• Non ci sono risultati.

Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions

N/A
N/A
Protected

Academic year: 2021

Condividi "Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions"

Copied!
12
0
0

Testo completo

(1)

Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic

Heavy-Ion Collisions

S. Acharyaet al.* (The ALICE Collaboration)

(Received 21 November 2019; revised 25 February 2020; accepted 27 May 2020; published 30 June 2020) The first evidence of spin alignment of vector mesons (K0andϕ) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element ρ00 is measured at midrapidity (jyj < 0.5) in Pb-Pb collisions at a center-of-mass energy ( ffiffiffiffiffiffiffiffisNN

p

) of 2.76 TeV with the ALICE detector.ρ00 values are found to be less than 1=3 (1=3 implies no spin alignment) at low transverse momentum (pT< 2 GeV=c) for K0 andϕ at a level of 3σ and 2σ, respectively. No significant spin alignment is observed for the K0Smeson (spin¼ 0) in Pb-Pb collisions and for the vector mesons in pp collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination.

DOI:10.1103/PhysRevLett.125.012301

Ultrarelativistic heavy-ion collisions create a system of deconfined quarks and gluons, called the quark-gluon plasma (QGP)[1–3]and provide the opportunity to study its properties. In collisions with nonzero impact parameter, a large angular momentum of Oð107Þℏ [4] and magnetic field of Oð1014Þ T [5] are also expected. While the magnetic field is short lived (a few fm=c), the angular momentum is conserved and could affect the system throughout its evolution. Experimental observables like correlations in azimuthal angle[6,7]could be used to study the influence of these initial conditions on the properties and the dynamical evolution of the QGP and its subsequent hadronization.

Spin-orbit interactions have wide observable conse-quences in several branches of physics [8–10]. In the presence of a large angular momentum, the spin-orbit coupling of quantum chromodynamics (QCD) could lead to a polarization of quarks followed by a net-polarization of vector mesons (K0 andϕ)[11–15]along the direction of the angular momentum.

The spin state of a vector meson is described by a3 × 3 Hermitian spin-density matrix [15]. Its trace is 1 and ρ11 and ρ−1−1 cannot be measured separately in two-body decays to pseudoscalar mesons. Consequently, there is only one independent diagonal element,ρ00. The elements of the spin-density matrix can be studied by measuring the

angular distributions of the decay products of vector mesons with respect to a quantization axis. Here two different quantization axes are used: (i) a vector perpendicular to the production plane (PP) of the vector meson and (ii) the normal to the reaction plane (RP) of the system. The PP is defined by the flight direction of the vector meson and the beam direction.

The spin-density matrix elementρ00 is determined from the distribution of the angle θ between the kaon decay daughter and the quantization axis in the decay rest frame [16,17],

dN

d cos θ∝ ½1 − ρ00þ cos 2θð3ρ

00− 1Þ: ð1Þ ρ00is1=3 in the absence of spin alignment and the angular distribution in Eq. (1) is uniform. The experimental signature of spin alignment is a nonuniform angular distribution (ρ00≠ 1=3).

The direction of the angular momentum in noncentral heavy-ion collisions is perpendicular to the reaction plane (subtended by the beam axis and impact parameter)[12]. The spin-orbit interaction is expected to lead to spin alignment with respect to the RP. The reaction plane orientation cannot be measured directly, but is estimated from the final state distributions of particles. This exper-imentally measured plane is called the event plane (EP) [18]. The deviation of the EP with respect to the RP is corrected using the EP resolution (R) and observed ρobs 00 [19], ρ00¼ 13þ  ρobs 00 −13  4 1 þ 3R: ð2Þ

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.

Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

There are specific qualitative predictions for the spin alignment effect [13]: (a) ρ00> 1=3 if the hadronization of a polarized parton proceeds via fragmentation and less than 1=3 for hadronization via recombination, (b) ρ00 is expected to have a smaller deviation from 1=3 for both central (impact parameter ≲3 fm) and peripheral (impact parameter≳11 fm) heavy-ion collisions, and a maximum deviation for mid-central collisions, where the angular momentum is also maximal, (c) theρ00 value is expected to have maximum deviation from1=3 at low pT and reach the value of1=3 at high pT in the recombination scenario, and (d) the effect is expected to be larger for K0compared toϕ due to their constituent quark composition. The initial large magnetic field might also affect theρ00 values[15]. This leads to ρ00> 1=3 for neutral and ρ00< 1=3 for charged vector mesons. Hence magnetic field and angular momentum could have opposite effects on electrically neutral K0, ϕ. All of these features are probed for K0 andϕ mesons in Pb-Pb collisions presented in this Letter. As a cross check, a control measurement is carried out using pp collisions, which do not possess large initial angular momentum, and the same analysis is done in Pb-Pb collisions for K0S meson, which has zero spin. In addition, the measurements are carried out by randomizing the directions of the event (RNDEP) and production planes.

The analyses are carried out using 43 million minimum bias pp collisions at pffiffiffis¼ 13 TeV, taken in 2015 and 14ffiffiffiffiffiffiffiffimillion minimum bias Pb-Pb collisions at

sNN p

¼ 2.76 TeV, collected in 2010. The minimum bias event selection in Pb-Pb collisions require at least one hit in any of V0A, V0C, and silicon pixel detectors while in pp collisions at least one hit in both V0A and V0C is required. The events are further required to have a primary vertex position within 10 cm of the detector center along the beam axis. The events were classified by collision central-ity classes based on the amplitude measured in the V0 counters [20]. The measurements are performed at mid-rapidity (jyj < 0.5) as a function of pT and are reported for pp collisions as well as for different centrality classes in Pb-Pb collisions. The K0Sanalysis is performed only for Pb-Pb collisions in the 20–40% centrality class which corre-sponds to the top 20–40% of V0 amplitude distribution. The details of the ALICE detector, trigger conditions, centrality selection, and second order event plane estima-tion using the V0 detectors at forward rapidity, can be found in [20–23]. The K0 and ϕ candidates are recon-structed via their decays into charged Kπ and KK pairs, respectively, while the K0Sis reconstructed via its decay into two charged pions. The time projection chamber (TPC) [24] and time-of-flight (TOF) detector [25] are used to identify the decay products of these mesons via specific ionization energy loss and time-of-flight measurements, respectively. The K0 andϕ yields are determined via the invariant mass technique[26–28]. The background coming from combinatorial pairs and misidentified particles is

removed by constructing the invariant mass distribution from so-called mixed events for the K0andϕ[26,27]. The combinatorial background for the K0S candidates is signifi-cantly reduced by selecting the distinctive V-shaped decay topology[28].

