors showed that under certain technical conditions, it is possible to prove existence results for the measure equation (10).
At our knowledge, there are no uniqueness results for the measure equa-tion (9) in the infinite dimensional framework .
The main novelty of this thesis consists in showing existence and unique-ness of a solution for problem (9). Differently from [7], we deal with time in-dipendent differential operators which act on continuous functions defined on some separable Hilbert space. We consider important cases such as Ornstein-Uhlenbeck, reaction-diffusion and Burgers operators.
Let us describe the content of the thesis.
In Chapter 1 we consider an abstract situation, a general stochastically continuous Markov semigroup Pt with generator K. Under a suitable
as-sumption we prove general existence and uniqueness results for equation (8).
In Chapter 2 we consider the case when F = 0. In this case Pt reduces
to the Ornstein-Uhlenbeck semigroup. We prove that K is the closure of K0
in Cb(H) (this result was known, see [31]) then we solve both equation (8)
In Chapter 3, we consider the case when F is a bounded and Lipschitz perturbation of A. We prove that K is the closure of K0 in Cb(H). The
results of chapters 2, 3 are contained in the paper [37].
In Chapter 4, we consider the case when F is a Lipschitz perturbation of A. We prove that K is the closure of K0 in Cb,1(H) (this result was known in
Cb,2(H) with more regular coefficients, see [21], [31]). We prove existence and
uniqueness of a solution for problems (8), (9) when1 RH(1 + |x|)|Β΅0|T V(dx) <
β.
In Chapter 5 we consider reaction diffusion equations of the form ο£±     ο£²     ο£³ dX(t, ΞΎ) = [βΞΎX(t, ΞΎ) + Ξ»X(t, ΞΎ) β p(X(t, ΞΎ))]dt + BdW (t, ΞΎ), ΞΎ β O, X(t, ΞΎ) = 0, t β₯ 0, ΞΎ β βO, X(0, ΞΎ) = x(ΞΎ), ΞΎ β O, x β H,
where βΞΎ is the Laplace operator, B β L(H) and p is an increasing
poly-nomial with leading coefficient of odd degree d > 1. Here O = [0, 1]n and
H = L2(O). We prove that K is the closure of K
0 in the space of all
contin-uous functions Ο : L2d(O) β R such that
sup xβL2d(O) |Ο(x)| 1 + |x|d L2d(O) < β.
Moreover, we prove existence and uniqueness of a solution for problems (8), (9) when
Z
H
1 + |x|dL2d(O)|Β΅0|T V(dx) < β. The results of this chapter seem
to be new and are contained in the submitted paper [38].
In Chapter 6 we consider the stochastic Burgers equation in the interval [0, 1] with Dirichlet boundary conditions perturbed by a space-time white noise ο£±       ο£²       ο£³ dX = DΞΎ2X +1 2 DΞΎ(X 2 ) dt + dW, ΞΎ β [0, 1], t β₯ 0, X(t, 0) = X(t, 1) = 0 X(0, ΞΎ) = x(ΞΎ), ΞΎ β [0, 1], 1Here |Β΅
Introduction xi
where x β L2(0, 1). We prove that K is the closure of K
0 in the space of all
continuous functions Ο : L6(0, 1) β R such that
sup xβL6(0,1) |Ο(x)| 1 + |x|8 L6(0,1)|x|2L4(0,1) < β.
We prove existence and uniqueness of a solution for problems (8), (9) when
Z
H
(1 + |x|8L6(0,1)|x|2L4(0,1))|Β΅0|T V(dx) < β. The results of this chapter
Preliminaries
0.1 Functional spaces 1
0.1
Functional spaces
Let E, E0 two real Banach spaces endowed with the norms | Β· |E, | Β· |E0.
β’ We denote by L(E, E0) the Banach algebra of all linear continuous
operators T : E β E0 endowed with the usual norm
kT kL(E,E0) = sup{|T x|E0; x β E, |x|E = 1}, T β L(E, E0).
If E = E0, we shall write L(E) instead of L(E, E). If E0 = R, the space (E, R) is the topological dual space of E, and we shall write Eβ instead of (E, R).
β’ We denote by Cb(E; E0) the Banach space of all uniformly continuous
and bounded functions f : E β E0, endowed with the norm kf kCb(E,E0) = sup
xβE
|f (x)|E0.
If E0 = R, we shall write Cb(E) instead of Cb(E; R). In some cases, we
shall denote the norm of Cb(E) by k Β· k0. However, this notation will
be explicitly given when it is necessary. β’ The space C1
b(E; E
0) consists of all f β C
b(E; E0) which are FrΒ΄echet
differentiable with differential Df β Cb(E; L(E, E0)), that is Df : E β
L(E, E0) is uniformly continuous and bounded. The space C1
b(E; E0)
is a Banach space with the norm kf kC1
b(E;E0) = kf kCb(E,E
0)+ kDf kC
b(E,L(E,E0))
β’ For any k β N, k > 1, the space Ck b(E; E
0) consists of all f β C
b(E; E0)
which are k-times FrΒ΄echet differentiable with uniformly continuous and bounded differentials up to the order k.
β’ For any k β N, k > 1, the Banach space Cb,k(E) consists of all functions
Ο : E β R such that the function E β R, x 7β (1+|x|k)β1Ο(x) belongs
to Cb(E). We set kΟk0,k := k(1 + | Β· |kE)β1Οk0.
β’ M(E) denotes the space of all finite Borel measures on E. We denote by |Β΅|T V the total variation measure of Β΅ β M(E).
β’ If V : E β R is a positive measurable function, MV(E) is the set of
all Borel measures on E such that Z
E
(1 + V (x))|Β΅|T V(dx) < β.
If V (x) = |x|k
In most of the cases, we shall work with Hilbert spaces. Let H be a separable Hilbert space of norm | Β· | and inner product hΒ·, Β·i. The following notations are used
β’ Ξ£(H) is the cone in L(H) consisting of all symmetric operators. We set
L+(H) = {T β Ξ£(H) : hT x, xi β₯ 0, x, y β H}.
β’ L1(H) is the Banach space of all trace class operators endowed with
the norm
kT k1 = Tr
β
T Tβ, T β L 1(H),
where Tr represents the trace. We set L+1(H) = L1(H) β© L+(H);
0.1.1
Gaussian measures
Let m β R and Ξ» β R+. The Gaussian measure of mean m and variance Ξ»
is the measure on R Nm,Ξ»(dx) = ο£± ο£² ο£³ 1 (2ΟΞ»)1/2e β(xβm)2 2Ξ» dx, if Ξ» > 0, Ξ΄m(dx), if Ξ» = 0,
where dx is the Lebesgue measure on R and Ξ΄m is the Dirac measure at m.
Let n > 1. We are going to define the Gaussian measure on Rn of
mean a β Rn and covariance Q β L+(Rn). Since Q is linear, symmetric and positive, there is an orthonormal basis {e1, . . . , en} and n nonnegative
numbers {Ξ»1, . . . , Ξ»n} such that
Qei = Ξ»iei, i β {1, . . . , n}.
Let us consider the linear transformation R : Rnβ Rn defined by
x 7β Rx = (hx, e1i, . . . , hx, eni).
As easily seen, R is orthonormal. Let us consider the product probability measure on Rn Β΅(dΞΎ) := n Y i=1 N(Ra)i,Ξ»i(dΞΎi)
and define the Gaussian measure Na,Q by
Z Rn Ο(x)Na,Q(dx) = Z Rn Ο(RβΞΎ)Β΅(dΞΎ),
0.1 Functional spaces 3
for any integrable Borel real function Ο : Rn β R.
If Q β L+(Rn) is strictly positive, that is detQ > 0, the Gaussian measure
N (a, Q) can be represented by the explicit formula Na,Q(dx) = (2Ο)βn/2(detQ)β1/2eβ
1 2hQ
β1(xβa),xβai
dx, x β Rn. When a = 0, we shall write NQ instead of N (a, Q).
In order to extend the notion of Gaussian measure on a Hilbert space, we need to introduce some concepts.
Let Rβ be the set of all real valued sequences2. Rβ may be identified
with the product of infinite copies of R, that is
Rβ =
Y
nβN
Xn,
where Xn = R, for any n β N. Any element of Rβ is of the form (xn)nβN,
with xn β R. B(Rβ) is the Ο-algebra of Rβ generated by the cylindrical sets
{(xn)nβN β Rβ: xi1 β A1, . . . , xin β An},
where n β N, i1, . . . , in β N, Aj β B(R), j = 1, . . . , n.
We identify the Hilbert space H with `2, that is the set of all sequences
(xn)nβN β Rβ such that
β
X
n=1
|xn|2 < β.
It is easy to see that `2 is a Borel set of Rβ.
Now let Q be a symmetric, nonnegative, trace class operator. Briefly, Q β L+1(H). We recall that Q β L+1(H) if and only if there exists a com-plete orthonormal system {ek} in H and a sequence of nonnegative numbers
(Ξ»k)kβN such that Qek = Ξ»kek, k β N and Tr Q = β X k=1 Ξ»k < +β.
