• Non ci sono risultati.

Secondary Metabolites from Otanthus maritimus, Stachys glutinosa and Withania somnifera: Isolation, Structure Elucidation and Interactions with Cannabinoid and Opioid Systems

N/A
N/A
Protected

Academic year: 2021

Condividi "Secondary Metabolites from Otanthus maritimus, Stachys glutinosa and Withania somnifera: Isolation, Structure Elucidation and Interactions with Cannabinoid and Opioid Systems"

Copied!
289
0
0

Testo completo

(1)

Università  degli  Studi  di  Cagliari  

Dipartimento  di  Scienze  della  Vita  e  dell’Ambiente   Sezione  di  Scienze  del  Farmaco  

DOTTORATO  DI  RICERCA  

Scienze  e  Tecnologie  Farmaceutiche   Ciclo      XXVI  

Secondary  Metabolites  from  Otanthus  maritimus,  Stachys  glutinosa   and  Withania  somnifera:  Isolation,  Structure  Elucidation  and                          

Interactions  with  Cannabinoid  and  Opioid  Systems   Settore  scientifico  disciplinare  di  afferenza  

CHIM/08  

Presentata   da:                                                                                 Nicola   Anzani                                                                                                           Coordinatore  Dottorato                                                                                Prof.  Elias  Maccioni      

Tutor                                                                                                                                                    Dott.  Filippo  Cottiglia                                                                          anno  accademico  2012  –  2013  

(2)

II

ACKNOWLEDGEMENTS  

 

I  am  most  grateful  to  my  supervisor,  Dr.  Filippo  Cottiglia,  for  general   help  and  many  fruitful  discussion  about  my  work.  To  him  goes  all  my   gratitude  for  being  always  an  example  at  work  and  for  his  continuous   support  and  encouragement.    

Special  thanks  to  Dr.  Stefania  Ruiu  and  Dr.  Alessandro    Orrù  (Institute   of   Translational   Pharmacology,   UOS   of   Cagliari,   National   Research   Council,  Parco  Scientifico  e  Tecnologico,  Pula,  Italy)  for  binding  assays   and  analgesia  experiments.  

Thanks   are   also   due   to   Dr.   Simona   Distinto   (Department   of   Life   and   Environmental  Sciences,  Cagliari)  for  molecular  modeling  studies.   I   wish   to   thank   Dr.   Marco   Leonti   (Department   of   Life   and   Envi-­‐ ronmental   Sciences,   Cagliari)   for   the   identification   of   the   plant   ma-­‐ terial.  

I   am   grateful   to   Dr.   Amit   Agarwal   (Natural   Remedies   Pvt.   Ltd.,                 Bangalore,   India)   for   providing   the   methanol   extract   of   Withania  

somnifera  roots.  

I  would  like  to  express  my  gratitude  to  my  colleagues  at  the                    La-­‐

boratory   of   Medicinal   Chemistry   of   the   Department   of   Life   and                                   Enviromental  Sciences  for  creating  a  friendly  and  stimulating  working  

atmosphere.    

Last  but  not  least,  I  would  like  to  give  special  thanks  to  my  family  that   always   believed   in   me   and   to   my   girlfriend   Michela   for   her   infinite       patience   and   love   that   allowed   me   to   overcome   all   obstacles.             You’re  my  lighthouse  in  the  storm.  

(3)

III  

Nicola  Anzani  gratefully  acknowledges  Sardinia  Regional  Government   for   the   financial   support   of   her   PhD   scholarship  (P.O.R.   Sardegna   F.S.E.    Operational  Programme  of  the  Autonomous  Region  of  Sardinia,   European  Social  Fund  2007-­‐2013      -­‐  Axis  IV  Human  Resources,  Objec-­‐ tive  l.3,  Line  of  Activity  l.3.1.)”.  

(4)

IV  

TABLE  OF  CONTENTS  

 

1. INTRODUCTION

       1                              

2. OPIOID  RECEPTORS      

4                                                                                                                                         • 2.1  Natural  Opioids  Ligands        8                                                                                                                          

3. CANNABINOID  RECEPTORS    

14                                                                                                                             • 3.1  CB1  Receptor      17                                                                                                                                                                 • 3.2  CB2  Receptor      19                                                                                                                                                                                     • 3.3  Natural  Cannabinoids  ligands      20  

4.  AIM  OF  THE  WORK

         26  

5. METHODOLOGY  OF  ISOLATION  PROCEDURE

       28  

• 5.1  Extraction  28   • 5.2  Fractionation  28  

• 5.3  Vacuum  Liquid  Chromatography  (VLC)  29   • 5.4  Purification  29  

• 5.5  Open  Column  Chromatography  30  

• 5.6  High  Performance  Liquid  Chromatography  31    

(5)

V

6. METHODOLOGY  OF  STRUCTURE  ELUCIDATION

         32  

• 6.1  Nuclear  Magnetic  Resonance  Spectroscopy        32   • 6.2  Mass  Spectrometry      35    

7. BIOLOGICAL  EXPERIMENTS      

37  

• 7.1  Binding  Assay  37   • 7.2  Tail  Flick  Test  38   • 7.3  Hot  Plate  Test  38

8. Othantus  maritimus    

40  

• 8.1  Botanical  Decription  40  

• 8.2  Geographical  distribution  and  habitat    42   • 8.3  Use  in  Folk  Medicine      43  

• 8.4  Chemical  Composition    43  

• 8.5  Biological  Actvity  of  N-­‐alkylamides        48  

9. Stachys  glutinosa

       51  

• 9.1  Botanical  Decription  51  

• 9.2  Geographical  Distribution  and  Habitat  53   • 9.3  Use  in  Folk  Medicine  53  

• 9.4  Chemical  Composition  54  

• 9.5  The  Phytochemical  Investigation  on  Genus  Stachys      55   o 9.5.1  Diterpenes      55  

(6)

VI • 10.1    Botanical  Description  62  

• 10.2  Geographical  Distribution  and  Habitat  62   • 10.3    Use  in  Folk  Medicine  64  

• 10.4    Pharmacological  studies  of  W.  somnifera  extracts    65 • 10.5    Chemical  Composition    66  

o 10.5.1    Withanolides  66   o 10.5.2  Alkaloids    70  

o 10.5.3    Biological  Activities  of  Withania  somnifera   Withanolides  72  

11.    RESULTS

   74

     

