• Non ci sono risultati.

K- absorption on two nucleons and ppK- bound state search in the σ0p final state

N/A
N/A
Protected

Academic year: 2021

Condividi "K- absorption on two nucleons and ppK- bound state search in the σ0p final state"

Copied!
6
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

K

absorption

on

two

nucleons

and

ppK

bound

state

search

in

the



0

p final

state

O. Vázquez Doce

a

,

b

,

,

L. Fabbietti

a

,

b

,

M. Cargnelli

c

,

C. Curceanu

d

,

J. Marton

c

,

K. Piscicchia

d

,

e

,

A. Scordo

d

,

D. Sirghi

d

,

I. Tucakovic

d

,

S. Wycech

f

,

J. Zmeskal

c

,

A. Anastasi

d

,

g

,

F. Curciarello

g

,

h

,

i

,

E. Czerwinski

j

,

W. Krzemien

f

,

G. Mandaglio

g

,

k

,

M. Martini

d

,

l

,

P. Moskal

j

,

V. Patera

m

,

n

,

E. Pérez del Rio

d

,

M. Silarski

d

aExcellenceCluster‘OriginandStructureoftheUniverse’,85748Garching,Germany bPhysikDepartmentE12,TechnischeUniversitätMünchen,85748Garching,Germany cStefan-Meyer-InstitutfürSubatomarePhysik,1090Wien,Austria

dINFN,LaboratoriNazionalidiFrascati,00044Frascati,Italy eMuseoStoricodellaFisicaeCentroStudieRicercheEnricoFermi,Italy fNationalCentreforNuclearResearch,00681Warsaw,Poland gDipartimentoM.I.F.T.dell’UniversitàdiMessina,98166Messina,Italy hNovosibirskStateUniversity,630090Novosibirsk,Russia

iINFNSezioneCatania,95129Catania,Italy

jInstituteofPhysics,JagiellonianUniversity,30-059Cracow,Poland kINFNGruppocollegatodiMessina,98166Messina,Italy

lDipartimentodiScienzeeTecnologieapplicate,Università‘GuglielmoMarconi’,00193Roma,Italy mDipartimentodiScienzediBaseeApplicateperl’Ingegneria,Università‘Sapienza’,00161Roma,Italy nINFNSezionediRoma,00185Roma,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received17November2015 Receivedinrevisedform21April2016 Accepted1May2016

Availableonline4May2016 Editor:V.Metag

We reportthe measurementofK− absorption processesinthe 0p finalstateandthe firstexclusive

measurementofthe twonucleonabsorption (2NA)withthe KLOEdetector.The 2NAprocesswithout furtherinteractionsisfoundtobe9%ofthesumofallothercontributingprocesses,includingabsorption onthreeandmorenucleonsor2NAfollowedbyfinalstateinteractionswiththeresidualnucleons.We alsodetermine thepossible contributionofthe ppK−boundstate tothe0p finalstate. Theyieldof ppK−/K−stopisfoundtobe(0.044±0.009stat+0.004

−0.005syst)·10−2butitsstatisticalsignificancebasedonan

F-testisonly1

σ

.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ThestudyoftheK-nucleus

¯

interactionatlowenergiesisof in-terest not only for quantifying the meson–baryon potential with strangecontent [1],butalsobecauseofitsimpact onmodels de-scribing the structure of neutron stars (NS) [2]. The K-nucleus

¯

potentialisattractive,astheorypredicts

[3]

andkaonicatoms con-firm

[4]

,andthisfactleadstotheformulationofhypothesesabout antikaon condensates inside the dense interior of neutron stars. Althoughrecently measured heavy NS [5]constrain the equation of state of the latter as being rather stiff andhence degrees of

*

Correspondingauthor.