For any a β H and Q β L+1(H) we define the Gaussian probability measure Na,Q on Rβ as a product of Gaussian measures on R, by setting
Na,Q = β Y k=1 Nak,Ξ»k, ak = ha, eki, k β N, 2
In the literature it is often denoted by RΟ
where Nak,Ξ»k is the Gaussian measure on R with mean ak and variance Ξ»k.
If a = 0 we shall write NQ for brevity.
After a straightforward computation, we see that Z Rβ kxk2 `2Na,Q(dx) = β X k=1 (a2k+ Ξ»k) = kak2`2 + TrQ < β,
since a β H and Q is of trace class. It follows that the measure Na,Q is
concentrated in H, i.e.
Na,Q(H) =
Z
H
Na,Q(dx) = 1.
For this reason, we say that N (a, Q) is a Gaussian measure on H.
Let us list some useful identities. The proof is straightforward and may be found in several texts (see, for instance, [22], [23]). We have
Z
H
hx, hiNa,Q(dx) = ha, hi, h β H;
Z
H
hx β a, hihx β a, kiNa,Q(dx) = hQh, ki, h, k β H;
Z
H
eihx,hiNa,Q(dx) = eiha,hiβ
1
2hQh,hi, h β H.
0.2
The stochastic convolution
Here and in what follows we assume the following hypothesis, typical of the infinite dimensional framework (see [9], [22], [25], [26])
Hypothesis 0.1. (i) A : D(A) β H β H is the infinitesimal generator of a strongly continuous semigroup etA of type G(M, Ο), i.e. there exist
M β₯ 0 and Ο β R such that ketAk
L(H) β€ M eΟt, t β₯ 0;
(ii) B β L(H) and for any t > 0 the linear operator Qt, defined by
Qtx =
Z t 0
esABBβesAβx ds, x β H, t β₯ 0 (11)
has finite trace;
(iii) (W (t))tβ₯0 is a cylindrical Wiener process, defined on (β¦, F , (Ft)tβ₯0, P)
0.2 The stochastic convolution 5
We are going to define the stochastic convolution WA(t). Formally, the
Wiener process W (t), t β₯ 0 can be written as the series W (t) =
β
X
k=1
Ξ²k(s)ek
where {ek, k β N} is an orthonormal basis for H and Ξ²k(Β·), k β N are
mutually indipendent brownian motions. We formally write WA(t) as the
series β X k=1 Z t 0 e(tβs)ABekdΞ²k(s). (12)
The generic term
Z t
0
e(tβs)ABekdΞ²k(s),
is a vector valued Wiener integral, which can be defined as Z t 0 e(tβs)ABekdΞ²k(s) = β X h=1 Z t 0 he(tβs)ABe k, ehidΞ²k(s) eh.
It is easy to check that Z t 0 e(tβs)ABekdΞ²k(s) 2 = Z t 0 |e(tβs)ABe k|2ds.
Theorem 0.2. Assume that Hypothesis 0.1 holds. Then for any t β₯ 0 the series in (12) is convergent in L2(β¦, F , P; H) to a Gaussian random variable
denoted WA(t) with mean 0 and covariance operator Qt, where Qt is defined
by (11). In particular we have
E[|WA(t)|2] = Tr Qt.
Proof. See, for instance, [22].
We study now WA(t) as a function of t. To this purpose, let us introduce
the space
CW([0, T ]; L2(β¦, F , P; H)) := CW([0, T ]; H))
consisting of all continuous mappings F : [0, T ] β L2(β¦, F , P; H) which are
adapted to W , that is such that F (s) is Fsβmeasurable for any s β [0, T ].
The space CW([0, T ]; H)), endowed with the norm
kF kCW([0,T ];H))= sup
tβ[0,T ]E |F (t)| 2
!1/2 ,
is a Banach space. It is called the space of all mean square continuous adapted processes on [0, T ] taking values on H.
Theorem 0.3. Assume that Hypothesis 0.1 holds. Then for any T > 0 we have that WA(Β·) β CW([0, T ]; H).
Proof. See, for instance, [22].
Example 0.4 (Heat equation in an interval). Let H = L2(0, Ο), B = I and
let A be given by (3) ο£± ο£² ο£³ D(A) = H2(0, Ο) β© H01(0, Ο), Ax = D2 ΞΎx, x β D(A). (13)
A is a selfβadjoint negative operator and
Aek = βk2ek, k β N,
where
ek(ΞΎ) = (2/Ο)1/2sin kΞΎ, ΞΎ β [0, Ο], k β N.
Therefore in this case Qt is given by
Qtx = Z t 0 e2sAxds = 1 2 (e 2tA β I)Aβ1 x, x β H. Since Tr Qt= 1 2 β X k=1 1 β eβ2tk2 k2 β€ 1 2 β X k=1 1 k2 < +β,
we have that Qtβ L+1(H). Therefore Hypothesis 0.1 is fulfilled.
Example 0.5 (Heat equation in a square). We consider here the heat equa-tion in the square O = [0, Ο]N with N β N. We choose H = L2(O), B = I,
and set
ο£± ο£²
ο£³
D(A) = H2(O) β© H01(O),
Ax = βΞΎx, x β D(A),
where βΞΎ represents the Laplace operator.
A is a selfβadjoint negative operator in H, moreover Aek = β|k|2ek, k β NN,
3Hk
(0, Ο), k β N represent Sobolev spaces and H1
0(0, Ο) is the subspace of H1(0, Ο) of
0.2 The stochastic convolution 7 where |k|2 = k12+ Β· Β· Β· + kN2, (k1, ..., kN) β NN, and ek(ΞΎ) = (2/Ο)N/2sin k1ΞΎ Β· Β· Β· sin kNΞΎ, ΞΎ β [0, Ο]N, k β NN. In this case Tr Qt= X kβNN 1 |k|2 1 β eβ2t|k|2= +β, t > 0, for any N > 1.
Choose now B = (βA)βΞ±/2, Ξ± β (0, 1), so that
Bx = X kβNN |k|βΞ±hx, ekiek. Then we have Tr Qt= X kβNN 1 |k|2+2Ξ± 1 β eβ2t|k|2 , t > 0,
and so, Tr Qt < +β provided Ξ± > N/2 β 1.
0.2.1
Continuity in time of the stochastic convolution
We assume here that Hypothesis 0.1 is fulfilled. We know by Theorem 0.3 that WA(Β·) is mean square continuous. We want to show that WA(Β·)(Ο) is
continuous for Pβalmost all Ο, that is that WA(Β·) has continuous trajectories.
For this we need the following additional assumption. Hypothesis 0.6. There exists Ξ± β (0,12) such that
Z 1 0
sβ2Ξ± Tr [esACesAβ]ds < +β.
Note that Hypothesis 0.6 is automatically fulfilled when C is of traceβ class.
We shall use the factorization method, (see [12]) based on the following elementary identity
Z t
s
(t β Ο)Ξ±β1(Ο β s)βΞ±dΟ = Ο
where Ξ± β (0, 1). Using (14) we can write WA(t) = sin ΟΞ± Ο Z t 0 e(tβΟ)A(t β Ο)Ξ±β1Y (Ο)dΟ, (15) where Y (Ο) = Z Ο 0 e(Οβs)A(Ο β s)βΞ±BdW (s), Ο β₯ 0. (16) To go further, we need the following analytic lemma.
Lemma 0.7. Let T > 0, Ξ± β (0, 1), m > 1/(2Ξ±) and f β L2m(0, T ; H). Set
F (t) = Z t
0
e(tβΟ)A(t β Ο)Ξ±β1f (Ο)dΟ, t β [0, T ].
Then F β C([0, T ]; H) and there exists a constant Cm,T such that
|F (t)| β€ Cm,Tkf kL2m(0,T ;H), t β [0, T ]. (17)
Proof. Let MT = suptβ[0,T ]ketAk and t β [0, T ]. Then by HΒ¨olderβs inequality
we have, |F (t)| β€ MT Z t 0 (t β Ο)(Ξ±β1)2mβ12m dΟ 2mβ12m |f |L2m(0,T ;H) = MT 2m β 1 2Ξ±m β 1 2mβ12m tΞ±β2m1 |f | L2m(0,T ;H), (18)
that yields (17). It remains to show the continuity of F. Continuity at 0 follows from (18). So, it is enough to show that F is continuous at any t0 > 0. For Ξ΅ < t20 set
FΞ΅(t) =
Z tβΞ΅
0
e(tβΟ)A(t β Ο)Ξ±β1f (Ο)dΟ, t β [0, T ].
FΞ΅ is obviously continuous on [Ξ΅, T ]. Moreover, using once again HΒ¨olderβs
inequality, we find that
|F (t) β FΞ΅(t)| β€ MT
2m β 1 2mΞ± β 1
2mβ12m
Ραβ2m1 |f |L2m(0,T ;H).
Thus limΞ΅β0FΞ΅(t) = F (t), uniformly on [t20, T ], and F is continuous at t0 as
0.2 The stochastic convolution 9
Now we are ready to prove the almost sure continuity of WA(Β·).