• 11.1  Extraction  of  O.maritimus  Roots    75  

• 11.2  Isolation  of  Metabolites  from  O.maritimus    75  

• 11.3  Structure  Elucidation  of  Metabolites  from  O.  maritimus     78  

o 11.3.1  Structure  Elucidation  of  Compound    1        78   o 11.3.2  Structure  Elucidation  of  Compound    5        88   o 11.3.3  Strucure  Elucidation  of  Compound  12        96   o 11.3.4  In  silico  Modelling  Study    105  

o 11.3.5  Structure  Elucidation  of  Known  Compounds  111   • 11.4  Extraction  of  S.  glutinosa  Aerial  Parts      141  

• 11.5  Isolation  of  Metabolites  from  S.  glutinosa  L.    141  

(7)

VII

glutinosa  144  

o 11.7.1  Structure  Elucidation  of  Compound  22      144   o 11.7.2  Structure  Elucidation  of  Known  Compounds    159   • 11.8  Isolation  of  Metabolites  from  W.  somnifera    174   • 11.8.1  Structure  Elucidation  of  Known  Compounds    177

   

 

12.  BIOLOGICAL  RESULTS    

195  

• 12.1  Opioid  and  Cannabinoid  Binding  Affinity  of  Compounds   Isolated  from  O.maritimus        195  

• 12.2  Opioid  Binding  Affinity  of  Compounds  Isolated  from  

S.glutinosa    200  

o 12.2.1   Effects   of   xanthomicrol   on   morphine-­‐induced   Analgesia     202  

o 12.2.2  Receptor  Binding  Affinity  of  Methanol  and  Alkaloid  Extract   from  W.somnifera  (WSE  and  WSAE)    205  

o 12.2.3  Analgesia  Experiments  206  

o 12.2.4  Effects  of  WSE  on  Morphine-­‐induced  Analgesia      206   o 12.2.5  Effect  of  WSE  on  Morphine-­‐induced  Hyperalgesia    212   o 12.2.6   Effect   of   WSME   on   Morphine-­‐induced   Hyper-­‐locomotion    

214  

(8)

VIII

14.    EXPERIMENTA

L  

SECTION    

221  

• 14.1  General  Experimental  Procedures  221   • 14.2  O.  maritimus  Plant  Material    222  

• 14.3  O.  maritimus    Extraction  and  Isolation    222  

• 14.4  O.maritimus    Analytical  and  Spectroscopic  Data  of  the  New   Compounds    225  

• 14.5  Stachys  glutinosa  Plant  Material    226  

• 14.6  Stachys  glutinosa  Extraction  and  Isolation    226   • 14.7  Semi-­‐synthesis  of  5-­‐demethyltangeretin  (23)    228   • 14.8  Semi-­‐synthesis  of  Tangeretin  (24)    228  

• 14.9    W.  somnifera    Plant  Material    229  

• 14.10  W.  somnifera  Extraction  and  Isolation    229  

o 14.10.1  Extraction  and  Separation  Procedure  of  Alkaloids    229   o 14.10.2  Separation  Procedure  of  Withanolides    231  

15.    MOLECULAR  MODELING

   233  

• 15.1  Ligands  Preparation    233   • 15.2  Protein  233  

• 15.3  Docking  and  Post-­‐Docking  Experiments  234  

16.    BIOLOGY  ASSAY

 235  

• 16.1  Animals  235  

(9)

IX • 16.3  [ H]-­‐DAMGO-­‐[ H]-­‐DPDPE  (opioid  receptors)  Binding  Assay  

237  

• 16.4  [3H]-­‐CP-­‐55,940  (cannabinoid  receptors)  Binding  Assay  238   • 16.5  [3H]-­‐Muscimol  (GABAA  receptor)  Binding  Assay  240  

• 16.6  Analysis  of  Samples    241  

17.    ANALGESIA  EXPERIMENTS

 243  

• 17.1  WSE  Tail-­‐flick  and  Hot-­‐plate  Test    243   • 17.2  Xantomichrol:  tail-­‐flick  test  244  

• 17.3  Morphine-­‐induced  Hyperalgesia  Experiment      245   • 17.4  Spontaneous  and  Morphine-­‐induced  Motor  Activity  

Experiments    245   • 17.5  Data  analysis    246  

18.

 

REFERENCES

   248  

19.

 

PUBLICATIONS  AND  PRESENTATIONS    

265  

(10)

X  

ABBREVIATIONS  

 

ACN     acetonitrile  

APT     attached  proton  test  

CB     cannabinoid  

CDCl3     deuterated  chloroform  

CD4O     deuterated  methanol  

CPP     conditioned  place  preference  

d     doublet  

DCM     dichloromethane  

DEPT     distortionless  enhancement  by  polarization  tranfer   DQF-­‐COSY   double-­‐quantum  filtered  correlation  spectroscopy   DOR     δ  opioid  receptor  

ESI  MS     electrospray  mass  spectrometry   EtOAc     ethyl  acetate  

FDA     food  and  drugs  administration   GABA     gamma-­‐aminobutyric  acid  

[3H]-­‐DAMGO      [(D-­‐Ala2,  N-­‐Me-­‐Phe4,  Gly5-­‐ol-­‐)  enkephalin]   [3H]-­‐DPDPE     [(D-­‐Pen  2,5)-­‐enkephalin]  

HMBC     heteronuclear  multiple  bond  correlation   HPLC     high  performance  liquid  chromatography  

(11)

XI HSQC     heteronuclear  single  quantum  coherence  

IC50     inhibition  concentration  (50%  inhibition)  

µg     microgram  

µl     microliter  

Ki     inhibition  constant  

KOR     k  opioid  rceptor   MeOH     methanol  

MOR     µ  opioid  receptor   NMDA     N-­‐methyl-­‐d-­‐aspartate   NMR     nuclear  magnetic  resonance   NP     normal  phase  

OME     Otanthus  maritimus  extract  

PAg     Periaqueductal  grey   PMFs     polymethoxyflavones  

RP     reversed  phase   s     singlet  

spp     species   TOF     time  of  flight  

THC     tetrahydrocannabinol  

t     triplet  

(12)

XII TLC     thin  layer  chromatography  

SGE     Stachys  glutinosa  extract  

UV     ultraviolet  

VLC     vacuum  liquid  chromatography   WSAE     Withania  somnifera  alkaloid  extract  

WSE     Withania  somnifera  methanol  extract  

   

(13)
(14)

1

1. INTRODUCTION  

Plants   have   been   used   for   thousands   of   years   to   treat   diseases   and   today   too,   they   are   the   almost   exclusive   source   of   drugs   for   the   majority  of  the  world’s  population.  