E-mailaddress:oton.vazquez.doce@cern.ch(O. Vázquez Doce).

freedomotherthanneutronsaredisfavouredandtheoretical calcu-lations aboutnuclear systemswithhighmultiplicity ofantikaons present upper limitsthat disfavour the appearance ofa conden-sate

[6]

,experimentalstudiesoftheantikaonbehaviourinnuclear matter are needed. The studyof antikaons production in heavy-ion reactions at moderate energies (EKIN

GeV), with maximal

reachedbaryondensitiesof

ρ

≈ (

3–4

)

·

ρ

0(with

ρ

0beingthe

nor-mal nuclear matter density) was carried out to find evidence of a strong attractivepotential betweenantikaons within dense nu-clear matter [7].However, the statistics collected so far [8]does not allow forany conclusive statement about the role played by kaonswithindensenuclearmatter.Inthiscontextitiscrucialthat thetheoreticalmodelsusedtointerpretthedataproperlyinclude both the ratherlarge cross-sectionsfor antikaon absorption pro-cessesonnucleonsandthepresenceofthe

(

1405

)

resonance

[1]

.

http://dx.doi.org/10.1016/j.physletb.2016.05.001

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Indeed,anantikaon producedwithin nuclearmatter canundergo

absorption upon one or more nucleons andthe measurement of

suchprocessesisnotyetexhaustive,evenatnormalnuclear densi-ties

[9,10]

.Absorptionprocessesalsoplayanimportantroleinthe understandingofkaonicatoms,whereasubstantialmulti-nucleon componentis put forward by some theoretical models [11]. The

(

1405

)

link to the antikaon–nucleon interaction resides in the factthattheorydescribesthisresonanceasgenerateddynamically fromthecouplingoftheK–N

¯

andthe



π

channels

[12]

.Hence the

(

1405

)

canbeseen,atleastpartially,asaK–N

¯

boundstate. Despiteofseveralexperimentalmeasurements

[13]

,not eventhe vacuumpropertiesofthe

(

1405

)

areyetpinneddownprecisely andthose canalso be modified at finitebaryonic densities,with majorimplicationsfortheK dynamics

¯

inthemedium.

Following the line of thought employed to interpret the

(

1405

)

, one or more nucleons could be kept together by the strongattractive interactionbetweenantikaonsandnucleons,and then so-calledkaonic bound states asppK− or ppnK− might be formed. The observation of such states and the measurement of their binding energies and widths would provide a quantitative measurementoftheK-nucleon

¯

interactioninvacuum,providingan importantreferencefortheinvestigationofthein-medium proper-tiesofK.

¯

Forthedi-baryonickaonicboundstateppK−,theoretical predictions deliver a wide range of binding energies andwidths

[14]andexperimentalresultsarecontradictory

[15]

.Forthesearch ofsuchstatesinK−-absorptionexperiments,thecompeting multi-nucleonicabsorptionplaysafundamentalrole.

Thiswork focuseson the analysis ofthe



0p finalstate

pro-duced in absorption processes of K− on two or more nucleons

and the search for a signature of the pp K

→ 

0

+

p kaonic

bound state. The chosen



0p final state is free from the am-biguities present in the analysis of the



p state considered in previous works[10]. Moreover, thisstudyrepresentsthe first at-temptofcombiningaquantitativeunderstandingoftheabsorption processesandcontributingbackgroundsourceswiththetestof dif-ferenthypothesesfortheppK−boundstateproperties.

2.



0p selectionandinterpretation

Theanalyseddatacorrespondsto atotalintegratedluminosity of1

.

74 fb−1 collected in2004–2005 withtheKLOE detector[16]

locatedattheDA



NEe+e−collider

[17]

.There,

φ

mesonsare pro-ducednearlyatrest,providinganalmostmonochromaticsourceof K−withamomentumof

127 MeV

/

c.

The data here presented was taken by the KLOE

Collabora-tion and provided to the authors for an independent analysis. TheKLOE detector consistsofa large acceptance cylindricaldrift

chamber (DC) of 3 m length and2 m radius surrounded by an

electromagneticcalorimeter (EMC) inside an axial magnetic field of 0.52 T. The DC provides a spatial resolution of 150 μm and 2 mmintheradialandlongitudinalcoordinates,respectively,anda transversemomentumresolutionof

σ

pT

/

pT

0

.

4% forlargeangle tracks.The EMCiscomposedofbarrelandend-capmodules cov-ering98%of thesolid anglewithenergy andtimeresolutions of

σ

E/E

=

5

.