Theorem 0.8. Assume that Hypotheses 0.1 and 0.6 hold. Let T > 0 and m β N. Then there exists a constant C1
m,T > 0 such that E sup tβ[0,T ] |WA(t)|2m ! β€ C1 m,T. (19)
Moreover WA(Β·) is Pβalmost surely continuous on [0, T ].
Proof. Choose Ξ± β (0,2m1 ) and let Y be defined by (16). Then, for all Ο β (0, T ], Y (Ο) is a Gaussian random variable NSΟ where
SΟx =
Z Ο 0
sβ2Ξ±esAQesAβxds, x β H.
Set Tr (SΟ) = CΞ±,Ο. Then for any m > 1 there exists a constant Dm,Ξ± > 0
such that E |Y (Ο)|2m β€ Dm,Ξ±Οm, Ο β [0, T ]. This implies Z T 0 E |Y (Ο)|2m dΟ β€ Dm,Ξ± m + 1 T m+1 ,
so that Y (Β·)(Ο) β L2m(0, T ; H) for almost all Ο β β¦. Therefore, by Lemma
0.7, WA(Β·)(Ο) β C([0, T ]; H) for almost all Ο β β¦. Moreover, we have
sup tβ[0,T ] |WA(t)|2mβ€ CM,T Ο 2mZ T 0 |Y (Ο)|2mdΟ.
Now (19) follows taking expectation.
0.2.2
Continuity in space and time of the stochastic
convolution
Here we assume that the Hilbert space H coincides with the space of functions L2(O) where O is a bounded subset of RN. We set
WA(t)(ΞΎ) = WA(t, ΞΎ), t β₯ 0, ΞΎ β O.
We want to prove that, under Hypothesis 0.9 below, WA(Β·, Β·)(Ο) β C([0, T ] Γ
O) for Pβalmost all Ο β β¦. Hypothesis 0.9.
(i) For any p > 1 the semigroup etA has a unique extension to a strongly
continuous semigroup in Lp(O) which we still denote etA.
(ii) There exist r β₯ 2 and, for any Ξ΅ β [0, 1], CΞ΅> 0 such that
|etAx|
WΞ΅,p(O) β€ CΞ΅tβ Ξ΅ r|x|
Lp(O) for all x β Lp(O). (20)
(iii) A and C are diagonal with respect to the orthonormal basis {ek}, that
is there exist sequences of positive numbers {Ξ²k}kβN and {Ξ»k}kβN such
that
Aek= βΞ²kek, Cek = Ξ»kek, k β N.
Moreover, Ξ²k β +β as k β β.
(iv) For all k β N, ek β C(O) and there exists ΞΊ > 0 such that
|ek(ΞΎ)| β€ ΞΊ, k β N, ΞΎ β O. (21)
(v) There exists Ξ± β (0,12) such that
β
X
k=1
Ξ»kΞ²k2Ξ±β1 < +β. (22)
Example 0.10. Assume that A is the realization of an elliptic operator of order 2m with Dirichlet boundary conditions in O. Then (i) holds, (ii) holds with r = 2m, see e.g. [1]. (iv) does not hold in general. As easily seen, it is fulfilled when O = [0, Ο]N.
If O = [0, Ο], A is as in (13) and Q = I, then Hypothesis 0.9 is fulfilled with r = 2 and Ξ± β (0, 1/4).
To prove continuity of WA(t, ΞΎ) on (t, ΞΎ) we need an analytic lemma.
Lemma 0.11. Assume that Hypothesis 0.9 holds. Let T > 0, Ξ± β (0, 1/2), m > Ξ±1 and f β L2m([0, T ] Γ O). Set
F (t) = Z t
0
e(tβΟ)A(t β Ο)Ξ±β1f (Ο)dΟ, t β [0, T ].
Then F β C([0, T ] Γ O) and there exists a constant CT,m such that
sup
tβ[0,T ],ΞΎβO
|F (t, ΞΎ)|2mβ€ C
0.2 The stochastic convolution 11
Proof. Set Ξ΅ = 1
2 Ξ±r. Taking into account (20) we have that
|F (t)|WΞ΅,2m(O)β€ Z t 0 (t β Ο)Ξ±β1|e(tβΟ)Af (Ο)|WΞ΅,2m(O)dΟ β€ CΞ΅ Z t 0 (t β Ο)Ξ±/2β1|f (Ο)|L2m(O)dΟ
By using HΒ¨olderβs inequality and taking into account that m(Ξ±β2)2mβ1 > β1, we find |F (t)|2mWΞ΅,2m(O) β€ CΞ΅ Z t 0 (t β Ο)m(Ξ±β2)2mβ1 dΟ 2mβ1 |f |2mL2m([0,T ]ΓO).
Since Ξ΅ > 2m1 we obtain (23) a consequence of Sobolevβs embedding theorem.
We are now ready to prove
Theorem 0.12. Assume that Hypotheses 0.1 and 0.9, hold. Then WA(Β·, Β·)
is continuous on [0, T ] Γ O, Pβalmost surely. Moreover, if m > 1/Ξ± we have
E sup
(t,ΞΎ)β[0,T ]ΓO
|WA(t, ΞΎ)|2m
!
< +β.
Proof. We write WA(t) as in (15), where Y is given by (16) with B =
β C. Let us prove that Y β Lp([0, T ] Γ O), p β₯ 2, Pβalmost surely. First we notice
that for all Ο β [0, T ], ΞΎ β O, we have, setting Y (Ο)(ΞΎ) = Y (Ο, ΞΎ), Y (Ο, ΞΎ) = β X k=1 p Ξ»k Z Ο 0 eβΞ²k(Οβs)(Ο β s)βΞ±e k(ΞΎ)dΞ²k(Ο).
Thus, Y (Ο, ΞΎ) is a real Gaussian random variable with mean 0 and covariance Ξ³(Ο, ΞΎ) = Ξ³ given by Ξ³ = β X k=1 Ξ»k Z Ο 0 eβ2Ξ²kssβ2Ξ±|e k(ΞΎ)|2ds.
Taking into account (21) and (22) we see that Ξ³ β€ β X k=1 Ξ»k Z +β 0 eβ2Ξ²kssβ2Ξ±|e k(ΞΎ)|2ds = ΞΊ222Ξ±β1Ξ(1 β 2Ξ±) β X k=1 Ξ»kΞ²k2Ξ±β1 < +β.
Therefore there exists Cm > 0 such that E|Y (Ο, ΞΎ)|2mβ€ Cm, m > 1. It follows that E Z T 0 Z O |Y (Ο, ΞΎ)|2mdΟ dΞΎ β€ T C m|O|,
where |O| is the Lebesgue measure of O. So Y β L2m([0, T ] Γ O) and con-sequently WA β C([0, T ] Γ O), Pβa. s. Now the conclusion follows taking
Chapter 1
Measure valued equations for
stochastically continuous
Markov semigroups
1.1
Notations and preliminary results
Let E be a separable Banach space with norm |Β·|E. We recall that Cb(E) is the
Banach space of all uniformly continuous and bounded functions Ο : E β R endowed with the supremum norm
kΟk0 = sup xβE
|Ο(x)|.
Definition 1.1. A sequence (Οn)nβN β Cb(E) is said to be Ο-convergent to
a function Ο β Cb(E) if for any x β E we have
lim nββΟn(x) = Ο(x) and sup nβN kΟnk0 < β.
Similarly, the m-indexed sequence (Οn1,...,nm)n1βN,...,nmβN β Cb(E) is said to
be Ο-convergent to Ο β Cb(E) if for any i β {2, . . . , m} there exists an i β
1-indexed sequence (Οn1,...,niβ1)n1βN,...,niβ1βN β Cb(E) such that
lim niββ Οn1,...,ni Ο = Οn1,...,niβ1 and lim n1ββ Οn1 Ο = Ο. 13
We shall write lim n1ββ Β· Β· Β· lim nmββ Οn1,...,nm Ο = Ο or Οn Ο
β Ο as n β β, when the sequence has one index.
It is worth noticing that if the sequence (Οn,m)n,mβN β Cb(E) is
Ο-convergent to Ο β Cb(E) we can not, in general, extract a subsequence
(Οnk,mk)kβN which is still Ο-convergent to Ο. This is the reason for which we
consider multi-indexed sequences. However, in order to avoid heavy nota-tions, we shall often write a multi-indexed sequence as a sequence with only one index.
Remark 1.2. As easily seen the Ο-convergence implies the convergence in Lp(E; Β΅), for any Β΅ β M(E), p β [1, β).
Remark 1.3. The notion of Ο-convergence is considered also in [29], under the name of boundedly and pointwise convergence.
Remark 1.4. The topology on Cb(E) induced by the Ο-convergence is not
sequentially complete. For a survey on this fact see [31], [40] .
Definition 1.5. For any subset D β Cb(E) we say that Ο belongs to the
Ο-closure of D, and we denote it by Ο β DΟ, if there exists m β N and an m-indexed sequence {Οn1,...,nm}n1βN,...,nmβNβ D such that
lim n1ββ Β· Β· Β· lim nmββ Οn1,...,nm Ο = Ο.