In  the  19th  century,  with  the  isolation  of  morphine  from  opium,  it  was  

begun   to   employ   the   pure   active   ingredients   rather   than   whole   extracts.1   After   the   discovery   of   morphine   a   lot   of   plant-­‐originated  

drugs   have   been   discovered   and   various   secondary   metabolites   are   currently  in  use  such  as,  for  example,  quinine  from  Cinchona  species,   cardiac   glicosides   from   Digitalis   purpurea,   vinblasine   and   vincristine   from   Catharanthus   roseus,   taxol   from   Taxus   brevifolia   and   the   antimalarian  compound,  artemisinin,  from  Artemisia  annua.

Higher  plants  are  also  an  important  source  of  drugs  that  act  as  agonist   to  opioid  receptors  and  among  all,  morphine,  isolated  from  the  opium   poppy,  Papaver  somniferum.  Morphine  is  a  µ  opioid  receptor  agonist   and   is   the   most   potent   analgesic   currently   used   in   clinic   for   the   treatment  of  moderate  or  severe  pain.  Salvinorin  is  another  receptor   opioid  ligand  (k  agonist)  isolated  from  plants  (Salvia  divinorum)  but  it   does   not   show   any   analgesic   activity   and   has   been   classified   as   a   hallucinogenic  agent.2

(15)

2 reported   to   contain   secondary   metabolites   that   interact   with   the   endocannabinoid   system.   These   compounds,   also   called   phytocannabinoids,   are   capable   of   either   directly   interacting   with   cannabinoid   receptors   (CB1  and   CB2)   or   sharing   chemical   similarity  

with   cannabinoids   or   both.3   Δ9-­‐tetrahydrocannabinol   (Δ9-­‐THC)  from  

Cannabis   sativa   is   a   non-­‐selective   agonist   to   cannabinoid   receptors  

and   is   used   for   the   treatment   of   neuropathic   pain   or   for   refractory   forms  of  treatment  with  morphine  derivatives.4  

Recently,  N-­‐alkylamides  from  Echinacea  spp.  have  been  identified  as  

CB2   receptor   selective   agonists   and   are   responsible   of   the  

immunomodulatory  effect  of  this  plant.5

Powerful   new   technologies   such   as   high-­‐throughput   screening   and   combinatorial  chemistry  dramatically  increase  the  possibility  of  drug   discovery.   Nevertheless,   natural   products   still   offer   unmatched   structural   variety   when   compared   to   synthetic   compounds.   For   example,   natural   products   are   more   likely   to   be   rich   in   stereochemistry  and  concatenated  rings  than  the  structures  obtained   by  the  combinatorial  libraries.

To   date,   natural   products   still   represent   a   very   important   source   in   the   discovery   and   development   of   new   medicines   and   a   significant   part  of  the  therapeutic  armamentarium  of  doctors  is  represented  by  

(16)

3 natural   medicines   or   natural-­‐derived   products.6   If   we   consider   the  

new  drugs  approved  in  2010  by  Food  and  Drugs  Administration  (FDA),   half  of  the  20  fully  approved  small  molecules  were  natural  products  or   directly   derived   therefrom,   confirming   the   importance   of   natural   products  as  source  of  new  drugs.6

   

(17)

4

2.    OPIOID  RECEPTORS  

The  term  opioid  applies  to  any  substance  that  produces  effects  similar   to  those  of  morphine  and  that  are  blocked  from  specific  antagonists   (naloxone).   Among   these   there   are   natural   alkaloids,   synthesis   or   semisynthesis   compounds,   endogenous   opioid   peptides.   These   substances   act   on   specific   receptors   of   the   peripheral   and   central   nervous   system   (that   take   the   generic   name   of   opioid   receptors)   acting   mainly   as   modulators   of   the   painful   sensations   but   also   through   specific   transcription   factors   nuclear   receptors.   The   term   opioid   is   frequently   used   improperly   to   indicate,   more   restrictively,   the   alkaloids   that   can   be   found   in   opium,   a   mixture   of   substances   derived   from   the   latex   of   Papaver   somniferum,   and   their   semi-­‐ synthetic   derivatives;   the   correct   term   to   describe   these   substances   is,  instead,  opiates.  The  evidence  of  the  use  of  opium  as  a  medicine  as   well  as  a  substance  for  luxury,  dates  back  to  many  centuries  before   Christ,   given   in   Latin   texts   and   Homer,   and   to   Roman   imperial   and   Republican.7  Opioids   act   on   a   family   of   receptors   in   the   central   and   peripheral   nervous   system,   which   includes   four   subtypes:   μ   opioid   receptor  (MOR),  δ  opioid  receptor  (DOR)  and  κ  opioid  receptor  (KOR).   All   these   receptors   belong   to   the   superfamily   of   G   protein-­‐coupled  

(18)

5 receptors.   The   activation   of   these   receptors   leads   to:   inhibition   of   adenylate   cyclase   and   thereby   reduced   synthesis   of   cAMP,   the   inhibition  of  Ca2+  channels  that  results  in  a  reduction  in  the  release  of  

neurotransmitter,   the   opening   of   K+   channels   that   results   in  

hyperpolarization  of  the  membrane  and  reduction  of  nerve  activity.7   G   proteins   involved   in   signal   transduction   are   Gi   (inhibitor).   These   cellular   effects   are   reflected   in   a   wide   variety   of   physical   symptoms   such   as   analgesia   and   sedation,   sleep   induction,   respiratory   depression   (caused   by   opioid   action   at   the   level   of   the   bulbar   respiratory   centre   sensitive   to   arterial   pCO2),   central   nervous   depression,   gastrointestinal   motility   inhibition   and   inhibition   of   the   cough   reflex.7  All   opioid   receptors   modulate   the   analgesic   action   although  they  operate  at  different  levels.  MOR:  generating  analgesia   (sovraspinal   level),   miosis,   and   respiratory   depression,   decrease   in   gastrointestinal   activity,   euphoria;   KOR:   produces   analgesia   (spinal   level),   miosis,   and   respiratory   depression,   dysphoria   (unlike   μ   receptors);  DOR:  no  analgesia,  but  decreases  the  intestinal  transit  and   depresses   the   immune   system.7   Opioids   tend   to   inhibit   neuronal   transmission  at  both  pre  and  post  synaptic  level.  In  fact,  the  activation   of   presinaptic   µ   receptors   causes   inhibition   of   N-­‐type   calcium  

channels  and  thus  a  reduction  in  the  production  of  neurotransmitters,   while   the   activation   of   µ   postsynaptic   receptors   produces  

(19)

6 calcium  L-­‐type.

MOR   is   the   most   widespread   receptor   and   mediate   most   of   the   pharmacological  effects  of  opioid  analgesics.