The invariant mass distributions are fitted with a Breit-Wigner and Voigtian (convolution of Breit-Breit-Wigner and Gaussian distributions) function for the K0 andϕ signals, respectively, along with a second-order polynomial that describes the residual background [26,27]. Extracted yields are then corrected for the reconstruction efficiency and acceptance in each cosθ and pT bin [26,27]. The reconstruction efficiency is determined from Monte Carlo simulations of the ALICE detector response based on

GEANT3 simulation [26,27]. The signal extraction

proce-dures for the vector mesons and K0S are identical to those used in earlier publications reporting the pTdistribution of the mesons[26–28]. The mass peak positions and widths of the resonances across all the cosθ bins for various pT intervals in pp collisions and in different centrality classes of Pb-Pb collisions are consistent with those obtained from earlier analyses[26–28]and no significant dependence on cosθ is seen. The resulting efficiency and acceptance corrected dN=d cos θ distributions for selected pT inter-vals in minimum bias pp collisions and in 10–50% central Pb-Pb collisions are shown in Fig. 1. These distributions are fitted with the functional form given in Eq. (1) to determineρ00for each pT bin in pp and Pb-Pb collisions. For the EP results, the resolution values R are 0.71, 0.53, 0.72, 0.66, and 0.40 for 10–50%, 0–10%, 10–30%, * θ cos 0 0.2 0.4 0.6 0.8 1 ) /d cos N ) ( d evt N (1/ 0 0.05 0.1 (c) c < 0.6 GeV/ T p ≤ , 0.0 0 K * 7) × ( c < 0.8 GeV/ T p ≤ , 0.5 φ Production plane pp ) /d cos N ) ( d evt N (1/ 0 2 4 (a) c < 1.2 GeV/ T p ≤ , 0.8 0 K * 5) × ( c < 0.7 GeV/ T p ≤ , 0.5 φ Event plane 50%) − Pb (10 − Pb

Bar: Stat. uncertainty on yield Box: Syst. uncertainty on yield

*] θ 2 - 1)cos 00 ρ ) + (3 00 ρ [(1 - 0 N

Variation of fit function due 00 ρ to syst. uncertainty on * θ cos 0 0.2 0.4 0.6 0.8 1 ) /d cos N ) ( d evt N (1/ 0 5 10 (b) c < 1.2 GeV/ T p ≤ , 0.4 0 K * 8) × ( c < 0.8 GeV/ T p ≤ , 0.5 φ Production plane 50%) − Pb (10 − Pb ALICE

FIG. 1. Angular distribution of the decay daughter in the rest frame of the meson with respect to the quantization axis atjyj < 0.5 for pp collisions atffiffiffiffiffiffiffiffi pffiffiffis¼ 13 TeV and Pb-Pb collisions at

sNN p

¼ 2.76 TeV. Panels (a) and (b) show results for K0andϕ with respect to EP and PP. Panel (c) is the results for vector mesons in pp collisions with respect to PP.

(3)

30–50%, and 50–80% collision centralities, respec-tively[29].

There are three main sources of systematic uncertainties in the measurements of the angular distribution of vector meson decays. (i) Meson yield extraction: this contribution is estimated by varying the fit ranges for the yield extraction, the normalization range for the signalþ background and background invariant mass distributions, the procedure to integrate the signal function to get the yields, and by leaving the width of the resonance peak free or keeping it fixed to the PDG value as discussed in Refs. [26,27]. The uncertainties for ρ00 is at a level of 12(8)% at the lowest pT and decrease with pT to 4(3)% at the highest pT studied for the K0ðϕÞ. (ii) Track selection: this contribution includes variations of the selection on the distance of closest approach to the collision vertex, the number of crossed pad rows in the TPC [24], the ratio of found clusters to the expected clusters, and the quality of the track fit. The systematic uncertainties for ρ00 are 14(6)% at the lowest pT and about 11(5)% at the highest pT for K0ðϕÞ. (iii) Particle identification: this is evaluated by varying the particle identification criteria related to the TPC and TOF detectors. The corresponding uncertainty is 5(3)% at the lowest pTand about 4(4.5)% at the highest pT studied for K0ðϕÞ. Systematic uncertainties due to differ-ent variations are considered as uncorrelated and the total systematic uncertainty onρ00 is obtained by adding all the contributions in quadrature. Several consistency checks are carried out and details can be found in the Supplemental Material [17]. The final measurement is reported for the average yield of particles (K0) and antiparticles ( ¯K0) as results for K0 and ¯K0 were consistent.

Figure2shows the measuredρ00as a function of pT for K0 andϕ mesons in pp collisions and Pb-Pb collisions, along with the measurements for K0Sin Pb-Pb collisions. In mid-central (10–50%) Pb-Pb collisions, ρ00is below1=3 at the lowest measured pT and increases to 1=3 within uncertainties for pT > 2 GeV=c. At low pT, the central value of ρ00 is smaller for K0 than for ϕ, although the results are compatible within uncertainties. In pp colli-sions, ρ00 is independent of pT and equal to 1=3 within uncertainties. For the spin zero hadron K0S00is consistent with 1=3 within uncertainties in Pb-Pb collisions. The results with random event plane directions are also com-patible with no spin alignment for the studied pT range, except for the smallest pT bin, whereρ00less than1=3 but still larger than for EP and PP measurements. The results for the random production plane (the momentum vector direction of each vector meson is randomized) are similar to RNDEP measurements. These results indicate that a spin alignment is present at lower pT, which is a qualitatively consistent with predictions [13].

Figure3showsρ00for K0andϕ mesons as a function of average number of participating nucleons (hNparti)[20,22] for Pb-Pb collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 TeV. Large hNparti

correspond to central collisions and small hNparti corre-spond to peripheral collisions (see Table I of the Supplemental Material[17]). In the lowest pT range,ρ00 shows maximum deviation from 1=3 for intermediate centrality and approaches1=3 for both central and periph-eral collisions. This centrality dependence is qualitatively consistent with the dependence of the initial angular momentum on impact parameter in heavy-ion collisions [4]. At higher pT, ρ00 is consistent with 1=3 for all centrality classes. For the low-pT measurements in 10– 30% (20–40% for ϕ meson with respect to PP) mid-central Pb-Pb collisions, the maximum deviations ofρ00from1=3 with respect to the PP (EP) are 3.2 (2.6)σ and 2.1 (1.9) σ for K0 and ϕ mesons, respectively. The errors (σ) are calculated by adding statistical and systematic uncertainties in quadrature.

The relation between the ρ00 values with respect to different quantization axes can be expressed using Eq.(2)

) c (GeV/ T p 1 2 3 4 5 0.1 0.2 0.3 0.4 0.5 Random plane *0 K (e) ALICE | < 0.5 y | 0.1 0.2 0.3 0.4 0.5 Production plane *0 K (c) 0.1 0.2 0.3 0.4 0.5 Event plane *0 K (a) ) c (GeV/ T p 1 2 3 4 5 0.1 0.2 0.3 0.4 0.5 Random plane φ 50%) − Pb (10 − Pb pp 40%) − Pb (20 − , Pb S 0 K (f) 0.1 0.2 0.3 0.4 0.5 Production plane φ (d) 0.1 0.2 0.3 0.4 0.5 Event plane φ (b) = 1/3 00 ρ 00 ρ 00 ρ 00 ρ ρ 00 00 ρ 00 ρ

FIG. 2. Transverse momentum dependence ofρ00for K0,ϕ, and K0S mesons at jyj < 0.5 in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi sNN

p ¼

2.76 TeV and minimum bias pp collisions at pffiffiffis¼ 13 TeV. Results are shown for spin alignment with respect to the event plane [panels (a),(b)], production plane [(c),(d)], and random event plane [(e),(f)] for K0(left column) andϕ (right column). The statistical and systematic uncertainties are shown as bars and boxes, respectively.

(4)

and calculating the corresponding factor R. This gives Δρ00ðRNDEPÞ ¼ Δρ00ðEPÞ ×14(R ¼ 0 for random plane) andΔρ00ðPPÞ ¼ Δρ00ðEPÞ × ð1 þ 3v2Þ=4 (R ¼ v2for pro-duction plane, where v2is the second Fourier coefficient of the azimuthal distribution of produced particles relative to the event plane angle). Here Δρ00¼ ρ00-1=3. This is further confirmed using a toy model simulation with the PYTHIA 8.2 event generator[30]by incorporating v2and spin alignment (see the Supplemental Material [17] for further details).