7%

/

E

(

GeV

)

and

σ

t

=

54 ps

/

E

(

GeV

)

,respectively.The DCentrancewalliscomposed of750 μmcarbonfibrewithinner andouter layersof aluminiumof100 μm thickness. Thenumber ofstoppedK− in thiswall iscalculatedby combiningthe exper-imental K+ tagging efficiency, the luminosity information and a Monte Carlo simulation to determine the rate of K− stopped in the DCwall. The decay nearly at restof the

φ

meson allows to tag K− events by the identification of a K+ track in the oppo-sitehemisphereoftheDC.Theextractedtotalnumberofstopped K− isequalto

(

3

.

25

±

0

.

06

)

·

108.Thisvalueisusedtonormalise themeasured yieldsofthedifferentabsorptionprocesses.Bothin

Fig. 1. (Colour online.)invariantmassdistribution.Theblacksymbolsrepresent

theexperimentaldata,theblueandtheredhistogramsarethecontributionfrom themachinebackgroundandeventsthatcontaina0p inthefinalstate, respec-tively.Thegrayhistogramshowsthesimulated0 signalandthegreenonethe overallfittothedata(seetextfordetails).

flightandatrestK−absorptionscanoccurandaweightof50%is assignedtoeachprocessforthenormalisation.

Thestarting pointfortheselection ofK− absorptionprocesses leading to



0p final state isthe identification of a

(

1116

)

hy-peron through its decay into protons and negative pions (BR

=

63.8%). Proton and pion track candidates are selected via dE/dx

measurement in the DC. For each proton and pion candidate a

minimum tracklength of atleast 30 and50 cm is required, re-spectively. The track length must also be larger than 50% ofthe expected length value calculated by extrapolating the measured

momentum at the DC entrance. Additionally, proton candidates

musthaveamomentumhigherthan170 MeV/c.Theseselections

aimto improvethepurityofthe particleidentification, minimise

the pion contamination in the proton sample and minimise the

contributionfromlowmomentumtracksthatareemittedparallel totheDCwiresandreachtheEMCbarrel.ThereconstructedMpπ

invariant mass showsa meanvalue of 1115

.

753

±

0

.

002 MeV

/

c2 forthemass,witharesolutionof

σ

=

0

.

5 MeV

/

c2,well in agree-mentwiththePDGvalue

[18]

.The



candidatesareselectedusing thefollowingcut:1112

<

Mpπ

<

1118 MeV

/

c2.

Acommonvertexbetweenthe



candidateandan additional

protontrackis thensearched for.The obtainedresolutiononthe radialcoordinate(

ρ

p)forthe



p vertexis12 mm,andthis

topo-logicalvariableisusedtoselecttheK−absorptionprocessesinside theDCwall.Thecontaminationofeventsofabsorptionsinthegas volume oftheDCis below 1%. The



p invariantmass resolution isevaluatedwithaphasespaceMonteCarlosimulationwherethe

protonand



momentaarevaried from100 to700 MeV/candis

foundtobeequalto1

.

1 MeV

/

c2.Thecontaminationtotheproton sample forthe



p final state duetoheavierparticles (deuterons or tritons)is estimatedto be lessthan 2% by MC simulations of absorptioneventswith



d and



t finalstate.

The



0 candidates are identified through their decay into



γ

pairs. Afterthe reconstruction of a



p pair, the photon se-lectioniscarriedoutviaitsidentificationintheEMC.Photon can-didatesare selected byapplying acut on thedifference between

the EMC time measurement and the expected time of arrival of

thephotonwithin

1

.

2

<

t

<

1

.

8 ns.Theresulting



γ

invariant massdistributionisshownin

Fig. 1

,wherethe



0 signalisvisible aboveabackgrounddistribution.

The following kinematic distributions are considered simulta-neouslyinaglobalfittoextract thecontributionsofthedifferent absorptionprocesses:the



0p invariantmass,therelativeangleof the



0 andprotoninthelaboratorysystemcos

0p

)

,the



0and

theprotonmomenta.Theprocessesthataretakenintoaccountin thefitoftheexperimentaldataare:

(3)

1. K−A

→ 

0-

(

π

)

p spec(A),

2. K−pp

→ 

0-p (2NA), 3. K−ppn

→ 

0-p-n (3NA),

4. K−ppnn

→ 

0-p-n-n (4NA).