Physiologically   active   molecules   on   these   receptors   are   the   endogenous   opioids   peptides,   β-­‐   endorphins,   dynorphines   A   and   B,   and   enkephalins,   endogenous   substances   better   defined   as   opioid   peptides   which   are   synthesized   respectively   starting   from   large   precursor   peptide,   proopiomelanocortin,   proenkephaline   and   prodinorphine,  splitting  by  specific  endopeptidase.7

The   endogenous   opioids,   β-­‐endorphins,   dynorphines   A   and   B,   and   enkephalins   exert   their   analgesic   action   at   spinal   and   sovraspinal   level.  They  also  cause  analgesia  with  a  peripheral  action  mechanism   associated   with   the   inflammatory   process.   In   the   central   nervous   system,   opioids   exert   an   inhibitory   action   on   neurotransmitters.   At   sovraspinal   level,   activation   of   opioid   receptors   inhibit   neuronal   activity   and   therefore   the   release   of   noradrenaline   from   the   locus  

coeruleus   and     nucleus   reticularis   paragigantocellularis   (NRPG),   and  

the   release   of   serotonin   from   nucleus   Raphe   Magnus   (NRM),   with   inhibition  of  pain  transmission.  MOR  agonists  prevent  the  release  of   the   inhibitory   transmitter   GABA   activating   the   Periaqueductal   grey   (PAG)  systems  that  regulate  the  activity  of  the  bulb.8  In  particular,  the  

(20)

7 GABA   transmission   can   have   opposite   effects   on   pain   processing   in   relation   to   its   location   within   the   central   nervous   system;   its   activation  causes  analgesia  at  spinal  level,  while  it  is  pronociceptive  at   sopraspinal  level.9,10  The  systemic  administration  of  GABA

A  and  GABAB  

agonists   such   as   benzodiazepines   increases   the   opioid-­‐induced   analgesia11,12  and  attenuates  the  development  of  tolerance.13  

Opioids  also  exert  a  neuromodulator  action  of  pain  signal  on  afferent   neurons   located   in   the   dorsal   horn   of   the   spinal   cord   and   neuronal   interconnection  paths  for  pain  signal  transmission  in  the  brain.  

At  spinal  level,  the  activation  of  k  and  µ  receptors  blocks  the  release   of   substance   P,   peptide   released   following   a   skin   lesion   from   the   fibers  relating  to  the  rear  horns  of  the  spinal  cord.  Substance  P  is  a   neurotransmitter   of   the   anguished   transmission,   so   blocking   its   release  also  locks  the  transmission  of  pain  information.14  

Glutamate  is  the  primary  excitatory  neurotransmitter  involved  in  the   transmission   of   nociceptive   stimuli   at   spinal   level.10  In   addition,   N-­‐ Methyl-­‐D-­‐Aspartate  (NMDA)  receptor  sensitization  on  spinal  neurons   play  a  key  role  in  the  development  of  tolerance  induced  by  opioids.8   Consistently,   the   co-­‐administration   of   NMDA   receptor   antagonists   enhances  the  opioid-­‐induced  analgesia.15  

   

(21)

8

2.1  Natural  Opioids  Ligands    

As   mentioned   before,   the   investigation   of   natural   products   has   proven   to   be   an   excellent   source   of   clinical   agents   for   a   number   of   therapeutic  areas  including  pain.6    

Morphine  (Figure  1)  is  the  most  abundant  opiate  found  in  opium  (8-­‐ 14%  of  dry  weight),  the  dried  latex  is  obtained  by  shallowly  slicing  the   unripe   seedpods   of   the   Papaver   somniferum   poppy.   Morphine   was   the  first  active  principle  purified  from  a  plant  source  and  is  one  of  at   least  50  alkaloids  of  several  different  types  present  in  opium.  

                                                                               

(22)

9  

Morphine   is   primarily   used   to   treat   both   acute   and   chronic   severe   pain   for   example   in   myocardial   infarction,   in   cancer   pain  and   for   labour  pains.7

In  fact  like  other  opioids,  it  acts  directly  on  µ  receptor  of  the  central   nervous  system  (CNS)  to  relieve  pain.  Morphine  has  a  high  potential   for  addiction;   tolerance   and   psychological   dependence  develop   rapidly.   Tolerance   to   respiratory   depression   and   euphoria   develops   more   rapidly   than   tolerance   to   analgesia,   and   many   chronic   pain   patients  are  being  maintained  on  a  stable  dose,  for  many  years.7  

In   addition   morphine   acts   on   the   myenteric   plexus  in   the   intestinal   tract,  reducing  gut  motility,  causing  constipation.  The  gastrointestinal   effects   of   morphine   are   mediated   primarily   by   µ   receptors  in   the   bowel.7  

New   natural   therapies   are   currently   being   explored   as   analgesic   potential  alternatives  to  morphine  and  derivatives.17

Kratom  (Mitragyna  speciosa  Korth.,  Rubiaceae)  is  an  indigenous  herb   of   Southeast   Asia   that   is   traditionally   used   to   treat   fever,   diarrhea,   fatigue,   pain,   and   as   a   substitute   for   morphine   in   treating   opioid   addicts.   The   main   component   of   kratom   is   the   indole   alkaloid   mitragynine  (Figure  2),  which  has  been  reported  to  have  affinities  for   all  three  opioid  receptors,  though  it  appears  to  be  relatively  selective  

(23)

10 derivatives   of   mitragynine,   as   pseudoindoxyl   and   7-­‐ hydroxymitragynine,  have  also  been  found  to  have  affinity  for  opioid   receptors  (Figure  2).17  

   

                 

mitragynine              pseudoindoxyl-­‐mitragynine              7-­‐hydroxymitragynine    

                 Figure  2.    Structures  of  Mitragyna  speciosa  alkaloids      

Research   interest   in   mitragynine   stems   from   its   increasing   use   as   a   remedy   for   opioid   withdrawal   by   individuals   who   self-­‐treat   chronic   pain.  In  addition  this  compound  is  known  to  produce  antinociception   in  mice  in  the  hot-­‐plate  and  in  the  tail-­‐flick  tests.17  However,  the  exact   mechanisms   underlying   the   effect   of   mitragynine   are   currently   unknown.   It   has   been   hypothesized   that   the   MOP   agonism   of   mitragynine   might   avert   withdrawal   symptoms,   while   KOP   agonism  

(24)

11 might   attenuate   reinforcement   and   blunt   cravings.   The   collective   findings  of  the  effects  of  mitragynine  indicate  that  the  molecule  and   its  derivatives  may  be  useful  for  the  development  of  new  analgesics   and  possibly  for  the  treatment  of  opioid  abuse.17