Finally, we shall say that a subset D β Cb(E) is Ο-dense if D Ο
= Cb(E).
1.2
Stochastically continuous semigroups
We denote by B(E) the Borel Ο-algebra of E.
Definition 1.6. A family of operators (Pt)tβ₯0β L(Cb(E)) is a stochastically
continuous Markov semigroup if there exists a family {Οt(x, Β·), t β₯ 0, x β E}
of probability Borel measures on E such that β’ the map R+Γ E β [0, 1], (t, x) 7β Ο
t(x, Ξ) is Borel, for any Borel set
Ξ β B(E); β’ PtΟ(x) =
R
EΟ(y)Οt(x, dy), for any t β₯ 0, Ο β Cb(E), x β E;
1.2 Stochastically continuous semigroups 15
β’ Pt+s = PtPs, and P0 = IdE.
Remark 1.7. Notice that if (Οn)nβNβ Cb(E) is a sequence such that Οn Ο
β Ο β Cb(E) as n β β, then PtΟn
Ο
β PtΟ as n β β, for any t β₯ 0.
In [40] semigroups as in Definition 1.6 are called transition Ο-semigroups. We have the following
Theorem 1.8. Let (Pt)tβ₯0 be a stochastically continuous Markov semigroup.
Then the family of linear maps Ptβ : (Cb(E))β β (Cb(E))β, t β₯ 0, defined by
the formula
hΟ, PtβF iL(Cb(E), (Cb(E))β) = hPtΟ, F iL(Cb(E), (Cb(E))β), (1.1)
where t β₯ 0, F β (Cb(E))β, Ο β Cb(E), is a semigroup of linear maps on
(Cb(E))β of norm 1 and maps M(E) into M(E).
Proof. Clearly, Ptβ is linear. Let F β Cb(E)
β
, t β₯ 0. We have, for any Ο β Cb(E),
hΟ, Pβ
tF iL(Cb(E), (Cb(E))β)β€ kΟk0kF k(Cb(E))β.
Then Pt : (Cb(E))β β (Cb(E))β has norm equal to 1. Moreover, by (1.1) it
follows easily that Ptβ(PsβF ) = Pt+sβ F , for any t, s β₯ 0, F β (Cb(E))β. Hence,
(1.1) defines a semigroups of application in (Cb(E))β of norm equal to 1.
Now we prove that Ptβ : M(E) β M(E). According to Definition 1.6, let {Οt(x, Β·), x β E} be the family of probability measures associated to Pt, that
is PtΟ(x) =
R
EΟ(y)Οt(x, dy), for any Ο β Cb(E). Note that that PtΟ β₯ 0 for
any Ο β₯ 0. This implies that if hΟ, F i β₯ 0 for any Ο β₯ 0, then hΟ, PtβF i β₯ 0 for any Ο β₯ 0. Hence, in order to check that Ptβ : M(E) β M(E), it is sufficient to take Β΅ positive. So, let Β΅ β M(E) be positive and consider the map
Ξ : B(E) β R, Ξ 7β Ξ(Ξ) =
Z
E
Οt(x, Ξ)Β΅(dx).
Since for any Ξ β B(E) the map E β [0, 1], x β Οt(x, Ξ) is Borel, the above
formula in meaningful. It is easy to see that Ξ is a positive and finite Borel measure on E, namely Ξ β M(E). Let us show Ξ = PtβΒ΅.
Let us fix Ο β Cb(E), and consider a sequence of simple Borel functions
(Οn)nβN which converges uniformly to Ο and such that |Οn(x)| β€ |Ο(x)|,
x β E. For any x β E we have lim nββ Z E Οn(y)Οt(x, dy) = Z E Ο(y)Οt(x, dy) = PtΟ(x)
and sup xβE Z E Οn(y)Οt(x, dy) β€ kΟk0.
Hence, by the dominated convergence theorem and by taking into account that Οn is simple, we have
Z E Ο(x)Ξ(dx) = lim nββ Z E Οn(x)Ξ(dx) = lim nββ Z E Z E Οn(y)Οt(x, dy) Β΅(dx) = Z E Z E Ο(y)Οt(x, dy) Β΅(dx) = Z E PtΟ(x)Β΅(dx).
This implies that PtβΒ΅ = Ξ and consequently PtβΒ΅ β M(E).
1.2.1
The infinitesimal generator
It is clear that a stochastically continuous Markov semigroup is not, in gen-eral, strongly continuous. However, we can define an infinitesimal generator (K, D(K)) by setting                    D(K) =
Ο β Cb(E) : βg β Cb(E), lim tβ0+ PtΟ(x) β Ο(x) t = g(x), βx β E, sup tβ(0,1) PtΟ β Ο t 0 < β KΟ(x) = lim tβ0+ PtΟ(x) β Ο(x) t , Ο β D(K), x β E. (1.2)
The next result is proved in Propositions 3.2, 3.3, 3.4 of [40]. For the readerβs convenience, we give the complete proof.
Theorem 1.9. Let us assume that (Pt)tβ₯0 is as in Definition 1.6 and let
(K, D(K)) be its infinitesimal generator, defined as in (1.2). Then (i) for any Ο β D(K), PtΟ β D(K) and KPtΟ = PtKΟ, t β₯ 0;
(ii) for any Ο β D(K), x β E, the map [0, β) β R, t 7β PtΟ(x) is
continuously differentiable and (d/dt)PtΟ(x) = PtKΟ(x);
(iii) for any f β Cb(E), t > 0 the map E β R, x 7β
Rt 0 Psf (x)ds belongs to D(K) and it holds K Z t 0 Psf ds = Ptf β f.
1.2 Stochastically continuous semigroups 17 Moreover, if Ο β D(K) we have K Z t 0 Psf ds = Z t 0 KPsf ds;
(iv) K is a Ο-closed operator on Cb(E), that is for any sequence {Οn}nβN β
Cb(E) such that Οn Ο
β Ο β Cb(E) and KΟn Ο
β g β Cb(E) as n β β it
follows that Ο β D(K) and g = KΟ; (v) D(K) is Ο-dense in Cb(E);
(vi) for any Ξ» > 0 the linear operator R(Ξ», K) on Cb(E) defined by
R(Ξ», K)f (x) =
Z β
0
eβΞ»tPtf (x)dt, f β Cb(E), x β E
satisfies, for any f β Cb(E)
R(Ξ», K) β L(Cb(E)), kR(Ξ», K)kL(Cb(E)) β€
1 Ξ»
R(Ξ», K)f β D(K), (Ξ»I β K)R(Ξ», K)f = f.
We call R(Ξ», K) the resolvent of K at Ξ».
Proof. (i). Take Ο β D(K). Since Ο β D(K) we have that lim hβ0+ PhΟ β Ο h Ο = KΟ. Hence, by Remark 1.7 KPtΟ Ο = lim hβ0+ PhPtΟ β PtΟ h Ο = lim hβ0+Pt PhΟ β Ο h Ο = Pt PhΟ β Ο h = PtKΟ.
(ii). By (i) we have KPtΟ(x) = d/dtPtΟ(x) = PtKΟ(x). Since the map
t 7β PtKΟ(x) is continuous, (ii) follows.
(iii) First, we have to check that R0tPsf ds belongs to Cb(E). For any x β E
we have Z t 0 PsΟ(x)ds β€ tkΟk0.
Now let us fix Ξ΅ > 0 and take Ξ΄ > 0 such that sup
sβ[0,t]
|PsΟ(x) β PsΟ(y)| <
Ξ΅ t
when |x β y| < Ξ΄. This is possible since (Pt)tβ₯0 is a locally bounded in
L(Cb(E)). Therefore, for any x, y β E, |x β y| < Ξ΄ we have
Z t 0 PsΟ(x)ds β Z t 0 PsΟ(x)ds β€ Z t 0 |PtΟ(x) β PtΟ(y)| ds < Ξ΅.
Hence, R0tPsΟds β Cb(E). Let us show
Rt
0 PsΟds β D(K). Now, taking into
account that for any x β E the integral R0tPsΟ(x)ds is a Riemann integral,
we have Ph Z t 0 PsΟds = Z t 0 Pt+hΟds,
for any h β₯ 0, sinceR0tPsΟ(x)ds is the limit with respect to the Ο-convergence
of functions in Cb(H). So, for any x β E, h > 0 we have
Ph Z t 0 PsΟds (x) β Z t 0 PsΟ(x)ds = Z t 0 Pt+hΟ(x)ds β Z t 0 PsΟ(x)ds = Z t+h h PsΟ(x)ds β Z t 0 PsΟ(x)ds = Z t+h t PsΟ(x)ds β Z h 0 PsΟ(x)ds.
therefore, by the continuity of s β PsΟ(x) we have
lim hβ0+ 1 h Ph Z t 0 PsΟds (x) β Z t 0 PsΟ(x)ds = PtΟ(x) β Ο(x).