This list includes the K− absorption on two nucleons with and without final state interaction for the



0p state and processes involvingmorethan two nucleonsin theinitial state.These con-tributionsare eitherextractedfromexperimentaldatasamplesor modelled via simulations and digitised. Nevertheless, the back-groundcontributions mustbe determinedandsubtracted priorto theglobalfit.

Twokindsofbackgroundcontribute totheanalysed



0p final state:themachine backgroundandthe eventswith



π

0p inthe

final state. Both are quantified using experimental data.The ma-chine background originates from spurious hitsin the EMC that enter the photon time coincidence window. It is emulated by a sidebandanalysis, selectingeventswithEMChitsoutsidethe co-incidence window (

4

<

t

<

2 ns and 3

<

t

<

8

.

2 ns). The



π

0p backgroundoriginateseitherfromasinglenucleon

absorp-tion followed by the creation of a



π

0 or a



0

π

0 pair. In the

first casealsoa rescatteringof the

/

π

0 withone orseveral of

the spectator nucleons could occur while in second case the



0

hypeonundergoesaninternalconversionprocessonaresidual nu-cleon(



N

→ 

N)leadingtoa



π

0p finalstate.Eventswithtwo

photon candidates within the selected time window andwith a

γ γ

invariant mass around the

π

0 nominalmass (3

σ

of the

ex-perimentalresolution of 17 MeV

/

c2) are selected to emulatethe



π

0p background.Both experimental samples are used together

witha simulationof the



0 signal to fit the



-photon invariant massdistributioninordertoextractthemachineand



π

0p

back-groundcontributions. Events originatingfrom the



0

π

0

produc-tion aftera single nucleon absorption followedby the emission of a proton via the final state interaction of the



0 or

π

0

con-tributeto the low energy part ofour spectra witha contamina-tion of 3

±

2%. Full scale simulations of the



0 reconstruction

in the



γ

channel lead to a mass mean value and

σ

of 1189

and14

.

5 MeV

/

c2,respectively. Themean value isslightlyshifted withrespectto the



0 nominalmassreportedin

[18]

becauseof thesmallbiasintroducedbythereconstruction.Thissimulationis usedtofitthe



0signalonthe



γ

distributionshownin

Fig. 1

.

Fig. 1 showsthe results of the fit to the



γ

invariant mass,

with the background and signal components. The black symbols

refer to the experimental data, the blue histogram to the fit-ted machine background, the red histogram to the



π

0p

back-ground, the gray one to the simulated



0 signal and the green histogram to the sum of all fit contributions. The errors shown forthebackgrounddistributionsrepresentthestatisticalerrorsof the fit. To enhance the purity of the experimental data for the following analysissteps, a cut onthe



γ

invariant massaround thenominal



0 mass isapplied.Theapplied cut,1150

<

Mγ

<

1235 MeV

/

c2,corresponds to 3

σ

ofthe experimental resolution,

andis verified with MC simulation. The contribution ofthe ma-chine and



π

0p backgrounds within the selected



γ

invariant

massis

(

14

.

6

±

0

.

8

)

% and

(

26

.

1

±

2

.

7

)

%,respectively.Themachine backgroundis directlysubtracted from theexperimental data for each kinematic distributions used forthe globalfit. The fit error is added to the statistical errors of the experimental data after the backgroundsubtraction. The



π

0p backgroundis considered

intheglobalfitusingtheobtainedyieldasastartingvalue. 3. Determinationoftheabsorptionprocesses

The cocktail of processes considered for the global fit is ob-tainedasfollows.Process 1corresponds tothe uncorrelated

pro-ductionofaprotonfromthefragmentationoftheresidualnucleus together witha



0 productionfromtheKabsorption.This

con-tributionisobtainedfromexperimentaldatacontaining



–triton– proton,



–deuteron–protonor



–proton–proton inthefinalstate toemulatethecasewheretheselectedprotonisbarelycorrelated withthe



.