Selective  KOP  agonists  are  also  capable  of  producing  clinically  useful   analgesia,   but   lack   the   respiratory   depression,   constipation,   and   addictive   properties   associated   with   MOP   agonists.   However,   a   side   effect  associated  with  activation  of  KOP  receptors  is  dysphoria.  Still,   KOP  agonists  are  targets  for  achieving  pain  relief  without  the  negative   side  effects  associated  with  MOP  agonists.  Although  KOP  agonists  are   known   to   produce   dysphoric   effects,   there   is   still   some   hope   that   a   clinically  useful  analgesic  may  be  found.17

Salvinorin   A,   a   neo-­‐clerodane   diterpene   (Figure   3),   is   the   active   hallucinogenic  component  in  the  Mexican  mint  plant  Salvia  divinorum   (Lamiaceae).   This   plant   has   been   used   by   the   Mazatec   Indians   in   Oaxaca,   Mexico,   as   a   hallucinogenic   agent,   and   to   relieve   diarrhea,   headache,  and  rheumatism.    

(25)

12                                                      

Figure  3.  Structure  of  salvinorin  A    

 

However,  until  recently,  the  target  of  the  hallucinogenic  effects  was   not  clear,  as  Salvinorin  A  lacks  activity  at  the  targets  of  other  known   hallucinogens,  specifically  serotonin  receptors,  cholinergic  receptors,   and  cannabinoid  receptors.

In   2002,   Salvinorin   A   was   identified   as   a   potent   and   selective   KOP   agonist.  This  result  is  surprising  considering  that  Salvinorin  A  lacks  the   basic  nitrogen  that  has  long  been  thought  to  be  required  for  opioid   activity.   However,   given   the   known   hallucinogenic   effects   of   other   KOP  agonists,  this  finding  is  not  unprecedented.  Salvinorin  A  produces   a   discriminative   effect   in   both   rats   and   non-­‐human   primates   that   is   similar   to   other   KOP   agonists.   It   has   also   been   shown   to   produce   analgesia  in  mice  that  can  be  blocked  by  a  KOP  receptor  antagonist.17  

(26)

13 Another   natural   opioid   is   ibogaine   (Figure   4),   an   indole   alkaloid   isolated   from   the   root,   root-­‐bark,   stems,   and   leaves   of   the   African   shrub   Tabernanthe   iboga.   This   plant   has   been   used   by   indigenous   people  in  low  doses  to  combat  fatigue  and  hunger  and  in  higher  doses   as   a   sacrament   in   religious   rituals.   The   psychopharmacology   of   ibogaine   is   complex   due   to   its   affinity   for   several   receptors,   transporters,  and  ion  channels.  In  addition,  its  primary  metabolite,  12-­‐ hydroxyibogamine,   is   also   biologically   active.   The   most-­‐studied   therapeutic   effect   of   ibogaine   is   the   reduction   or   elimination   of   addiction  to  opioids.  The  mechanism  by  which  ibogaine  exerts  its  anti-­‐ addictive   effects   is   presently   unknown   although   several   receptor   systems   have   been   implicated   in   its   activity.     However,   it   has   been   speculated   that   its   k   agonist   actions   contribute   to   its   effects   on   stimulant   self-­‐administration   and   analogs   of   ibogaine   are   currently   being  explored  as  potentially  safer  medications.18  

 

                                                                                                                               

(27)

14

3. CANNABINOID RECEPTORS

 

The   cannabinoid   receptors   are   a   class   of   cell   membrane   receptors   under  the    G  protein-­‐coupled  receptor  superfamily19-­‐21  which  contain  

seven  transmembrane  spanning  domains.22  

There   are   currently   two   known   subtypes,   termed   CB1   and   CB223,24.   (Figure  5).  The  CB1  receptor  is  expressed  mainly  in  the  brain,  but  also   in  the  lungs,  liver  and  kidneys.  The  CB2  receptor  is  expressed  mainly   in  the  immune  system  and  in  hematopoietic  cells.25  

   

                                           

 

(28)

15 Cannabinoid  receptors  are  activated  by  three  major  groups  of  ligands,   endocannabinoids   (such   as   anandamide   and   2-­‐arachidonoylglycerol   (2-­‐AG)  (Figure  6),  phytocannabinoids  (such  as  Δ9-­‐THC  and  alkylamides,  

found  in  Cannabis  and  Echinacea  species,  respectively)  (Figure  7)  and   synthetic  cannabinoids  (such  as  HU-­‐210).  All  of  the  endocannabinoids   and   phytocannabinoids   are   lipophilic,   i.e.   fat   soluble,   compounds.   Cannabinoids   bind   reversibly   and   stereo-­‐selectively   to   the   cannabinoid  receptors.         (1)                                                                    (2)                                                    

Figure  6.  Structures  of  anandamide  (1)  and  2-­‐arachidonoylglycerol  (2)    

(29)

16  

                                                                             Figure.  7        Structure  of  Δ9-­‐THC        

 

After   the   receptor   is   engaged,   multiple   intracellular   signal   transduction   pathways   are   activated.   At   first,   it   was   thought   that   cannabinoid  receptors  mainly  inhibited  the  enzyme  adenylate  cyclase   (and  thereby  the  production  of  the  second  messenger  molecule  cyclic   AMP),   and   positively   influenced   inwardly   rectifying   potassium   channels   (=Kir   or   IRK).   However,   a   much   more   complex   picture   has   appeared   in   different   cell   types,   implicating   other   potassium   ion   channels,  Ca2+  channels,  protein  kinase  A  and  C,  Raf-­‐1,  ERK,  p38,  c-­‐ fos,  c-­‐jun  and  many  more.26  

Separation   between   the   therapeutically   undesirable   psychotropic   effects,  and  the  clinically  desirable  ones  has  not  been  reported  with   agonists   that   bind   to   cannabinoid   receptors.   Δ9-­‐THC,   as   well   as   the  

two  major  endogenous  compounds  identified  so  far,  anandamide  and   2-­‐arachidonylglycerol,  that  bind  to  the  cannabinoid  receptor,  produce  

(30)

17 most  of  their  effects  by  binding  to  both  the  CB1  and  CB2  receptors.   While   the   effects   mediated   by   CB1,   mostly   in   the   central   nervous   system,   have   been   thoroughly   investigated,   those   mediated   by   CB2   are  not  equally  well  defined.27  

 

3.1  CB1  Receptor    

CB1   receptors   are   expressed   most   densely   in   the   central   nervous   system   and   are   largely   responsible   for   mediating   the   effects   of   cannabinoid  binding  in  the  brain.  