In the past, spin alignment measurements in eþe− [31–33], hadron-proton [34] and nucleon-nucleus colli-sions[35]were carried out to understand the role of spin in the dynamics of particle production, findingρ00> 1=3 and off-diagonal elements close to zero with respect to the PP. For pp collisions at pffiffiffis¼ 13 TeV, we find ρ00∼ 1=3 within the studied pT range (see Fig.2). New preliminary results from RHIC have found deviations ofρ00from1=3 indicating spin alignment for vector mesons at lower ffiffiffiffiffiffiffiffisNN

p [36,37]. The ρ00 for ϕ mesons in mid-central Pb-Pb collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 TeV is less than 1=3 while the preliminary finding for mid-central Au-Au collisions atffiffiffiffiffiffiffiffi

sNN p

¼ 200 GeV is ρ00 greater than 1=3. The ρ00> 1=3 for ϕ mesons has been interpreted as evidence for a coherent ϕ meson field [38]. Similar conclusions cannot be easily applied to K0as it consists of valence quarks of unequal mass (s and ¯d), which makes it impossible to separate the effects of vorticity and due to electromangetic and mesonic fields. Significant polarization of Λ baryons (spin¼ 1=2) was reported at low RHIC energies. The polarization is found to decrease with increasing ffiffiffiffiffiffiffiffisNN

p

[39,40]. At the LHC, the global polarization forΛ baryon is compatible with zero within uncertainties [PΛð%Þ ¼ 0.01  0.06  0.03] [41]. The spin alignment for vector mesons in heavy ion collisions could have contributions from angular momentum [12,13], electromagnetic fields [15] and mesonic fields [38]. While no quantitative theoretical calculation for vector meson polarization at LHC energies exists, the expected order of magnitude can be estimated and the measurements for vector mesons and hyperons can be related in a model dependent way. Considering only the angular momentum contribution and recombination as the process of hadronization [13], theρ00of vector mesons are related to quark polarization as ρ00 ¼ ð1 − PqP¯qÞ=ð3 þ PqP¯qÞ where Pqand P¯qare quark and antiquark polarization, respectively. Assuming Pu¼ P¯u¼ Pd¼ P¯d and Ps¼ P¯s, the measured pT integrated ρ00 values for K0 andϕ mesons in 10–50% Pb-Pb colli-sions could translate to light quark polarization of∼0.8 and strange quark polarization of ∼0.2. Using a thermal and nonrelativistic approach as discussed in[42], vorticity (ω) and temperature (T) are related to ρ00 and vector meson polarization (PV) as ρ00≃13f1 − ½ðω=TÞ2=3g and PV≃ ð2ω=3TÞ, respectively. Also in this approach, the measuredρ00for K0would correspond to K0polarization of ∼0.6 and the ρ00 for ϕ mesons would give ϕ meson polarization of∼0.3.

In the recombination model, Λ polarization depends linearly on quark polarization whereas vector meson polarization depends quadratically on it. One would there-fore expect the polarization for K0to be of the same order or smaller than the one measured for theΛ at LHC[41], i.e., vanishing small [Oð0.01%Þ] rather than order 1. The large effect observed for theρ00in mid-central Pb-Pb collisions at low pTis therefore puzzling. This result should stimulate further theoretical work in order to study which effects could make such a huge difference between Λ and K0 polarization. Possible reasons may include the transfer of the quark polarization to the hadrons (baryon vs meson), details of the hadronization mechanism (recombination vs fragmentation), rescattering, regeneration, and possibly the lifetime and mass of the relevant hadron. Moreover, the vector mesons are predominantly directly produced whereas the hyperons have large contributions from res-onance decays.

In conclusion, for the first time, evidence has been found for a significant spin alignment of vector mesons in heavy-ion collisheavy-ions. The effect is strongest at low pTwith respect to a vector perpendicular to the reaction plane and for mid-central (10–50%) collisions. These observations are quali-tatively consistent with expectations from the effect of large initial angular momentum in noncentral heavy-ion colli-sions, which leads to quark polarization via spin-orbit coupling, subsequently transferred to hadronic degrees of freedom by hadronization via recombination. However, the measured spin alignment is surprisingly large compared to 〉 part N 〈 0 100 200 300 0.1 0.2 0.3 0.4 0.5 ) c < 1.2 (GeV/ T p ≤ 0.8 ) c < 5.0 (GeV/ T p ≤ 3.0 Event plane *0 K 〉 part N 〈 0 100 200 300 0.1 0.2 0.3 0.4 0.5 Event plane φ ) c < 0.7 (GeV/ T p ≤ 0.5 ) c < 5.0 (GeV/ T p ≤ 3.0 ALICE y| < 0.5 | 0.1 0.2 0.3 0.4 0.5 ) c < 1.2 (GeV/ T p ≤ 0.4 ) c < 5.0 (GeV/ T p ≤ 3.0 Production plane *0 K 0.1 0.2 0.3 0.4 0.5 = 2.76 TeV NN s Pb, − Pb ) c < 0.8 (GeV/ T p ≤ 0.5 ) c < 5.0 (GeV/ T p ≤ 3.0 Production plane φ = 1/3 00 ρ 00 ρ 00 ρ 00 ρ 00 ρ

FIG. 3. Measurements ofρ00as a function ofhNparti for K0and ϕ mesons at low and high pTin Pb-Pb collisions. The statistical and systematic uncertainties are shown as bars and boxes, respectively. Some data points are shifted horizontally for better visibility.

(5)

the polarization measured for Λ hyperons where, in addition, a strong decrease in polarization with ffiffiffiffiffiffiffiffisNN

p is observed. In future measurements, the difference in the polarization of K and Ko, due to their difference in magnetic moment, would be directly sensitive to the effect of the large initial magnetic field produced in heavy-ion collisions.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo `a Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat `a l’Energie Atomique (CEA), Institut National de Physique Nucl´eaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and R´egion des Pays de la Loire, France; Bundesministerium für Bildung und Forschung

(BMBF) and GSI Helmholtzzentrum für

Schwerionenforschung GmbH, Germany; General

Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India

(DAE), Department of Science and Technology,

Government of India (DST), University Grants

Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India;

Indonesian Institute of Science, Indonesia; Centro Fermi —Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

[1] J. Adams et al. (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions,Nucl. Phys. A757, 102 (2005).

[2] M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A750, 30 (2005). [3] A. Andronic, P. Braun-Munzinger, K. Redlich, and J.

(6)

production at high energy, Nature (London) 561, 321 (2018).

[4] F. Becattini, F. Piccinini, and J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy,

Phys. Rev. C 77, 024906 (2008).

[5] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’,Nucl. Phys. A803, 227 (2008).

[6] R. J. Fries, G. Chen, and S. Somanathan, Initial Angular Momentum and Flow in High Energy Nuclear Collisions,

Phys. Rev. C 97, 034903 (2018).

[7] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya, V. P. Konchakovski, and S. A. Voloshin, Electromagnetic field evolution in relativistic heavy-ion collisions, Phys.

Rev. C 83, 054911 (2011).

[8] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1982), Secs. 11–8 and 11–11.

[9] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, Volume 4 of Course of Theo-retical Physics, 2nd ed. (Butterworth-Heinemann, Oxford, 1982).

[10] M. G. Mayer, On closed shells in nuclei. II,Phys. Rev. 75, 1969 (1949).

[11] S. A. Voloshin, Polarized secondary particles in unpolarized high energy hadron-hadron collisions?, arXiv:nucl-th/

0410089.

[12] Z.-T. Liang and X.-N. Wang, Globally Polarized Quark-Gluon Plasma in Non-Central Aþ A Collisions,Phys. Rev.

Lett. 94, 102301 (2005); Erratum, Phys. Rev. Lett. 96,

039901 (2006).

[13] Z.-T. Liang and X.-N. Wang, Spin alignment of vector mesons in non-central Aþ A collisions,Phys. Lett. B 629, 20 (2005).

[14] Z.-T. Liang, Global polarization of QGP in non-central heavy ion collisions at high energies,J. Phys. G 34, S323 (2007).