Finally, since kPskL(Cb(E)) β€ 1 we find
1 h Ph Z t 0 PsΟds (x) β Z t 0 PsΟ(x)ds β€ 2kΟk0. This implies sup hβ(0,1) 1 h Ph Z t 0 PsΟds (x) β Z t 0 PsΟ(x)ds 0 < β.
This prove the first part of (v). Now take Ο β D(K). By (ii) we see that for any x β E it holds PtΟ(x) β Ο(x) = Z t 0 d dsPsΟ(x)ds = Z t 0 PsKΟ(x)ds.
Hence, (iii) follows.
(iv) Take (Οn)nβN β D(K) such that Οn Ο
β 0 as n β β and KΟn
Ο
β g β Cb(H) as n β β. By (iii) and Remark 1.7, for any t > 0 we have
PtΟ β Ο Ο
= lim
1.2 Stochastically continuous semigroups 19 Ο = lim nββ Z t 0 PsKΟnds Ο = Z t 0 Psgds.
Hence it follows easily lim tβ0+ PtΟ β Ο t Ο = lim tβ0+ 1 t Z t 0 Psgds Ο = g, which implies Ο β D(K) and KΟ = g.
(v). Take Ο β Cb(E) and set
Οn = n
Z 1n
0
PsΟds.
By (iii) we have Ο β D(K). Since for any x β E the map [0, β) β R, s 7β PsΟ(x) is continuous, we have |Οn(x) β Ο(x)|E β 0 as n β β, for any
x β E. Finally, we have |Οn(x)| β€ kΟk0, which implies Οn Ο
β Ο as n β β. (vi) For any Ξ» > 0 and for any f β Cb(E) we set
FΞ»f (x) =
Z β
0
eβΞ»tPtf (x)dt, x β E.
Fix Ξ» > 0 and for any f β Cb(E).
Step 1 We first prove that FΞ»f β Cb(E). Notice that for any f β Cb(E),
Ξ» > 0 the integral on the right-hand side of is meaningful, since PΒ·f (x) is
continuous and eβΞ»tPtf (x) β€ eβΞ»tkf k0. Hence, sup xβE |FΞ»f (x)| β€ kf k0 Ξ» .
for any f β C(E). To prove the claim, it is sufficient to check that the
function E β R, x 7β FΞ»f (x) is uniformly continuous. So, let us fix Ξ΅ > 0.
Let T > 0 such that
2kf k0 Ξ»
eβΞ»T < Ξ΅
2. (1.3)
There exists Ξ΄ > 0, depending on f and T , such that if x, y β E and |xβy|E <
Ξ΄ we have sup tβ[0,T ] |Ptf (x) β Ptf (y)| < Ξ΅ 2 Ξ» 1 β eβΞ»T . (1.4)
Then, if x, y β E and |x β y|E < Ξ΄ it holds
β€ Z T 0 eβΞ»t|Ptf (x) β Ptf (y)| dt + Z β T eβΞ»t|Ptf (x) β Ptf (y)| dt β€ Ξ΅ 2 Ξ» 1 β eβΞ»T Z T 0 eβΞ»tdt + 2kf k0 Z β T eβΞ»tdt < Ξ΅ thanks to (1.3), (1.4).
Step 2 Here we are checking FΞ»f β D(K) and (Ξ» β K)FΞ»f = f . Set g = FΞ»f
and gT = RT 0 e βΞ»tP tf (x)dt. We have lim T ββkg β gTk0 β€ kf k0 Z β T eβΞ»tdt = 0.
For any h > 0, x β E we have Phg(x) β g(x) h = 1 h Z T 0 eβΞ»t(Pt+hf (x) β Ptf (x)) dt = Ξ1(h, x) + Ξ2(h, x), where Ξ1(h, x) = eΞ»hβ 1 h g(x), Ξ2(h, x) = eΞ»h h Z h 0 eβΞ»tPtf (x)dt. We clearly have lim hβ0+Ξ1(h, x) = Ξ»g(x), x β H and sup hβ(0,1) kΞ1(h, Β·)k0 β€ sup hβ(0,1) eΞ»hβ 1 h kf k0 Z β 0 eβΞ»tdt < β. Hence, Ξ1(h, Β·) Ο
β Ξ»g as h β 0+. Concerning the term Ξ
2(h, x), for any
x β E we have
lim
hβ0+Ξ2(h, x) = f (x),
since the map [0, β) β R, t 7β eβΞ»tPtf (x) is continuous. On the other hand
we have |Ξ2(h, x)| β€ eΞ»h h Z h 0 eβΞ»tdtkf k0 = eΞ»h 1 β eβΞ»h Ξ»h kf k0 which implies sup hβ(0,1) kΞ2(h, Β·)k0 < β. Hence, Ξ2(h, Β·) Ο
β f as h β 0+. We have found that F
Ξ» β D(K) and that
1.2 Stochastically continuous semigroups 21
Definition 1.10. We shall say that a set D β D(K) is a Ο-core for the operator (K, D(K)) if D is Ο-dense in Cb(E) and for any Ο β D(K) there
exists m β N and an m-indexed sequence {Οn1,...,nm}n1βN,...,nmβN β D such
that lim n1ββ Β· Β· Β· lim nmββ Οn1,...,nm Ο = Ο and lim n1ββ Β· Β· Β· lim nmββ KΟn1,...,nm Ο = KΟ.
It is clear that a Ο-core is nothing but the extension of the notion of core with respect to the Ο-convergence. A useful example of core is given by the following
Proposition 1.11. Let (Pt)tβ₯0 be a stochastically continuous Markov
semi-group and let (K, D(K)) be its infinitesimal generator. If D β D(K) is Ο-dense in Cb(E) and Pt(D) β D for all t β₯ 0, then D is a Ο-core for
(K, D(K)).
Proof. In order to get the result, we proceed as in [28]. Let Ο β D(K). Since D in Ο-dense in Cb(E), there exists a sequence (Οn2)n2βN β D (for the
sack of simplicity we assume that the sequence has only one index) such that Οn2 Ο β Ο as n2 β β. Set Οn1,n2,n3(x) = 1 n3 n3 X i=1 P i n1n3Οn2(x) (1.5)
for any n1, n2, n3 β N. By Hypothesis, (Οn1,n2,n3) β D. Taking into account
Remark 1.7, a straightforward computation shows that for any x β E
lim n1ββ lim n2ββ lim n3ββ Οn1,n2,n3(x) = lim n1ββ lim n2ββ n1 Z 1 n1 0 PtΟn2(x)dt = lim n1ββ n1 Z 1 n1 0 PtΟ(x)dt = Ο(x). Moreover, sup n1,n2,n3βN kΟn1,n2,n3k0 β€ sup n2 kΟn2k0 < β since Οn2 Ο β Ο as n2 β β. Hence, lim n1ββ lim n2ββ lim n3ββ Οn1,n2,n3 Ο = Ο.
Similarly, since D β D(K) and Theorem 1.9 holds, we have lim n3ββ KΟn1,n2,n3(x) = n1 Z 1 n1 0 KPtΟn2(x)dt = n1 P 1 n1Οn2(x) β Οn2(x) . So we find lim n1ββ lim n2ββ lim n3ββ KΟn1,n2,n3(x) = lim n1ββ lim n2ββ n1 P 1 n1Οn2(x) β Οn2(x) = lim n1ββ n1 P 1 n1Ο(x) β Ο(x) = KΟ(x), (1.6)
since Ο β D(K). To conclude the proof, we have to show that these limits are uniformly bounded with respect to every index. Indeed we have
sup n3βN kKΟn1,n2,n3k β€ kKΟn2k < β, sup n2βN n1 P 1 n1Οn2 β Οn2 0 β€ 2n1 sup n2βN kΟn2k0 < β.
Finally, the last limit in (1.6) is uniformly bounded with respect to n1 since
Ο β D(K).
1.3
The measure equation
Theorem 1.12. Let (Pt)tβ₯0 be a stochastically continuous Markov
semi-group, as in Definition 1.6, and let (K, D(K)) be its infinitesimal generator in Cb(E), defined by (1.2). Then, for any Β΅ β M(E) there exists a unique
family of measures {Β΅t, t β₯ 0} β M(E) fulfilling
Z T 0 |Β΅t|T V(E)dt < β, T > 0; (1.7) Z E Ο(x)Β΅t(dx) β Z E Ο(x)Β΅(dx) = Z t 0 Z E KΟ(x)Β΅s(dx) ds, (1.8)
for any Ο β D(K), t β₯ 0, and the solution is given by PtβΒ΅, t β₯ 0.