The  analgesic  effects  of  cannabinoids  are  based  on  the  interaction  of   these  compounds  with  CB1  receptors  on  spinal  cord  interneurons  in   the  superficial  levels  of  the  dorsal  horn.  Signals  on  this  track  are  also   transmitted   to   the   periaqueductal   gray   (PAG)   of   the   midbrain.   Endogenous  cannabinoids  are  believed  to  exhibit  an  analgesic  effect   on  these  receptors  by  limiting  both  GABA  and  glutamate  of  PAG  cells   that  relate  to  nociceptive  input.28  

They   are   also   found   in   other   parts   of   the   body.   For   instance,   in   the   liver,   activation   of   the   CB1   receptor   is   known   to   increase   de   novo   lipogenesis.29  Activation  of  presynaptic  CB1  receptors  is  also  known  to  

(31)

18 shock.30  

Inhibition   of   gastrointestinal   activity   has   been   observed   after   administration  of  Δ9-­‐THC  or  anandamide.  This  effect  is  assumed  to  be  

CB1-­‐mediated,   since   this   receptor   is   expressed   by   the   peptide   hormone   cholecystokinin,   and   application   of   the   CB1-­‐specific   antagonist  SR  141716A    Rimonabant    blocks  the  effect.31  

Cannabinoids   are   well   known   for   their   cardiovascular   activity.   Activation   of   peripheral   CB1   receptors   contributes   to   hemorrhagic   and   endotoxin-­‐induced   hypotension.   Anandamide   and   2-­‐AG,   produced   by   macrophages   and   platelets,   respectively,   may   mediate   this  effect.32  

Many   studies   suggest   that   the   effects   of   endocannabinoids   on   memory  are  dependent  on  what  type  of  neurons  are  being  targeted   (excitatory   vs.   inhibitory)   and   the   location   of   these   networks   in   the   brain.33  

Evidence  for  the  role  of  the  endocannabinoid  system  in  food-­‐seeking   behavior  comes  from  a  variety  of  cannabinoid  studies.  Emerging  data   suggest  that  Δ9-­‐THC  acts  via  CB1  receptors  in  the  hypothalamic  nuclei   to  directly  increase  appetite.34  

(32)

19  

3.2  CB2  Receptor    

CB2  receptors  are  found  throughout  tissues  of  the  spleen,  tonsils,  and   thymus  gland  mainly  expressed  on  T  cells  of  the  immune  system,  on   macrophages  and  B  cells,  and  in  hematopoietic  cells.  When  activated,   they  too  can  affect  the  release  of  chemical  messengers,  in  this  case   the   secretion   of   cytokines   by   immune   cells,   and   can   in   addition   modulate   immune   cell   trafficking.35   They   are   also   expressed   on  

peripheral   nerve   terminals,   playing   a   role   in   antinociception,   or   the   relief   of   pain.   In   the   brain,   they   are   mainly   expressed   by   microglial   cells,  where  their  role  remains  unclear.  

To   be   specific,   this   receptor   has   been   implicated   in   a   variety   of   modulatory   functions,   including   immune   suppression,   induction   of   apoptosis  and  of  cell  migration.36  

Therefore,  they  are  also  expressed  in  the  brain,  though  not  as  densely   as   the   CB1   receptor   and   are   located   on   different   cells.37  Unlike   the  

CB1   receptor,   in   the   brain,   CB2   receptors   are   found   primarily   on   microglia,  but  not  on  neurons.  

CB2  receptors  are  also  found  throughout  the  gastrointestinal  system,   where   they   modulate   intestinal   inflammatory   response.   Thus,   CB2  

(33)

20 bowel  diseases,  such  as  Crohn's  disease  and  ulcerative  colitis.38,39  

The  endocannabinoid  system,  through  CB2  signaling,  plays  a  key  role   in   the   maintenance   of   bone   mass:   CB2   are   expressed   in   osteoblast,   osteocytes   and   osteoclast.   CB2   agonists   enhance   endocortical   osteoblast   number   and   activity   while   restraining   trabecular   osteoclastogenesis.   Another   important   effect   is   that   CB2   agonists   attenuate   ovariectomy-­‐induced   bone   loss   while   increasing   cortical   thickness.   These   findings   suggest   CB2   offers   a   potential   molecular   target  for  the  diagnosis  and  treatment  of  osteoporosis.40  

 

3.3  Natural  Cannabinoids  Ligands    

Cannabis   sativa   have   been   used   for   centuries   and   are   known   to  

produce  an  analgesic  effect  in  addition  to  hallucinogenic  effects  such   as  feelings  of  dissociation  from  reality.  Cannabinoids  are  divided  into   two   categories:   classical   cannabinoids   and   non-­‐classical   cannabinoids.41  

Classical  cannabinoids  are  tricyclic  dibenzopyran  derivatives  that  are   both   natural   and   obtained   by   semisynthesis   starting   from   the   first   one.   This   group   of   molecules   is   exemplified   by   Δ9-­‐THC;   the   main  

(34)

21 psychotropic   principle   of   cannabis.   Non-­‐classical   cannabinoids   emerged  from  Pfizer  SAR  studies  of  the  classical  cannabinoids.41    

These   compounds   are   devoided   of   the   dihydropyran   ring   present   in   Δ9-­‐THC,  as  for  example  CP47497  (Figure  8).42    

Δ9-­‐THC  acts  as  an  agonist  with  efficacy  similar  to  that  of  anandamide.   It  has  been  suggested  that  the  hallucinogenic  effects  of      Δ9-­‐THC  arise  

from   the   compound’s   ability   to   mimic   the   action   of   anandamide   at   cannabinoid   receptors,   while   simultaneously   antagonizing   2-­‐AG   at   these   same   receptors.   This   hypothesis   is   supported   by   the   observation  that  a  single  high  dose  of  a  CB1  receptor  antagonist  has   only   a   limited   ability   to   block   the   subjective   effects   of   cannabis   ingestion.43  

Dronabinol44,48  is  the  pure  isomer  of  Δ9-­‐THC,  which  is  the  main  isomer   found  in  cannabis.  It  is  sold  as  Marinol  (Figure  8)  and  considered  to  be   non-­‐narcotic  with  low  risk  of  physical  or  mental  dependence.  Marinol   has  been  approved  by  the  U.S.  Food  and  Drugs  Administration  (FDA)   for   the   treatment   of   anorexia   in   AIDS   patients,   as   well   as   for   refractory   nausea   and   vomiting   of   patients   undergoing   chemiotherapy.  