Forthesimulationoftheabsorptionprocesses2–4a12Ctarget is considered. The Fermi momentum of the interacting nucleons insidethe12C,theinitialmomentumoftheabsorbedK−andthe mass difference betweenthe initial and residual nucleiare used in the calculation of the eventkinematic. The Fermi momentum distribution of the nucleons in 27Al target is only 9% higher in

comparisonwith12C.Themassdifferenceoftheinitialand

resid-ualnucleivariesonlyby0.3%whenconsidering27Alincomparison

with12Candthisvalue islower thantheexperimentalresolution

of the



0p invariant mass. For all the considered reactions, the

emitted nucleons are required to have a total momentum above

the12CFermimomentumtobeabletoleavethenucleus.

Forthe 2NA (process2),two casesare studied.One including thefinal state interaction(2NA-FSI)ofthe



0 orprotonwiththe residualnucleus, andthesecondassuming noFSIatall(2NA-QF). In the caseof the FSI-free productionof the



0p pair, only the fragmentationoftheresidualnucleusisconsidered.Thefollowing cases for the fragmentation for the spectator nucleus have been consideredinthesimulations:K−

+

12C

→ 

0p

(

10Be

,

4He

+

4He

+

2n

,

4He

+

2p

+

4n

,

4p

+

6n

)

.Therelativeamplitudes ofthese con-tributionsareleftfreeintheglobalfitandtheyareclearlyvisible inthe



0p invariantmassdistributionasalowmasstail.Allother kinematic variablesstay unaffectedby the fragmentationprocess. TheFSIforthe



0 andpisimplementedbyallowingtheoutgoing protonor



0 toscatterelasticallywiththeresidualnucleons.The

nucleon momentum is sampled accordingto the Fermi

distribu-tion andthescatteringprobability isassumedto beequalto50% for both thecases ofone andtwo collisions. The modified kine-matic variables of the



0 or proton are then considered in the

simulatedeventsusedintheglobalfit.Amoresophisticated prop-agationofthehitprobabilitywasinvestigated

[19]

,buttheresults shownomajordifferencesintheresultingkinematicdistributions. This motivates the simplification. Reactions resulting into a



0n final state followed by a rescattering np

np have also investi-gated. Theyresultin thesamekinematicdistributions mentioned abovemodulusthesmalln-pmassdifference.

Theprocesses1–4togetherwiththe



π

0p backgroundsample

are usedforthe globalfit.Thestarting value forthe



π

0p yield

is extractedfromthefitto the



γ

invariant massbutthis com-ponent is free to varywithin 2

σ

in theglobal fit.Panels (a)–(d) in

Fig. 2

showtheexperimentaldistributionsforthe



0p invariant mass, the cos

0p

)

, and the



0 andproton momenta, together

with the fit results.The blackpoints representthe experimental data after the subtraction of the machine background with the systematicerrors shownby boxes. The grayfilledhistogram rep-resents the



π

0p background. The cyan distributions show the

sum of the 4NA simulation together with the uncorrelated pro-ductionofthe



0p finalstate.Thebluedistributionrepresentsthe 3NAandthemagentahistogramthe2NA-FSI.Thereddistribution showsthe2NA-QF.Thegraylineistheresultingtotalfit.Foreach fitted distribution the light errorband corresponds to the statis-ticalerrorresultingfromthefit,whilethedarkerband visualises thesymmetrised systematicerror.

The systematicerrorsforthe experimental andsimulated

dis-tributions are obtainedby varying the minimum momentum

re-quired for the proton track selection, the time window for the selectionofsignalandmachinebackground,theyieldsofthe ma-chine backgrounddistributionsandtheselection ofthe



0 mass.

(4)

Fig. 2. (Colour online.)Experimentaldistributionsofthe0p invariantmass,cos(θ0p),0momentumandprotonmomentumtogetherwiththeresultsoftheglobalfit.