[15] Y.-G. Yang, R.-H. Fang, Q. Wang, and X.-N. Wang, Quark coalescence model for polarized vector mesons and

bary-ons,Phys. Rev. C 97, 034917 (2018).

[16] K. Schilling, P. Seyboth, and G. E. Wolf, On the analysis of vector meson production by polarized photons,Nucl. Phys.

B15, 397 (1970); Erratum, Nucl. Phys. B18, 332

(1970).

[17] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.012301 for

com-plete angular distribution, consistency checks, analytical relation between EP and PP, toy model simulation to show the relation between EP, PP and RNDEP, and centrality classes.

[18] A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions,Phys. Rev.

C 58, 1671 (1998).

[19] A. H. Tang, B. Tu, and C. S. Zhou, Practical considerations for measuring global spin alignment of vector mesons in relativistic heavy ion collisions,Phys. Rev. C 98, 044907 (2018).

[20] B. Abelev et al. (ALICE Collaboration), Centrality deter-mination of Pb–Pb collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 TeV with ALICE,Phys. Rev. C 88, 044909 (2013).

[21] K. Aamodt et al., The ALICE experiment at the CERN

LHC,J. Instrum. 3, S08002 (2008).

[22] K. Aamodt et al. (ALICE Collaboration), Centrality Dependence of the Charged-Particle Multiplicity Density at Mid-Rapidity in Pb–Pb Collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 TeV,

Phys. Rev. Lett. 106, 032301 (2011).

[23] B. B. Abelev et al. (ALICE Collaboration), Elliptic flow of identified hadrons in Pb–Pb collisions at ffiffiffiffiffiffiffiffisNN

p ¼

2.76 TeV,J. High Energy Phys. 06 (2015) 190.

[24] J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events,Nucl. Instrum. Methods Phys. Res., Sect. A 622, 316 (2010).

[25] G. Dellacasa et al. (ALICE Collaboration), ALICE technical design report of the time-of-flight system (TOF), Report No. CERN-LHCC-2000-012 (2000).

[26] J. Adam et al. (ALICE Collaboration), Kð892Þ0 and ϕð1020Þ meson production at high transverse momentum in pp and Pb–Pb collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 TeV, Phys.

Rev. C 95, 064606 (2017).

[27] B. B. Abelev et al. (ALICE Collaboration), Kð892Þ0 and ϕð1020Þ production in Pb–Pb collisions at ffiffiffiffiffiffiffiffisNN

p ¼

2.76 TeV,Phys. Rev. C 91, 024609 (2015).

[28] B. B. Abelev et al. (ALICE Collaboration), K0S and Λ Production in Pb–Pb Collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 TeV,Phys.

Rev. Lett. 111, 222301 (2013).

[29] B. B. Abelev et al. (ALICE Collaboration), Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod.

Phys. A 29, 1430044 (2014).

[30] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys.

Commun. 191, 159 (2015).

[31] K. Ackerstaff et al. (OPAL Collaboration), Spin alignment of leading K0ð892Þ mesons in hadronic Z0 decays,Phys. Lett. B 412, 210 (1997).

[32] K. Ackerstaff et al. (OPAL Collaboration), Study of ϕð1020Þ, Dand Bspin alignment in hadronic Z0decays,

Z. Phys. C 74, 437 (1997).

[33] P. Abreu et al. (DELPHI Collaboration), Measurement of the spin density matrix for theρ0, K0ð892Þ and ϕ produced in Z0decays,Phys. Lett. B 406, 271 (1997).

[34] M. Barth et al. (Brussels-Genoa-Mons-Nijmegen-Serpukhov-CERN Collaborations), Inclusive resonance production in Kþp interactions at70-GeV=c,Nucl. Phys.

B223, 296 (1983); Erratum, Nucl. Phys. B232, 547

(1984).

[35] A. N. Aleev et al. (EXCHARM Collaboration), Spin align-ment of Kð892Þ mesons produced in neutron carbon interactions,Phys. Lett. B 485, 334 (2000).

[36] C. Zhou,ϕ meson and K0global spin alignment at STAR,

Nucl. Phys. A982, 559 (2019).

[37] B. I. Abelev et al. (STAR Collaboration), Spin alignment measurements of the K0ð892Þ and ϕð1020Þ vector mesons in heavy ion collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 200 GeV,Phys. Rev. C

77, 061902 (2008).

[38] X.-L. Sheng, L. Oliva, and Q. Wang, What can we learn from global spin alignment of ϕ meson in heavy-ion collisions?, Phys. Rev. D 101, 096005 (2020).

(7)

[39] L. Adamczyk et al. (STAR Collaboration), Global Λ hyperon polarization in nuclear collisions: Evidence for the most vortical fluid,Nature (London) 548, 62 (2017). [40] J. Adam et al. (STAR Collaboration), Global polarization of

Λ hyperons in Au þAu collisions at ffiffiffiffiffiffiffiffisNN p

¼ 200 GeV,

Phys. Rev. C 98, 014910 (2018).

[41] S. Acharya et al. (ALICE Collaboration), Global polariza-tion ofΛ ¯Λ hyperons in Pb-Pb collisions at ffiffiffiffiffiffiffiffisNN

p

¼ 2.76 and 5.02 TeV,Phys. Rev. C 101, 044611 (2020).

[42] F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, Global hyperon polarization at local thermodynamic equi-librium with vorticity, magnetic field and feed-down,Phys.

Rev. C 95, 054902 (2017).

S. Acharya,141D. Adamová,94 A. Adler,74J. Adolfsson,80M. M. Aggarwal,99G. Aglieri Rinella,33M. Agnello,30 N. Agrawal,10,53Z. Ahammed,141 S. Ahmad,16S. U. Ahn,76A. Akindinov,91M. Al-Turany,106 S. N. Alam,141 D. S. D. Albuquerque,122 D. Aleksandrov,87B. Alessandro,58H. M. Alfanda,6 R. Alfaro Molina,71B. Ali,16Y. Ali,14 A. Alici,10,26,53A. Alkin,2J. Alme,21T. Alt,68L. Altenkamper,21I. Altsybeev,112M. N. Anaam,6C. Andrei,47D. Andreou,33 H. A. Andrews,110A. Andronic,144M. Angeletti,33V. Anguelov,103C. Anson,15T. Antičić,107F. Antinori,56P. Antonioli,53 R. Anwar,125N. Apadula,79L. Aphecetche,114H. Appelshäuser,68S. Arcelli,26R. Arnaldi,58M. Arratia,79I. C. Arsene,20 M. Arslandok,103 A. Augustinus,33 R. Averbeck,106S. Aziz,61M. D. Azmi,16 A. Badal`a,55Y. W. Baek,40S. Bagnasco,58

X. Bai,106R. Bailhache,68R. Bala,100A. Baldisseri,137M. Ball,42S. Balouza,104R. Barbera,27L. Barioglio,25 G. G. Barnaföldi,145L. S. Barnby,93V. Barret,134 P. Bartalini,6 K. Barth,33 E. Bartsch,68F. Baruffaldi,28N. Bastid,134 S. Basu,143 G. Batigne,114B. Batyunya,75D. Bauri,48J. L. Bazo Alba,111 I. G. Bearden,88 C. Bedda,63N. K. Behera,60

I. Belikov,136 A. D. C. Bell Hechavarria,144 F. Bellini,33R. Bellwied,125V. Belyaev,92G. Bencedi,145S. Beole,25 A. Bercuci,47 Y. Berdnikov,97D. Berenyi,145R. A. Bertens,130 D. Berzano,58M. G. Besoiu,67 L. Betev,33 A. Bhasin,100