1.3 The measure equation 23
1.3.1
Existence of a solution
By Theorem 1.8, formula (1.1) defines a family {PtβΒ΅, ; t β₯ 0} of finite Borel measures on E. Moreover, kPtβΒ΅k(Cb(E))β β€ kΒ΅k(Cb(E))β = |Β΅|T V(E). Hence,
(1.7) follows. Since for any Ο β Cb(E) it holds
lim tβ0+ Z E PtΟ(x)Β΅(dx) = Z E Ο(x)Β΅(dx),
by the semigroup property of Ptit follows that for any Ο β Cb(E) the function
R+β R, t 7β
Z
E
Ο(x)PtβΒ΅(dx) (1.9)
is continuous. Clearly, P0βΒ΅ = Β΅. Now we show that if Ο β D(K) then the function (1.9) is differentiable. Indeed, by taking into account (1.2) and that PtβΒ΅ β M(E), we can apply the dominated convergence theorem for any Ο β D(K) to obtain d dt Z E Ο(x)PtβΒ΅(dx) = = lim hβ0 1 h Z E Pt+hΟ(x)Β΅(dx) β Z E PtΟ(x)Β΅t(dx) = lim hβ0 Z E Pt+hΟ(x) β PtΟ(x) h Β΅(dx) = lim hβ0 Z E Pt PhΟ β Ο h (x)Β΅(dx) = Z E lim hβ0 PhΟ β Ο h (x)PtβΒ΅(dx) = Z E KΟ(x)PtβΒ΅(dx).
Then, by arguing as above, the differential of (1.9) is continuous. This clearly implies that {PtβΒ΅, t β₯ 0} is a solution of the measure equation (1.8).
1.3.2
Uniqueness of the solution
Since problem (1.8) is linear, it is enough to take Β΅ = 0. We claim that in this case Β΅t = 0, βt β₯ 0. In order to prove this, let us fix T > 0 and let us
consider the Kolmogorov backward equation (
ut(t, x) + Ku(t, x) = Ο(x) t β [0, T ], x β E,
u(T, x) = 0, (1.10)
where Ο β Cb(E). The meaning of (1.10) is explained by the following
Lemma 1.13. For any T > 0, Ο β Cb(E) the real valued function u : [0, T ] Γ E β R u(t, x) = β Z T βt 0 PsΟ(x)ds, (t, x) β [0, T ] Γ E. (1.11)
satisfies the following statements (i) u β Cb([0, T ] Γ E) 1;
(ii) u(t, Β·) β D(K) for any t β [0, T ] and the function [0, T ] Γ E β R, (t, x) 7β Ku(t, x) is continuous and bounded;
(iii) the real valued function [0, T ] Γ E β R, (t, x) 7β u(t, x) is differentiable with respect to t with continuous and bounded differential ut(t, x), and
the function [0, T ]ΓE β R, (t, x) 7β ut(t, x) is continuous and bounded;
(iv) for any (t, x) β [0, T ] Γ E the function u satisfies (1.10). Proof. For any s, t β [0, T ], s β€ t we have
u(t, x) β u(s, x) = β Z T βt 0 PΟΟ(x)dΟ + Z T βs 0 PΟΟ(x)dΟ = Z T βs T βt PΟΟ(x)dΟ. Then ku(t, Β·) β u(s, Β·)k0 β€ |t β s|kΟk0.
(i) is proved. By (vi) of Theorem 1.9, u(t, Β·) β D(K) for any t β [0, T ] and it holds Ku(t, x) = βPT βtΟ(x) + Ο(x), for any x β E. So (ii) follows (cfr.
Definition 1.6). Now let h β (βt, T β t) and x β E. We have u(t + h, x) β u(t, x) h + Ku(t, x) β Ο(x) = (1.12) = 1 h Z T βt T βtβh PΟΟ(x)ds β PT βtΟ(x)
Then, since PtΟ(x) is continuous in t, (1.12) vanishes as h β 0. This implies
that u(t, x) is differentiable with respect to t and (1.10) holds. Moreover, by (ii), we have that the map t 7β ut(t, x) = βKu(t, x) + Ο(x) is continuous.
This proves (iii) and (iv). The proof is complete.
1Clearly, C
1.3 The measure equation 25
We need the following
Lemma 1.14. Let {Β΅t} be a solution of the measure equation (1.7), (1.8).
Then, for any function u : [0, T ] Γ E β R satisfying statements (i), (ii), (iii) of Lemma 1.13 the map
[0, T ] β R, t 7β
Z
E
u(t, x)Β΅t(dx)
is absolutely continuous and for any t β₯ 0 it holds Z E u(t, x)Β΅t(dx) β Z E u(0, x)Β΅(dx) = Z t 0 Z E us(s, x) + Ku(s, x)Β΅s(dx) ds. (1.13) Proof. We split the proof in several steps.
Step 1: Approximation of u(t, x).
With no loss of generality, we assume T = 1. For any x β E, let us consider the approximating functions {un(Β·, x)}
nβN of u(Β·, x) given by the Bernstein
polynomials (see, for instance, [46], section 0.2). Namely, for any n β N, x β E we consider the function
[0, T ] β R, t 7β un(t, x) = n X k=0 Ξ±k,n(t)u k n, x , where Ξ±k,n(t) = n k tk(1 β t)nβk.
Since u β C([0, T ]; Cb(E)), it is well known that it holds
lim nββtβ[0,1]sup ku n(t, Β·) β u(t, Β·)k 0 = 0 (1.14) and sup tβ[0,1] kun(t, Β·)k0 < β, n β N.
Then, for any t β [0, 1]
lim
nββu
n(t, Β·)= u(t, Β·).Ο (1.15)
We also have that for any n β N, t β [0, 1] un(t, Β·) β D(K),
and that for any x β E the function [0, 1] β R, t 7β Kun(t, x) is continuous
(cfr. (ii) of Lemma 1.13). Then, for any x β E it holds lim nββtβ[0,1]sup |Ku n(t, x) β Ku(t, x)| = 0, sup tβ[0,1] kKun(t, Β·)k 0 β€ sup tβ[0,1] kKu(t, Β·)k0 < β. (1.16)
This clearly implies that for any t β [0, 1] lim
nββKu n
(t, Β·)= Ku(t, Β·).Ο (1.17)
Similarly, since for any x the function t 7β u(t, x) is differentiable with respect to t, we also have that for any x β E
lim nββtβ[0,1]sup |u n t(t, x) β ut(t, x)| = 0, sup tβ[0,1] kun t(t, Β·)k0 β€ sup tβ[0,1] kut(t, Β·)k0 < β. (1.18)
Hence, for any t β [0, 1]
lim nββu n t(t, Β·) Ο = ut(t, Β·). (1.19) Step 2: differential of R Eu n(t, x)Β΅ t(dx)
For any n β N, k β€ n and for almost all t β [0, 1] we have d dt Z E Ξ±k,n(t)u k n, x Β΅t(dx) = = d dt Ξ±k,n(t) Z E uk n, x Β΅t(dx) = Ξ±0k,n(t) Z E uk n, x Β΅t(dx) + Ξ±k,n(t) Z E Kuk n, x Β΅t(dx). = Z E Ξ±0k,n(t)uk n, x + Ξ±k,n(t)Ku k n, x Β΅t(dx).
Note that the last terms belong to L1([0, 1]). This implies
Z E un(t, x)Β΅t(dx) β Z E un(0, x)Β΅(dx) = Z t 0 Z E uns(s, x) + Kun(s, x)Β΅s(dx) ds,
1.3 The measure equation 27
for any n β N. Step 3: Conclusion Consider the functions
f : [0, 1] β R, f (t) = Z E u(t, x)Β΅t(dx) and fn : [0, 1] β R, fn(t) = Z E un(t, x)Β΅t(dx). By 1.14 we have Z E un(t, x) β u(t, x)Β΅t(dx) β€ sup tβ[0,1] kun(t, Β·) β u(t, Β·)k0|Β΅t|T V(E).
Since (1.7) and (1.14) hold, it follows that the sequence (fn)nβN converges
to f in L1([0, 1]), as n β β. We also have, by Step 2, that f
n is absolutely
continuous and hence differentiable for almost all t β [0, 1], with differential in L1([0, 1]) given by
fn0(t) = Z
E
unt(t, x) + Kun(t, x)Β΅t(dx),
for almost all t β [0, 1]. By (1.17), (1.19) we have lim nββf 0 n(t) = lim nββ Z E unt(t, x) + Kun(t, x)Β΅t(dx) = Z E ut(t, x) + Ku(t, x)Β΅t(dx), (1.20)
for all t β [0, T ]. Moreover, it holds sup nβN |fn0(t)| β€ sup tβ[0,1] ku(t, Β·)k0+ sup tβ[0,1] kKu(t, Β·)k |Β΅t|T V(E).
Hence, still by (1.16) and (1.18), there exists a constant c > 0 such that supn|f0
n(t)| β€ c|Β΅t|T V(E). By taking into account (1.7), it follows that the
limit in (1.20) holds in L1([0, 1]). Let us denote by g(t) the right-hand side of (1.20). We find, for any a, b β [0, 1],
f (b) β f (a) = lim nββ fn(b) β fn(a) = lim nββ Z b a fn0(t)dt = Z b a lim nββf 0 n(t)dt = Z b a g(t)dt.
Therefore, f is absolutely continuous, and f0(t) = g(t) for almost all t β [0, 1]. Lemma 1.14 is proved.