An   analog   of   Dronabinol,   Nabilon44,48   (Figure   8),   is   available  

(35)

22 FDA  approval  and  began  being  marketed  in  the  U.S.  in  2006.  

Female  cannabis  plants  contain  more  than  60  cannabinoids  including   cannabindiol,   thought   to   be   the   major   anticonvulsivant   that   helps   multiplesclerosis  patients45,  and  cannabichromene  (Figure  8),  an  anti-­‐

inflammatory     which   may   contribute   to   the   pain-­‐killing   effect   of   cannabis.46  It  takes  over  one  hour  for  Marinol  to  reach  full  systemic  

effect47compared   to   seconds   or   minutes   for   smoked   or   vaporized  

cannabis.48  

Recent  advances  in  the  understanding  of  the  endocannabinoid  system   have   broadened   the   therapeutic   possibilities   resulting   from   its   manipulation.  CB1  receptor  antagonists  have  received  the  most  of  the   attention   of   the   potential   drugs   affecting   the   endocannabinoid   system.   Their   primary   indication   is   for   obesity.   The   rationale   behind   this  indication  lies  in  the  generally  accepted  notion  that  ingestion  of   cannabis   enhances   the   appetite,   resulting   in   increased   consumption   of  rich  foods.  Therefore,  CB1  receptor  antagonists  should  function  to   reduce   the   appetite,   thereby   reducing   caloric   intake   and   body   weight.49,50   The   first   reported   CB1   receptor   antagonist   was   rimonabant    (SR141716,  Accomplia)51  (Figure  8)  wich  show  nanomolar  

(36)

23 Another  indication  for  CB1  receptor  antagonists  is  in  the  treatment  of   drug   abuse.   Several   studies   in   animals   have   observed   that   CB1   receptor   antagonists   such   as   rimonabant   reduce   the   rewarding   properties   of   opioid   receptor   agonists.52-­‐55   In   fact,   these   rewarding  

properties   are   absent   in   CB1   receptor   knock-­‐out   mice.57   However,  

opioid   receptors   do   not   seem   to   be   involved   in   the   hallucinogenic   effects   of   CB1   receptor   agonists,   as   opioid   receptor   antagonists   do   not  block  these  effects.58  Also,  the  CB1  receptor  seems  to  be  involved  

in   responses   to   both   nicotine   and   alcohol;   CB1   receptor   antagonists   are  able  to  block  nicotine-­‐induced  conditioned  place  preference  (CPP)   and   to   decrease   alcohol   consumption.58   In   October   2008,   the   European  Medicines  Agency’s  Committee  for  Medicinal  Products  for   Human   Use   (CHMP)   had   determined   that   the   risks     of     Accomplia   outweighed  its  benefits,  and  subsequently  recommended  the  product   be  suspended  from  the  UK  market  and  doctors  not  prescribe  the  drug   due  to  the  risk  of  serious  psychiatric  problems  and  even  suicide.   Extracts  of  Cannabis  are  known  to  produce  analgesic  effect.  In  April   2005,   Canadian   authorities   approved   the   marketing   of   Sativex,   a   mouth  spray  for  multiple  sclerosis  patients,  who  can  use  it  to  alleviate   neuropathic   pain   and   spasticity.   Sativex   contains   tetrahydrocannabinol  together  with  cannabindiol  and  is  a  preparation   of   whole   cannabis   rather   than   individual   cannabinoids.45   It   is  

(37)

24 based  prescription  drug  in  the  world  (in  modern  times).  In  addition,   Sativex  received  European  regulatory  approval  in  2010.  

A  particularly  attractive  feature  of  selective  CB2  receptor  agonists  as   therapeutics   is   that   they   are   devoid   of   any   known   hallucinogenic   effects  such  as  those  associated  with  CB1  receptor  agonists.50  

Since  CB2  receptors  are  believed  to  play  an  important  role  in  distinct   pathophysiological   processes,   including   metabolic   dysregulation,   inflammation,   pain,   and   bone   loss,   they   have,   therefore,   become   of   interest   as   new   targets   in   drug   discovery.   Recently,   some   phytocannabinoids  have  been  identified  as  selective  CB2  agonist  and,   among  all,  a  few  fatty  acid  amides  isolated  from  Echinacea  purpurea   that   justify   the   use   of   Echinacea   as   herbal   immunomodulators   worldwide  plant.59  

Another   phytocannabinoid   that   act   as   potent   and   selective   CB2   agonist   is   the   sesquiterpene   β-­‐caryophyllene.5   This   compound   have   been   identified   in   many   food   plants   and   also   in   Cannabis   sativa   L.   essential   oil.   β-­‐caryophyllene   showed   high   oral   bioavailabilty   and   strong   anti-­‐inflammatory   and   analgesic   effects   and   may   be   considered   a   good   candidate   for   clinical   trials   targeting   the   CB2   receptor.60  

(38)

25  

     

                   Dronabinol                                                              Nabilon                                                                        Cannabindiol                                                                                                                                                                                                              

                                                                                                                                 CP47497                                                              Rimonabant                                                                                                                                                      β-­‐caryophyllene      

Figure  8.  Natural  and  synthetic  cannabinoids  structures    

(39)

26

4.    AIM  OF  THE  WORK  

In  our  continuous  search  for  plant  secondary  metabolites  that  bind  to   CB   and/or   opioid   receptors,   we   selected   four   extracts   that   showed   interesting  affinity  versus  the  above  mentioned  receptors  (Table  1).  In   particular:  the  DCM  extract  obtained  from  the  aerial  parts  of  Stachys  

glutinosa  (SGE)  was  able  to  bind  with  a  good  affinity  both  MOR  and  

DOR  with  a  Ki  of  10.3  and  9  µg/mL,  respectively  while  the  DCM  extract  

from  the  leaves  of  Otanthus  maritimus  (OME)  showed  good  binding   affinity  to  CB1  (Ki  =  2.2  µg/mL)  and  CB2  (Ki  =  1.3  µg/mL)  and  moderate  

affinity  to  MOR  and  DOR.  The  third  was  an  alkaloid  fraction  obtained   from   the   MeOH   extract   of   the   roots   of   Withania   somnifera   (WSAE)   that  displayed  appreciable  affinity  versus  DOR  (Ki  =  25.5  µg/mL),  CB1  

(Ki  =  23.5  µg/mL),  CB2  (Ki  =  20.3  µg/mL)  and  GABAA  (Ki  =  14  µg/mL).  