I. R. Bhat,100M. A. Bhat,3 H. Bhatt,48 B. Bhattacharjee,41A. Bianchi,25L. Bianchi,25 N. Bianchi,51J. Bielčík,36 J. Bielčíková,94A. Bilandzic,104,117G. Biro,145R. Biswas,3S. Biswas,3J. T. Blair,119D. Blau,87C. Blume,68G. Boca,139

F. Bock,33,95A. Bogdanov,92S. Boi,23L. Boldizsár,145 A. Bolozdynya,92M. Bombara,37 G. Bonomi,140H. Borel,137 A. Borissov,92,144H. Bossi,146E. Botta,25L. Bratrud,68P. Braun-Munzinger,106M. Bregant,121M. Broz,36E. J. Brucken,43 E. Bruna,58G. E. Bruno,105M. D. Buckland,127D. Budnikov,108H. Buesching,68S. Bufalino,30O. Bugnon,114P. Buhler,113 P. Buncic,33Z. Buthelezi,72,131 J. B. Butt,14J. T. Buxton,96S. A. Bysiak,118D. Caffarri,89A. Caliva,106E. Calvo Villar,111 R. S. Camacho,44P. Camerini,24A. A. Capon,113F. Carnesecchi,10,26R. Caron,137J. Castillo Castellanos,137A. J. Castro,130 E. A. R. Casula,54 F. Catalano,30C. Ceballos Sanchez,52P. Chakraborty,48S. Chandra,141 W. Chang,6S. Chapeland,33

M. Chartier,127 S. Chattopadhyay,141 S. Chattopadhyay,109 A. Chauvin,23C. Cheshkov,135 B. Cheynis,135 V. Chibante Barroso,33D. D. Chinellato,122 S. Cho,60P. Chochula,33T. Chowdhury,134P. Christakoglou,89 C. H. Christensen,88P. Christiansen,80 T. Chujo,133C. Cicalo,54L. Cifarelli,10,26F. Cindolo,53J. Cleymans,124 F. Colamaria,52D. Colella,52A. Collu,79M. Colocci,26 M. Concas,58,b G. Conesa Balbastre,78Z. Conesa del Valle,61 G. Contin,24,127 J. G. Contreras,36T. M. Cormier,95Y. Corrales Morales,25P. Cortese,31M. R. Cosentino,123F. Costa,33

S. Costanza,139 P. Crochet,134 E. Cuautle,69P. Cui,6 L. Cunqueiro,95D. Dabrowski,142T. Dahms,104,117 A. Dainese,56 F. P. A. Damas,114,137M. C. Danisch,103A. Danu,67D. Das,109I. Das,109P. Das,85P. Das,3 S. Das,3A. Dash,85S. Dash,48 S. De,85A. De Caro,29G. de Cataldo,52J. de Cuveland,38A. De Falco,23D. De Gruttola,10N. De Marco,58S. De Pasquale,29 S. Deb,49B. Debjani,3 H. F. Degenhardt,121 K. R. Deja,142 A. Deloff,84S. Delsanto,25,131 D. Devetak,106P. Dhankher,48 D. Di Bari,32A. Di Mauro,33R. A. Diaz,8T. Dietel,124P. Dillenseger,68Y. Ding,6R. Divi`a,33D. U. Dixit,19Ø. Djuvsland,21 U. Dmitrieva,62 A. Dobrin,33,67 B. Dönigus,68O. Dordic,20A. K. Dubey,141A. Dubla,106S. Dudi,99M. Dukhishyam,85

P. Dupieux,134R. J. Ehlers,146V. N. Eikeland,21 D. Elia,52H. Engel,74E. Epple,146B. Erazmus,114 F. Erhardt,98 A. Erokhin,112M. R. Ersdal,21B. Espagnon,61G. Eulisse,33D. Evans,110S. Evdokimov,90L. Fabbietti,104,117M. Faggin,28

J. Faivre,78F. Fan,6 A. Fantoni,51 M. Fasel,95 P. Fecchio,30A. Feliciello,58G. Feofilov,112A. Fernández T´ellez,44 A. Ferrero,137A. Ferretti,25A. Festanti,33V. J. G. Feuillard,103J. Figiel,118S. Filchagin,108D. Finogeev,62F. M. Fionda,21 G. Fiorenza,52F. Flor,125S. Foertsch,72P. Foka,106S. Fokin,87E. Fragiacomo,59U. Frankenfeld,106U. Fuchs,33C. Furget,78 A. Furs,62 M. Fusco Girard,29J. J. Gaardhøje,88M. Gagliardi,25A. M. Gago,111 A. Gal,136C. D. Galvan,120 P. Ganoti,83 C. Garabatos,106E. Garcia-Solis,11 K. Garg,27C. Gargiulo,33A. Garibli,86K. Garner,144 P. Gasik,104,117E. F. Gauger,119 M. B. Gay Ducati,70M. Germain,114J. Ghosh,109P. Ghosh,141S. K. Ghosh,3P. Gianotti,51P. Giubellino,58,106P. Giubilato,28

(8)

L. Görlich,118S. Gotovac,34V. Grabski,71L. K. Graczykowski,142K. L. Graham,110L. Greiner,79A. Grelli,63C. Grigoras,33 V. Grigoriev,92A. Grigoryan,1 S. Grigoryan,75O. S. Groettvik,21 F. Grosa,30J. F. Grosse-Oetringhaus,33R. Grosso,106 R. Guernane,78 M. Guittiere,114K. Gulbrandsen,88T. Gunji,132 A. Gupta,100 R. Gupta,100I. B. Guzman,44R. Haake,146

M. K. Habib,106 C. Hadjidakis,61H. Hamagaki,81G. Hamar,145 M. Hamid,6 R. Hannigan,119M. R. Haque,63,85 A. Harlenderova,106J. W. Harris,146A. Harton,11J. A. Hasenbichler,33H. Hassan,95D. Hatzifotiadou,10,53P. Hauer,42

S. Hayashi,132S. T. Heckel,68,104E. Hellbär,68H. Helstrup,35A. Herghelegiu,47T. Herman,36E. G. Hernandez,44 G. Herrera Corral,9F. Herrmann,144 K. F. Hetland,35T. E. Hilden,43H. Hillemanns,33C. Hills,127B. Hippolyte,136 B. Hohlweger,104 D. Horak,36A. Hornung,68S. Hornung,106 R. Hosokawa,15,133 P. Hristov,33C. Huang,61C. Hughes,130 P. Huhn,68T. J. Humanic,96H. Hushnud,109L. A. Husova,144N. Hussain,41S. A. Hussain,14D. Hutter,38J. P. Iddon,33,127

R. Ilkaev,108 M. Inaba,133G. M. Innocenti,33 M. Ippolitov,87A. Isakov,94M. S. Islam,109M. Ivanov,106 V. Ivanov,97 V. Izucheev,90B. Jacak,79 N. Jacazio,53P. M. Jacobs,79S. Jadlovska,116J. Jadlovsky,116S. Jaelani,63C. Jahnke,121 M. J. Jakubowska,142M. A. Janik,142T. Janson,74M. Jercic,98O. Jevons,110M. Jin,125F. Jonas,95,144P. G. Jones,110J. Jung,68

M. Jung,68A. Jusko,110P. Kalinak,64A. Kalweit,33V. Kaplin,92S. Kar,6 A. Karasu Uysal,77O. Karavichev,62 T. Karavicheva,62P. Karczmarczyk,33E. Karpechev,62A. Kazantsev,87U. Kebschull,74R. Keidel,46M. Keil,33B. Ketzer,42

Z. Khabanova,89A. M. Khan,6 S. Khan,16S. A. Khan,141A. Khanzadeev,97Y. Kharlov,90A. Khatun,16A. Khuntia,118 B. Kileng,35B. Kim,60 B. Kim,133D. Kim,147D. J. Kim,126E. J. Kim,73H. Kim,17,147 J. Kim,147 J. S. Kim,40 J. Kim,103