Now let Ο β Cb(E) and let u be the function defined in (1.11). Then u
satisfies statements (i)β(iv) of Lemma 1.13. Hence, by Lemma 1.14 it follows that the function [0, T ] β R, t β REu(t, x)Β΅t(dx) is absolutely continuous,
with differential d dt Z E u(t, x)Β΅t(dx) = Z E ut(t, x) + Ku(t, x)Β΅t(dx) = Z E Ο(x)Β΅t(dx),
for almost all t β [0, T ]. So, we can write 0 = Z E u(T, x)Β΅T(dx) β Z E u(0, x)Β΅(dx) = = Z T 0 d dt Z E u(t, x)Β΅t(dx) dt = Z T 0 Z E Ο(x)Β΅t(dx) dt.
for all Ο β Cb(E). By the arbitrariness of T , it follows that for any t β₯ 0 it
holds Z t 0 Z E Ο(x)Β΅s(dx) ds = 0.
In particular, the above identity holds true for Ο = KΟ, for any Ο β D(K). Then, taking into account (1.8), it follows that for any Ο β D(K), t β₯ 0 it holds
Z
E
Ο(x)Β΅t(dx) = 0. (1.21)
Finally, since D(K) is Ο-dense in Cb(E) (cfr. (v) of Theorem 1.9), (1.21)
holds for any Ο β Cb(E), t β₯ 0 and consequently Β΅t = 0 for any t β₯ 0. The
Chapter 2
Measure equations for
Ornstein-Uhlenbeck operators
2.1
Introduction and main results
We denote by H a separable Hilbert space with norm | Β· | and inner product hΒ·, Β·i and we consider the stochastic differential equation in H
ο£± ο£² ο£³ dX(t) = AX(t)dt + BdW (t), t β₯ 0 X(0) = x β H, (2.1)
where A, B, {W (t)}tβ₯0 fulfil Hypothesis 0.1. In the following, we set Q =
BBβ. For any x β h, equation (2.1) has a unique mild solution X(t, x), t β₯ 0, that is a square integrable random process adapted to the filtration (Ft)tβ₯0, given by
X(t, x) = etAx + WA(t). (2.2)
It is well known that the random variable X(t, x) has Gaussian law of mean etAx and covariance operator Qt (cfr. Hypothesis 0.1). Hence, the
corre-sponding transition semigroup (Rt)tβ₯0, called the Ornstein-Uhlenbeck (in the
following, OU) semigroup enjoys the representation RtΟ(x) =
Z
H
Ο(etAx + y)NQt(dy), Ο β Cb(H), t β₯ 0, x β H, (2.3)
where NQt is the Gaussian measure on H of zero mean and covariance
ope-rator Qt(see [22]). Of course, in the above formula we mean NQ0 = Ξ΄0. Also,
the OU semigroup (Rt)tβ₯0 is a stochastically continuous Markov semigroup
in Cb(H). Moreover, it is well known that for any t β₯ 0, h β H it holds1
RteihΒ·,hi(x) = eihe
tAx,hiβ1
2hQth,hi, h β H. (2.4)
We denote by (L, D(L)) the infinitesimal generator ο£±         ο£²         ο£³ D(L) = Ο β Cb(H) : βg β Cb(H), lim tβ0+ PtΟ(x) β Ο(x) t = g(x), βx β H, sup tβ(0,1) PtΟ β Ο t 0 < β LΟ(x) = lim tβ0+ PtΟ(x) β Ο(x) t , Ο β D(L), x β H. (2.5) By Theorem 1.12 follows
Theorem 2.1. Let (Rt)tβ₯0 be the Ornstein-Uhlenbeck semigroup (2.3), and
let (L, D(L)) be its infinitesimal generator. Then, for any Β΅ β M(H) there exists a unique family of measures {Β΅t, t β₯ 0} β M(H) fulfilling
Z T 0 |Β΅t|T V(H)dt < β, T > 0; (2.6) Z E Ο(x)Β΅t(dx) β Z H Ο(x)Β΅(dx) = Z t 0 Z H LΟ(x)Β΅s(dx) ds, (2.7)
for any Ο β D(L), t β₯ 0. Moreover, Β΅t= RβtΒ΅, t β₯ 0.
We are interested in extending the previous results to the Kolmogorov operator associated to equation (2.1), which looks like
1
2Tr[QD
2Ο(x)] + hx, Aβ
DΟ(x)i, x β H.
To this purpose, we need some preliminary results. It will be helpful the following result about approximation of Cb(H)-functions.
Proposition 2.2. We recall that E (H) is the linear span of the real and imaginary part of the functions
H β C, x 7β eihx,hi,
1R
2.1 Introduction and main results 31
where h β H. Then E (H) is Ο-dense in Cb(H) and for any Ο β Cb(H) there
exists a two-indexed sequence (Οn1,n2) β E (H) such that
lim n1ββ lim n2ββ Οn1,n2(x) = Ο(x), x β H (2.8) sup n1,n2 kΟn1,n2k0 β€ kΟk0. (2.9) Moreover, if Ο β C1
b(H) we can choose the sequence (Οn1,n2) β E (H) in such
a way that (2.8), (2.9) hold and for any h β H lim n1ββ lim n2ββ hDΟn1,n2(x), hi = hDΟ(x), hi, x β H sup n1,n2 kDΟn1,n2kCb(H;H) β€ kDΟkCb(H;H). (2.10)
Proof. (2.8) and (2.9) are proved in[26], Proposition 1.2. (2.10) follows by the well known properties of the Fourier approximation with FejΒ΄er kernels of differentiable functions (see, for instance, [33]).
We are going to improve this result. We recall that the set EA(H) has
been introduced in Section 1.1.
Proposition 2.3. For any Ο β Cb(H) there exists a three-indexed sequence
(Οn1,n2,n3) β EA(H) such that lim n1ββ lim n2ββ lim n3ββ Οn1,n2,n3 Ο = Ο. Moreover, if Ο β C1
b(H), we have that for any h β H it holds
lim n1ββ lim n2ββ lim n3ββ hDΟn1,n2,n3, hi Ο = hDΟ, hi.
Proof. Let Ο β Cb(H) and let us consider a two-indexed sequence (Οn1,n2) β
E(H) as in Proposition 2.2. Let us define the sequence (Οn1,n2,n3) by setting
Οn1,n2,n3(x) = Οn1,n2(n3R(n3, A
β
)x), x β H, n3 β N,
where R(n3, Aβ) is the resolvent operator of Aβ at n3. Clearly, Οn1,n2,n3 β
EA(H). Taking into account that nR(n, Aβ)x β x as n β β for all x β H,
and that for some c > 0 it holds |nR(n, Aβ)x| β€ c|x| for any x β H, n β₯ 1, it follows that Οn1,n2,n3 Ο β Οn1,n2 as n3 β β. If f β C 1 b(H), we observe that hD(f (nR(n, Aβ)Β·)(x), hi = hDf (nR(n, Aβ)x), nR(n, A)hi.
Therefore, be arguing as above, we find hD(f (nR(n, Aβ)Β·), hi β hDf (Β·), hiΟ as n β β . Hence the result follows.
Example 2.4. If A 6= 0 we have D(L) β© EA(H) = {constant functions}. In
fact for any x β H, h β D(Aβ) we have
lim tβ0+ Rteihh,xiβ eihh,xi t = β1 2 hQh, hi + ihA β h, xi eihh,xi,
which is not bounded when h 6= 0 and A 6= 0.
Let IA(H) be the linear span of the real and imaginary part of the
func-tions
H β C, x 7β
Z a
0
eihesAx,hiβ12hQsh,hids : a > 0, h β D(Aβ),
where D(Aβ) is the domain of the adjoint operator of A.
Proposition 2.5. The set IA(H) is Ο-dense in Cb(H), it is stable for Rt
and IA(H) β D(L). Moreover, it is a Ο-core for (L, D(L)) and for any
Ο β IA(H) it holds
LΟ(x) = 1
2Tr[QD
2Ο(x)] + hx, AβDΟ(x)i, x β H. (2.11)
Proof. Let h β D(Aβ) and a > 0. We have
lim aβ0+ 1 a Z a 0
eihesAx,hiβ12hQsh,hids = eihx,hi, x β H
and sup a>0 1 a Z a 0
eihesAx,hiβ12hQsh,hids β eihx,hi
β€ 2. Then EA(H) β IA(H) Ο
. Consequently, in view of Proposition 2.3, IA(H) is
Ο-dense in Cb(H). Now let t > 0. By taking into account (2.4), we can apply
the Fubini theorem to find Rt
Z a 0
eihesAΒ·,hiβ12hQsh,hids
(x) = =
Z a
0
eihe(t+s)Ax,hiβ12hQte
sAβh,esAβhiβ1
2hQsh,hids =
= Z a
0
eihe(t+s)Ax,hiβ12hQt+sh,hids =
= Z a+t
0
eihesAx,hiβ12hQsh,hids β
Z t
0
2.1 Introduction and main results 33 since hQtesA β h, esAβhi = hesAQ tesA β h, hi = hQt+sh, hi β hQsh, hi. Then we
have Rt(IA(H)) β IA(H). Now we prove that IA(H) β D(L). Let
Ο(x) = Z a
0
eihesAx,hiβ12hQsh,hids. (2.13)
By (2.12) we have that RtΟ(x) β Ο(x) =
= Z a+t
a
eihesAx,hiβ12hQsh,hids β
Z t 0
eihesAx,hiβ12hQsh,hids.