The   in   toto   MeOH   extract   (WSE)   bound   with   very   low   affinity   to   CB   and   opioid   receptors   but   displayed   interesting   affinity   to   GABAA  

receptors  (Ki  =  14    µg/mL)  (Table  1).  

Based  on  this  results  this  study,  carried  out  in  collaboration  with  the   group   of   Dr.   Stefania   Ruiu   of   CNR-­‐Institute   of   Translational   Pharmacology  of    Cagliari,  aimed  to:  

(40)

27 1. Isolate  the  secondary  metabolites  that  were  responsible  of  the  

observed  binding  affinity  

2.  Identify   the   compounds   by   spectrometric   and   spectroscopic   methods  

3. Evaluate   the   binding   affinity   of   the   isolated   metabolites   to   opioid  and  cannabinoid  receptors.  

4. Evaluate   the   most   potent   and   abundant   compounds   in   antinociceptive  experiments  in  mice.    

     

Table  1.  Ki  values  of  OME,  SGE,  WSE,  and  WSAE  extracts  for  opioid,  

cannabinoid,  GABAA  receptors  

Receptor  affinity  (µg/ml)     Extract   µ   δ   k   CB1   CB2   GABAA   OME   10 ± 0.7 8.5 ± 1.3 - 2.2 ± 0.9 1.3 ± 0.3 - SGE   10.3± 0.2 9.0 ± 1 - - - - WSE   385 ± 14   166 ± 11   775 ± 56   837 ± 74   >1000   13 ± 2   WSAE   60 ± 7 25.5 ± 6 700 ± 120 23.5 ± 1 20.3 ± 2 14 ± 0.5

(41)

28

5. METHODOLOGY  OF  ISOLATION  PROCEDURE  

The   isolation   of   a   natural   product   can   be   divided   into   three   main   stages:  extraction,  fractionation,  and  purification.    

 

5.1  Extraction    

The  first  stage  of  the  isolation  procedure  is  the  release  of  compounds   from  the  cell  mass  and  the  removal  of  bulk  of  the  biomass.  Most  of   the   bulk   of   biomass   exists   as   fairly   inert,   insoluble,   and   often   polymeric   material,   such   as   the   cellulose   of   plants.   The   first   step   of   the   extraction   is   to   release   and   solubilize   the   smaller   secondary   metabolites   by   a   thorough   extraction   with   an   organic   solvent   or   water.  This  can  be  done  by  a  series  of  of  stepwise  extractions,  using   solvents  of  varying  polarity,  which  acts  as  the  first  fractionation  step,   or  by  using  a  single  solvent  such  as  methanol,  which  should  dissolve   most  natural  products.    

 

(42)

29 The  second  stage,  the  fractionation,  consists  to  remove  the  most  part   of   the   unwanted   material   and   to   obtain   a   crude   separation   of   the   compounds   mixture.   Such   step   may   involve   vacuum   liquid   chromatography  and  liquid-­‐liquid  extractions.    

 

5.3  Vacuum  Liquid  Chromatography  (VLC)    

VLC   is   a   very   convenient   and   simple   chromatograpy   method   that   is   able  to  produce  good  resolution  in  short  time.  This  technique  involves   the  use  of  reduced  pressure  to  increase  the  flow  rate  of  the  mobile   phase  through  a  short  bed  of  stationary  phase:  most  of  the  stationary   phase  could  be  used  (silica  gel,  reversed  phase  material  or  aluminium   oxide)  and  the  technique  is  applicable  to  large  scale  separations.  The   advantage  of  this  procedure  includes  its  simplicity  of  equipment,  low   cost  of  operation  and  low  solvent  consumption,  as  well  as  the  speed   of   separation.   The   disadvantage   is   that   the   resolution   is   only   moderate.    

 

5.4  Purification    

The   purification   is   the   last   step   and   consists   in   a   high-­‐resolution   separation   giving   a   single   pure   compound.   This   procedure   involves  

(43)

30 and  High  Performance  Liquid  Chromatography.  

 

5.5  Open  Column  Chromatography    

The   gravity-­‐driven   open   column   chromatography   method   is   still   widely  used  in  natural  product  chemistry,  as  it  reprsents  a  rapid  and   efficent  techiques  to  obtain  pure  compouds.  The  separation  is  based   on   differential   partitioning   between   the   mobile   and   stationary   phases.  Subtle  differences  in  a  compound's  partition  coefficient  result   in   differential   retention   on   the   stationary   phase   and   thus   changing   the  separation.  The  main  advantage  of  column  chromatography  is  the   relatively   low   cost   and   disposability   of   the  stationary   phase  used   in   the  process.  The  most  used  stationary  phase  is  silica  gel.  The  chemical   nature  of  the  surface  of  silica  gel  consists  of  exposed  silanol  groups.   These  hydroxyl  groups  are  the  active  centers  and  potentially  can  form   strong   hydrogen   bonds   with   compounds   being   chromatographed.   Thus,   in   general,   the   stronger   the   hydrogen-­‐bonding   potential   of   a   compound,  the  stronger  it  will  be  retained  by  silica  gel,  so  that  polar   compounds   are   strongly   adsorbed,   while   non-­‐polar   molecules   are   poorly   or   non-­‐retained   on   silica   gel.   Other   stationary   phases   are   aluminium  oxide,  reversed  phase  (RP)  and  Sephadex.    

Riferimenti

Documenti correlati

Doch neben der gewohnten Kritik Hegels an den Philosophien, die sich auf das unmittelbare Wissen berufen, enthält das Vorwort Gedanken zur historischen Beziehung zwischen der

Come sappiamo, per Stirner, tutto ciò vale, ad esempio, per il concetto di «uomo»: quest’«uomo» – che con le sue universali determinazioni si pretenderebbe di scoprire

Co- herently, shifting the focus on the price dynamics, we show that, if traders’ memory is homogeneous across the population and is long enough, the price of the risky

Le grottesche nel Corridoio di Levante della Galleria degli Uffizi, ALINEA, Firenze, 2010.

The failure of all our disk models consisting of a homogeneous, optically thick disk (models A1 and B1) or a disk consisting of a narrow inner rim, a shadowed region, and an outer

Il modello monistico, tramite l’istituzione del comitato per il controllo sulla gestione che si colloca in posizione apicale nell’intera filiera dei controlli e

Nella prima parte di questo capitolo saranno illustrate le tecnologie hardware utilizzate per la realizzazione del progetto, Raspberry Pi, scelto come piattaforma hardware a basso

L’efficacia percentuale media osservata nelle diverse strategie poste a confronto è riportata in figura 1 mentre in tabella 2 sono riportate la densità media di