J. Kim,147 J. Kim,73M. Kim,103S. Kim,18T. Kim,147 T. Kim,147 S. Kirsch,38,68 I. Kisel,38S. Kiselev,91A. Kisiel,142 J. L. Klay,5 C. Klein,68J. Klein,58S. Klein,79C. Klein-Bösing,144M. Kleiner,68A. Kluge,33M. L. Knichel,33 A. G. Knospe,125C. Kobdaj,115M. K. Köhler,103T. Kollegger,106A. Kondratyev,75N. Kondratyeva,92E. Kondratyuk,90 J. Konig,68P. J. Konopka,33L. Koska,116O. Kovalenko,84V. Kovalenko,112M. Kowalski,118I. Králik,64A. Kravčáková,37

L. Kreis,106M. Krivda,64,110 F. Krizek,94K. Krizkova Gajdosova,36 M. Krüger,68 E. Kryshen,97M. Krzewicki,38 A. M. Kubera,96V. Kučera,60C. Kuhn,136P. G. Kuijer,89L. Kumar,99S. Kumar,48S. Kundu,85P. Kurashvili,84A. Kurepin,62 A. B. Kurepin,62A. Kuryakin,108S. Kushpil,94J. Kvapil,110M. J. Kweon,60J. Y. Kwon,60Y. Kwon,147S. L. La Pointe,38 P. La Rocca,27Y. S. Lai,79R. Langoy,129K. Lapidus,33A. Lardeux,20P. Larionov,51E. Laudi,33R. Lavicka,36T. Lazareva,112 R. Lea,24L. Leardini,103J. Lee,133S. Lee,147F. Lehas,89S. Lehner,113J. Lehrbach,38R. C. Lemmon,93I. León Monzón,120

E. D. Lesser,19M. Lettrich,33P. L´evai,145X. Li,12X. L. Li,6 J. Lien,129R. Lietava,110B. Lim,17V. Lindenstruth,38 S. W. Lindsay,127C. Lippmann,106M. A. Lisa,96V. Litichevskyi,43A. Liu,19 S. Liu,96W. J. Llope,143I. M. Lofnes,21 V. Loginov,92C. Loizides,95P. Loncar,34X. Lopez,134E. López Torres,8 J. R. Luhder,144M. Lunardon,28G. Luparello,59

Y. Ma,39 A. Maevskaya,62M. Mager,33 S. M. Mahmood,20T. Mahmoud,42A. Maire,136R. D. Majka,146 M. Malaev,97 Q. W. Malik,20L. Malinina,75,cD. Mal’Kevich,91P. Malzacher,106G. Mandaglio,55V. Manko,87F. Manso,134V. Manzari,52

Y. Mao,6 M. Marchisone,135J. Mareš,66G. V. Margagliotti,24A. Margotti,53J. Margutti,63A. Marín,106C. Markert,119 M. Marquard,68N. A. Martin,103P. Martinengo,33J. L. Martinez,125 M. I. Martínez,44G. Martínez García,114 M. Martinez Pedreira,33S. Masciocchi,106M. Masera,25A. Masoni,54L. Massacrier,61E. Masson,114A. Mastroserio,52,138

A. M. Mathis,104,117O. Matonoha,80P. F. T. Matuoka,121 A. Matyja,118 C. Mayer,118M. Mazzilli,52M. A. Mazzoni,57 A. F. Mechler,68F. Meddi,22Y. Melikyan,62,92 A. Menchaca-Rocha,71 C. Mengke,6 E. Meninno,29,113 M. Meres,13 S. Mhlanga,124 Y. Miake,133L. Micheletti,25D. L. Mihaylov,104K. Mikhaylov,75,91A. Mischke,63,a A. N. Mishra,69 D. Miśkowiec,106A. Modak,3N. Mohammadi,33A. P. Mohanty,63B. Mohanty,85M. Mohisin Khan,16,dC. Mordasini,104 D. A. Moreira De Godoy,144L. A. P. Moreno,44I. Morozov,62A. Morsch,33T. Mrnjavac,33V. Muccifora,51E. Mudnic,34

D. Mühlheim,144 S. Muhuri,141J. D. Mulligan,79M. G. Munhoz,121 R. H. Munzer,68H. Murakami,132 S. Murray,124 L. Musa,33J. Musinsky,64C. J. Myers,125J. W. Myrcha,142B. Naik,48R. Nair,84B. K. Nandi,48R. Nania,10,53E. Nappi,52

M. U. Naru,14A. F. Nassirpour,80C. Nattrass,130 R. Nayak,48T. K. Nayak,85S. Nazarenko,108A. Neagu,20 R. A. Negrao De Oliveira,68L. Nellen,69S. V. Nesbo,35G. Neskovic,38D. Nesterov,112L. T. Neumann,142B. S. Nielsen,88

S. Nikolaev,87S. Nikulin,87V. Nikulin,97 F. Noferini,10,53P. Nomokonov,75J. Norman,78,127 N. Novitzky,133 P. Nowakowski,142A. Nyanin,87J. Nystrand,21M. Ogino,81A. Ohlson,80,103J. Oleniacz,142A. C. Oliveira Da Silva,121,130

M. H. Oliver,146 C. Oppedisano,58R. Orava,43A. Ortiz Velasquez,69A. Oskarsson,80J. Otwinowski,118 K. Oyama,81 Y. Pachmayer,103V. Pacik,88D. Pagano,140G. Paić,69J. Pan,143A. K. Pandey,48S. Panebianco,137P. Pareek,49,141J. Park,60 J. E. Parkkila,126S. Parmar,99S. P. Pathak,125R. N. Patra,141B. Paul,23,58H. Pei,6T. Peitzmann,63X. Peng,6L. G. Pereira,70

H. Pereira Da Costa,137D. Peresunko,87G. M. Perez,8 E. Perez Lezama,68V. Peskov,68Y. Pestov,4 V. Petráček,36 M. Petrovici,47R. P. Pezzi,70 S. Piano,59M. Pikna,13P. Pillot,114O. Pinazza,33,53L. Pinsky,125 C. Pinto,27S. Pisano,10,51

(9)

D. Pistone,55M. Płoskoń,79 M. Planinic,98F. Pliquett,68J. Pluta,142S. Pochybova,145,a M. G. Poghosyan,95 B. Polichtchouk,90 N. Poljak,98A. Pop,47H. Poppenborg,144S. Porteboeuf-Houssais,134V. Pozdniakov,75S. K. Prasad,3

R. Preghenella,53F. Prino,58 C. A. Pruneau,143I. Pshenichnov,62M. Puccio,25,33 J. Putschke,143R. E. Quishpe,125 S. Ragoni,110 S. Raha,3 S. Rajput,100 J. Rak,126A. Rakotozafindrabe,137 L. Ramello,31F. Rami,136R. Raniwala,101 S. Raniwala,101S. S. Räsänen,43R. Rath,49V. Ratza,42I. Ravasenga,30,89 K. F. Read,95,130 K. Redlich,84,e A. Rehman,21 P. Reichelt,68F. Reidt,33X. Ren,6R. Renfordt,68Z. Rescakova,37J.-P. Revol,10K. Reygers,103V. Riabov,97T. Richert,80,88 M. Richter,20P. Riedler,33 W. Riegler,33F. Riggi,27C. Ristea,67S. P. Rode,49M. Rodríguez Cahuantzi,44 K. Røed,20 R. Rogalev,90E. Rogochaya,75 D. Rohr,33D. Röhrich,21P. S. Rokita,142F. Ronchetti,51E. D. Rosas,69K. Roslon,142 A. Rossi,28,56A. Rotondi,139A. Roy,49P. Roy,109O. V. Rueda,80R. Rui,24B. Rumyantsev,75A. Rustamov,86E. Ryabinkin,87 Y. Ryabov,97A. Rybicki,118H. Rytkonen,126O. A. M. Saarimaki,43S. Sadhu,141S. Sadovsky,90K.Šafaˇrík,36S. K. Saha,141 B. Sahoo,48P. Sahoo,48,49R. Sahoo,49S. Sahoo,65P. K. Sahu,65J. Saini,141S. Sakai,133S. Sambyal,100V. Samsonov,92,97 D. Sarkar,143 N. Sarkar,141 P. Sarma,41V. M. Sarti,104M. H. P. Sas,63E. Scapparone,53B. Schaefer,95J. Schambach,119