This implies lim tβ0+ RtΟ(x) β Ο(x) t = e iheaAx,hiβ1 2hQah,hiβ eihx,hi (2.14) and |RtΟ(x) β Ο(x)| β€ 2t.
Then Ο β D(L) and by Proposition 1.11 follows that IA(H) is a Ο-core for
(L, D(L)). In order to prove (2.11), it is sufficient to take Ο as in (2.13). By a straightforward computation we find that for any x β H it holds
1 2Tr[QD 2Ο(x)] + hx, Aβ DΟ(x)i = Z a 0 ihAβesAβh, xi β 1 2he sAQesAβh, hi
eihesAx,hiβ12hQsh,hids
= Z a 0 β βse ihesAx,hiβ1 2hQsh,hids
= eiheaAx,hiβ12hQah,hiβ eihx,hi,
cfr. Example 2.4. By taking into account (2.14), it follows that (2.11) holds.
We are now able to prove the main result of this chapter
Theorem 2.6. Let (Rt)tβ₯0 be the Ornstein-Uhlenbeck semigroup (2.3) and
let L0 : IA(H) β Cb(H) β Cb(H) be the differential operator
L0Ο(x) =
1
2Tr[QD
2Ο(x)] + hx, AβDΟ(x)i, Ο β I A(H)
Then, for any Β΅ β M(H) there exists a unique family of measures {Β΅t, t β₯
0} β M(H) fulfilling (2.6) and the measure equation Z E Ο(x)Β΅t(dx) β Z H Ο(x)Β΅(dx) = Z t 0 Z H L0Ο(x)Β΅s(dx) ds, (2.15)
Proof. By Proposition 2.5 we have that IA(H) is a Ο-core for (L, D(L)) and
that LΟ = L0Ο, for any Ο β IA(H). So it is easy to see that RβtΒ΅, t β₯ 0 is
a solution of the measure equation (2.15). Hence, if Ο β D(L) there exists a sequence2 (Ο n)nβN β IA(H) such that lim nββΟn Ο = Ο, lim nββL0Οn Ο = KΟ. For any t β₯ 0 we find
Z H Ο(x)Β΅t(dx) β Z H Ο(x)Β΅(dx) = lim nββ Z H Οn(x)Β΅t(dx) β Z H Οn(x)Β΅(dx) = lim nββ Z t 0 Z H K0Οn(x)Β΅s(dx) ds. Now observe that for any s β₯ 0 it holds
lim nββ Z H L0Οn(x)Β΅s(dx) = Z H LΟ(x)Β΅s(dx) and Z H L0Οn(x)Β΅s(dx) β€ sup nβN kL0Οnk0|Β΅s|T V(H).
Hence, by taking into account (2.6) and that supnβNkL0Οnk0 < β, we can
apply the dominated convergence theorem to obtain lim nββ Z t 0 Z H L0Οn(x)Β΅s(dx) ds = Z t 0 Z H LΟ(x)Β΅s(dx) ds
So, Β΅t,, t β₯ 0 is also a solution of the measure equation (2.6), (2.7). Since by
Theorem 2.1 such a solution is unique, it follows that the measure equation (2.6), (2.15) has a unique solution, defined by RβtΒ΅, t β₯ 0.
2.2
Absolute continuity with respect to the
invariant measure
We consider the case when the semigroup Rt has a unique invariant measure
Β΅. The aim of this section is to study the absolute continuity of the family (Β΅t)tβ₯0, solution of (2.6), (2.7), with Β΅0 = ΟΒ΅, where Ο β L1(H, Β΅).
2.3 The adjoint of Rt in L2(H; Β΅) 35
We recall that a necessary and sufficient condition that guarantees exis-tence of an invariant measure is that
sup
tβ₯0
Tr[Qt] < β,
see [22], Theorem 11.7. For simplicity, in this section we shall assume that Hypothesis 0.1 holds and that Ο < 0. These conditions imply that the operator
Qβ=
Z β
0
etAQetAβdt
is well defined and of trace class (see, for instance, [22]). We also have that Β΅ = NQβ is the unique invariant measure for the semigroup (Rt)tβ₯0 and that
lim
tβ+βRtΟ(x) =
Z
H
Ο(x)Β΅(dx) = hΟ, Β΅i,
for all Ο β Cb(H), x β H. The last statement means that the dynamical
system (H, B(H), Β΅, (Rt)tβ₯0) is strongly mixing.
For p β₯ 1, we consider the functional space Lp(H; Β΅). For any Ο β Cb(H)
we have Z H |RtΟ(x)|pΒ΅(dx) β€ Z H Rt|Ο|p(x)Β΅(dx) = = Z H |Ο(x)|pΒ΅(dx),
since Β΅ is the invariant for Rt. This allows us to extend the
Ornstein-Uhlenbeck semigroup (Rt)tβ₯0 to a strongly continuous semigroup of
contrac-tions, still denoted it by (Rt)tβ₯0, on Lp(H; Β΅). When p = 2, we shall denote
the scalar product of the Hilber space L2(H; Β΅) by
hΟ, ΟiL2(H;Β΅), Ο, Ο β L2(H; Β΅).
2.3
The adjoint of R
tin L
2(H; Β΅)
By Theorem 2.1, we have Β΅t= RβtΒ΅0, that isZ H Ο(x)Β΅t(dx) = Z H RtΟ(x)Β΅0(dx) = Z H RtΟ(x)Ο(x)Β΅(dx),
for any Ο β Cb(H), t β₯ 0. Then, it is natural to study the adjoint of Rt in
Following Chojnowska-Michalik and Goldys (see [10]), we shall give an explicit representation of the adjoint of Rt in the Hilbert space L2(H; Β΅), by
using the so called second quantization operator. We set
LΒ΅(H) = {T β L(H) : βS β L(H) such that T = SQ1/2β }.
It is easy to see that T β LΒ΅(H) if and only if
T |Q1/2
β (H) β L((Q
1/2
β , H); H),
where (Q1/2β , H) is the Banach space endowed with the norm kxkQ1/2 β (H) =
|Q1/2β x|. Consequently, since Q1/2β (H) is dense in H, the space LΒ΅ is dense in
L(H) with respect to the pointwise convergence. Let us define a linear mapping
F : LΒ΅(H) β L2(H, Β΅; H)
by setting
F (T )x = QβSx,
where S β L(H) is such that T = SQ1/2β . It is easy to see that
Z H |F x|2Β΅(dx) = Tr[Q1/2 β T T β Q1/2β ].
Then F is extendible by density to all L(H). We shall still denote this extension by F , and we shall write
F (T )x = Q1/2β T Qβ1/2β x.
Clearly, F is not, in general, a bounded linear operator. Let us define, for any contraction T β L(H), the linear operator
Ξ : {T β L(H) : kT kL(H) β€ 1} β L(Lp(H, Β΅)) by setting (Ξ(T )Ο) (x) = Z H Ο(Q1/2β TβQβ1/2β x + Q1/2β βI β TβT Qβ1/2 β y)Β΅(dy),
for all Ο β Lp(H; Β΅). It is easy to check that Ξ(T ) is still a contraction
and that (Ξ(T ))β = Ξ(Tβ). The operator Ξ is called the second quantization operator. For details we refer to [10, 23].
2.3 The adjoint of Rt in L2(H; Β΅) 37
Theorem 2.7. Assume that for any t > 0 it holds
etA(Q1/2β (H)) β Q1/2β (H). (2.16)
Then, for all t > 0 and Ο β L2(H; Β΅) we have
RβtΟ(x) = Ξ(Qβ1/2β etAQ1/2β )Ο (x).
Remark 2.8. Condition (2.16) is weaker than to require that the OU semi-group Rt enjoys the strong Feller property. We say that a semigroup (Pt)tβ₯0
on Bb(H), the Banach space of all bounded and Borel functions Ο : H β R,
enjoys the strong Feller property when it holds PtΟ β Cb(H)
for any t > 0, βΟ β Bb(H). This property is equivalent to require that for
all t > 0 it holds
etA(H) β Q1/2t (H), (2.17)
see [22], Theorem 9.19.
We recall that in general the adjoint of (Rt)tβ₯0 in L2(H; Β΅) is not an
Ornstein-Uhlenbeck semigroup. However, the next proposition gives a suffi-cient condition in order to have this property.
Proposition 2.9. Assume that Qβ(H) β D(Aβ) and that the operator
A1x = QβAβQββ1, x β D(A1) = {x β Qβ(H) : Qβ1βx β D(A β
)} generates a C0-semigroup given by etA1 = QβetA
β
Qβ1β. Then the adjoint of Rt in L2(H; Β΅) is the operator Rβt defined by
RβtΟ(x) = Z
H
Ο(y)NetA1,Q1,t(dy),
where
Q1,tx =
Z t
0
esA1QesAβ1xds, x β H, t β₯ 0.