H. S. Scheid,68C. Schiaua,47R. Schicker,103A. Schmah,103 C. Schmidt,106H. R. Schmidt,102 M. O. Schmidt,103 M. Schmidt,102N. V. Schmidt,68,95 A. R. Schmier,130 J. Schukraft,88Y. Schutz,33,136 K. Schwarz,106K. Schweda,106

G. Scioli,26E. Scomparin,58M. Šefčík,37J. E. Seger,15Y. Sekiguchi,132 D. Sekihata,132I. Selyuzhenkov,92,106 S. Senyukov,136 D. Serebryakov,62E. Serradilla,71 A. Sevcenco,67A. Shabanov,62A. Shabetai,114 R. Shahoyan,33 W. Shaikh,109 A. Shangaraev,90A. Sharma,99A. Sharma,100 H. Sharma,118M. Sharma,100 N. Sharma,99A. I. Sheikh,141 K. Shigaki,45M. Shimomura,82S. Shirinkin,91Q. Shou,39Y. Sibiriak,87S. Siddhanta,54T. Siemiarczuk,84D. Silvermyr,80 G. Simatovic,89G. Simonetti,33,104R. Singh,85R. Singh,100R. Singh,49V. K. Singh,141V. Singhal,141T. Sinha,109B. Sitar,13

M. Sitta,31T. B. Skaali,20M. Slupecki,126 N. Smirnov,146R. J. M. Snellings,63T. W. Snellman,43,126 C. Soncco,111 J. Song,60,125A. Songmoolnak,115F. Soramel,28S. Sorensen,130 I. Sputowska,118 J. Stachel,103I. Stan,67P. Stankus,95 P. J. Steffanic,130E. Stenlund,80D. Stocco,114M. M. Storetvedt,35L. D. Stritto,29A. A. P. Suaide,121T. Sugitate,45C. Suire,61

M. Suleymanov,14M. Suljic,33 R. Sultanov,91M.Šumbera,94S. Sumowidagdo,50S. Swain,65A. Szabo,13I. Szarka,13 U. Tabassam,14G. Taillepied,134J. Takahashi,122G. J. Tambave,21S. Tang,6,134M. Tarhini,114M. G. Tarzila,47A. Tauro,33 G. Tejeda Muñoz,44A. Telesca,33C. Terrevoli,125D. Thakur,49S. Thakur,141D. Thomas,119F. Thoresen,88R. Tieulent,135 A. Tikhonov,62A. R. Timmins,125A. Toia,68N. Topilskaya,62M. Toppi,51F. Torales-Acosta,19S. R. Torres,9,120A. Trifiro,55 S. Tripathy,49T. Tripathy,48S. Trogolo,28G. Trombetta,32L. Tropp,37V. Trubnikov,2W. H. Trzaska,126T. P. Trzcinski,142

B. A. Trzeciak,63 T. Tsuji,132 A. Tumkin,108 R. Turrisi,56T. S. Tveter,20K. Ullaland,21E. N. Umaka,125 A. Uras,135 G. L. Usai,23A. Utrobicic,98M. Vala,37N. Valle,139S. Vallero,58N. van der Kolk,63L. V. R. van Doremalen,63 M. van Leeuwen,63P. Vande Vyvre,33D. Varga,145 Z. Varga,145M. Varga-Kofarago,145A. Vargas,44M. Vasileiou,83 A. Vasiliev,87O. Vázquez Doce,104,117V. Vechernin,112A. M. Veen,63E. Vercellin,25S. Vergara Limón,44L. Vermunt,63

R. Vernet,7 R. V´ertesi,145L. Vickovic,34Z. Vilakazi,131O. Villalobos Baillie,110A. Villatoro Tello,44 G. Vino,52 A. Vinogradov,87 T. Virgili,29V. Vislavicius,88 A. Vodopyanov,75B. Volkel,33M. A. Völkl,102K. Voloshin,91 S. A. Voloshin,143G. Volpe,32 B. von Haller,33 I. Vorobyev,104 D. Voscek,116 J. Vrláková,37B. Wagner,21M. Weber,113 S. G. Weber,144 A. Wegrzynek,33D. F. Weiser,103 S. C. Wenzel,33J. P. Wessels,144 J. Wiechula,68J. Wikne,20G. Wilk,84 J. Wilkinson,10,53 G. A. Willems,33E. Willsher,110 B. Windelband,103 M. Winn,137 W. E. Witt,130Y. Wu,128 R. Xu,6 S. Yalcin,77K. Yamakawa,45S. Yang,21S. Yano,137 Z. Yin,6 H. Yokoyama,63I.-K. Yoo,17J. H. Yoon,60S. Yuan,21 A. Yuncu,103V. Yurchenko,2V. Zaccolo,24A. Zaman,14C. Zampolli,33H. J. C. Zanoli,63N. Zardoshti,33A. Zarochentsev,112

P. Závada,66N. Zaviyalov,108 H. Zbroszczyk,142M. Zhalov,97S. Zhang,39X. Zhang,6 Z. Zhang,6 V. Zherebchevskii,112 D. Zhou,6Y. Zhou,88Z. Zhou,21J. Zhu,6,106Y. Zhu,6A. Zichichi,10,26M. B. Zimmermann,33G. Zinovjev,2and N. Zurlo140

(The ALICE Collaboration)

1

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia 2Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine 3

Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India 4Budker Institute for Nuclear Physics, Novosibirsk, Russia

5

California Polytechnic State University, San Luis Obispo, California, United States 6Central China Normal University, Wuhan, China

(10)

7Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France 8

Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba 9Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and M´erida, Mexico 10

Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Rome, Italy 11Chicago State University, Chicago, Illinois, United States

12

China Institute of Atomic Energy, Beijing, China

13Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia 14

COMSATS University Islamabad, Islamabad, Pakistan 15Creighton University, Omaha, Nebraska, United States 16

Department of Physics, Aligarh Muslim University, Aligarh, India 17Department of Physics, Pusan National University, Pusan, Republic of Korea

18

Department of Physics, Sejong University, Seoul, Republic of Korea 19Department of Physics, University of California, Berkeley, California, United States

20

Department of Physics, University of Oslo, Oslo, Norway

21Department of Physics and Technology, University of Bergen, Bergen, Norway 22

Dipartimento di Fisica dell’Universit`a “La Sapienza” and Sezione INFN, Rome, Italy 23Dipartimento di Fisica dell’Universit`a and Sezione INFN, Cagliari, Italy

24

Dipartimento di Fisica dell’Universit`a and Sezione INFN, Trieste, Italy 25Dipartimento di Fisica dell’Universit`a and Sezione INFN, Turin, Italy 26

Dipartimento di Fisica e Astronomia dell’Universit`a and Sezione INFN, Bologna, Italy 27Dipartimento di Fisica e Astronomia dell’Universit`a and Sezione INFN, Catania, Italy

28

Dipartimento di Fisica e Astronomia dell’Universit`a and Sezione INFN, Padova, Italy 29Dipartimento di Fisica “E.R. Caianiello” dell’Universit`a and Gruppo Collegato INFN, Salerno, Italy

30

Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

31Dipartimento di Scienze e Innovazione Tecnologica dell’Universit`a del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy

32Dipartimento Interateneo di Fisica“M. Merlin” and Sezione INFN, Bari, Italy 33

European Organization for Nuclear Research (CERN), Geneva, Switzerland

34Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia 35

Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway 36Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

37

Faculty of Science, P.J.Šafárik University, Košice, Slovakia

38Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany 39

Fudan University, Shanghai, China

40Gangneung-Wonju National University, Gangneung, Republic of Korea 41

Gauhati University, Department of Physics, Guwahati, India

42Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany 43

Helsinki Institute of Physics (HIP), Helsinki, Finland

44High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico 45

Hiroshima University, Hiroshima, Japan

46Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany 47

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania 48Indian Institute of Technology Bombay (IIT), Mumbai, India

49

Indian Institute of Technology Indore, Indore, India 50Indonesian Institute of Sciences, Jakarta, Indonesia 51

INFN, Laboratori Nazionali di Frascati, Frascati, Italy 52INFN, Sezione di Bari, Bari, Italy

53

INFN, Sezione di Bologna, Bologna, Italy 54INFN, Sezione di Cagliari, Cagliari, Italy

55

INFN, Sezione di Catania, Catania, Italy 56INFN, Sezione di Padova, Padova, Italy

57

INFN, Sezione di Roma, Rome, Italy 58INFN, Sezione di Torino, Turin, Italy 59

INFN, Sezione di Trieste, Trieste, Italy 60Inha University, Incheon, Republic of Korea 61

Institut de Physique Nucl´eaire d’Orsay (IPNO), Institut National de Physique Nucl´eaire et de Physique des Particules (IN2P3/CNRS), Universit´e de Paris-Sud, Universit´e Paris-Saclay, Orsay, France

62

Institute for Nuclear Research, Academy of Sciences, Moscow, Russia 63Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands 64

(11)

65Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India 66

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic 67Institute of Space Science (ISS), Bucharest, Romania

68

Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany 69Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de M´exico, Mexico City, Mexico

70

Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil 71Instituto de Física, Universidad Nacional Autónoma de M´exico, Mexico City, Mexico

72

iThemba LABS, National Research Foundation, Somerset West, South Africa 73Jeonbuk National University, Jeonju, Republic of Korea

74

Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany 75Joint Institute for Nuclear Research (JINR), Dubna, Russia

76

Korea Institute of Science and Technology Information, Daejeon, Republic of Korea 77KTO Karatay University, Konya, Turkey

78

Laboratoire de Physique Subatomique et de Cosmologie, Universit´e Grenoble-Alpes, CNRS-IN2P3, Grenoble, France 79Lawrence Berkeley National Laboratory, Berkeley, California, United States

80

Lund University Department of Physics, Division of Particle Physics, Lund, Sweden 81Nagasaki Institute of Applied Science, Nagasaki, Japan

82

Nara Women’s University (NWU), Nara, Japan

83National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece 84

National Centre for Nuclear Research, Warsaw, Poland

85National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India 86

National Nuclear Research Center, Baku, Azerbaijan 87National Research Centre Kurchatov Institute, Moscow, Russia 88

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 89Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

90

NRC Kurchatov Institute IHEP, Protvino, Russia 91NRC≪Kurchatov Institute≫—ITEP, Moscow, Russia 92

NRNU Moscow Engineering Physics Institute, Moscow, Russia

93Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom 94

Nuclear Physics Institute of the Czech Academy of Sciences,Řež u Prahy, Czech Republic 95Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

96

Ohio State University, Columbus, Ohio, United States 97Petersburg Nuclear Physics Institute, Gatchina, Russia 98

Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia 99Physics Department, Panjab University, Chandigarh, India

100

Physics Department, University of Jammu, Jammu, India 101Physics Department, University of Rajasthan, Jaipur, India 102

Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany 103Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

104

Physik Department, Technische Universität München, Munich, Germany 105Politecnico di Bari, Bari, Italy

106

Research Division and ExtreMe Matter Institute EMMI,

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany 107

Rudjer Bošković Institute, Zagreb, Croatia 108Russian Federal Nuclear Center (VNIIEF), Sarov, Russia 109

Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India 110School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 111

Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru 112St. Petersburg State University, St. Petersburg, Russia

113

Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria 114SUBATECH, IMT Atlantique, Universit´e de Nantes, CNRS-IN2P3, Nantes, France

115

Suranaree University of Technology, Nakhon Ratchasima, Thailand 116Technical University of Košice, Košice, Slovakia

117

Technische Universität München, Excellence Cluster’Universe’, Munich, Germany

118The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland 119

The University of Texas at Austin, Austin, Texas, United States 120Universidad Autónoma de Sinaloa, Culiacán, Mexico 121

Universidade de São Paulo (USP), São Paulo, Brazil 122Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

123

(12)

124University of Cape Town, Cape Town, South Africa 125

University of Houston, Houston, Texas, United States 126University of Jyväskylä, Jyväskylä, Finland 127

University of Liverpool, Liverpool, United Kingdom 128University of Science and Technology of China, Hefei, China

129

University of South-Eastern Norway, Tonsberg, Norway 130University of Tennessee, Knoxville, Tennessee, United States 131

University of the Witwatersrand, Johannesburg, South Africa 132University of Tokyo, Tokyo, Japan

133

University of Tsukuba, Tsukuba, Japan

134Universit´e Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 135

Universit´e de Lyon, Universit´e Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France 136Universit´e de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France 137

Universit´e Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, D´epartment de Physique Nucl´eaire (DPhN), Saclay, France 138Universit `a degli Studi di Foggia, Foggia, Italy

139

Universit`a degli Studi di Pavia, Pavia, Italy 140Universit `a di Brescia, Brescia, Italy 141

Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India 142Warsaw University of Technology, Warsaw, Poland

143

Wayne State University, Detroit, Michigan, United States

144Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany 145

Wigner Research Centre for Physics, Budapest, Hungary 146Yale University, New Haven, Connecticut, United States

147

Yonsei University, Seoul, Republic of Korea

aDeceased. b

Dipartimento DET del Politecnico di Torino, Turin, Italy.

cM.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia. d

Department of Applied Physics, Aligarh Muslim University, Aligarh, India.

Figura

FIG. 1. Angular distribution of the decay daughter in the rest frame of the meson with respect to the quantization axis at jyj &lt; 0.5 for pp collisions at ffiffiffiffiffiffiffiffi p ffiffiffis ¼ 13 TeV and Pb-Pb collisions at
Figure 2 shows the measured ρ 00 as a function of p T for K 0 and ϕ mesons in pp collisions and Pb-Pb collisions, along with the measurements for K 0 S in Pb-Pb collisions
FIG. 3. Measurements of ρ 00 as a function of hN part i for K 0 and ϕ mesons at low and high p T in Pb-Pb collisions

Riferimenti

Documenti correlati

In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (Maculinea arion) from two distinct

Interestingly, analysing the NMR data, several additional amide crosspeaks not originating from any known state of SOD1 were observed in the 2D spectra of cells treated with both

e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucle- are (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST),

Batist G, Harris L, Azarnia N, Lee LW, Daza-Ramirez P: Im- proved anti-tumor response rate with decreased cardiotox- icity of non-pegylated liposomal doxorubicin compared

Aktas¸, “Oscillation criteria of a certain class of third order nonlinear delay di fferential equations with damping,” Journal of Mathematical Analysis and Applications, vol.

India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Isti- tuto Nazionale di Fisica Nucleare

Mode-dependent mechanical losses in disc resonators (2018) Physics Letters, Section A: General, Atomic and Solid State Physics, 382 (33), pp. et al.) Search for Tensor, Vector,