Theexperimentaldataafterthesubtractionofthemachinebackgroundareshownbytheblackcircles,thesystematicerrorsarerepresentedbytheboxesandthecoloured histogramscorrespondtothefittedsignaldistributionswherethelight-colouredbandsshowthefiterrorsandthedarkerbandsrepresentthesymmetrisedsystematicerrors. Thegraylineshows thetotalfitdistributions(seetextfordetails).

The obtainedresolution for the



γ

invariant mass and



0 mo-mentumisequalto3.5 MeV/c2 and6 MeV/c,respectively.

Theminimummomentumfortheprotontracksisvariedwithin 10 MeV/c of the central value of 170 MeV/c. Variations of 15% aretestedforthetimewindowsusedtoselectthemachine back-ground,the photon signaland

π

0 background selection

indepen-dently.Asforthemachinebackgroundsubtraction, thesystematic erroris evaluated by repeating thefit allowing variations within 1

σ

of theinitial



0 mass fit parameters. Forwhat concerns the simulateddistributions,thesystematicerrorsarealsoevaluatedfor theminimummomentumofthenucleonsrequiredtoexitthe nu-cleus in the absorption simulation and the probability of having morethanonecollisionwhensimulatingtheFSIwiththeresidual nucleusfollowinga2NAprocess.

The minimum momentum for the nucleons is sampled

ac-cording to the Fermi momentum distribution between 170 and

220 MeV/c.The systematicerroris evaluated by varyingthe two boundariesby15%inbothdirections.Forthesystematicvariation ofthe probabilityofhavingone ortwo collisionsfortheFSI pro-cesstwocases,40/60%and60/40%,areevaluatedrespectively.

The final fit results deliver the contribution of the different channelsto the analysed



0p final state. The best fit delivers a

χ

2

/

ndf of 0

.

85. The emission rates extracted from the fit are

normalised to the total number of stopped antikaons, as

sum-marisedin

Table 1

.Thefitresultslead tothefirst measurements of the genuine 2NA-QF for the final state



0p in reactions of

stoppedK−ontargetsof12C and27Al.Thiscontributionisfound tobeonly9% ofthetotal absorptioncross-sectionincluding2NA, 3NA and4NA processeswith alsothe contribution ofthe uncor-related background leading to a



0p final state taken into ac-count.

Table 1

Productionprobabilityofthe 0p finalstatefordifferentintermediateprocesses normalisedtothenumberofstoppedK−intheDCwall.Thestatisticaland system-aticerrorsareshownaswell.“Tot2NA”standsforthesumofthe2NA-QFandthe 2NA-FSIprocesses.“Tot3body”standsforthesumof2NA-FSIand3NAprocesses.

yield/K−stop·10−2 σstat·10−2 σsyst·10−2

2NA-QF 0.127 ±0.019 +00..004008 2NA-FSI 0.272 ±0.028 +00..022023 Tot 2NA 0.399 ±0.033 +0.023 −0.032 3NA 0.274 ±0.069 +0.044 −0.021 Tot 3 body 0.546 ±0.074 +0.048 −0.033 4NA+bkg. 0.773 ±0.053 +00..025076

Similar measurements have been carried out and reported in

[9,20].In

[9]

stoppedK−ina4Hetargethavebeenconsideredand

theintegratedcontributiontothefinal state



0

()

withnopion

emission was extracted and found to be equal to 0

.

117

±

0

.

024 perstoppedK−.Thislargenumberisduetothe



contamination in the sample and to the fact that absorptions on p-n pairs are included.Thedatain

[20]

show themeasurementofthe



−p fi-nal state from a 13C target. There, a yield of 0

.

46

±

0

.

09

(

stat

)

±

0

.

02

(

syst

)

·

10−2perstoppedK−isattributed totheK−absorption onap-npair.

Even if the employed simulation model is rather simplified, the treatment of 2NA-QF is satisfactory forour purpose and the signature of thiscomponent well distinguishable from the other contributions,especiallyinthe



0p invariantmassdistribution.On theother hand,acleardisentanglementof the3NAprocess from the2NAfollowedbyFSIisdifficult,duetotheoverlapofthe rel-evant kinematic variables over a wide rangeof the phase space.

(5)

Fig. 3. (Colour online.)0p invariantmassandprotonmomentumdistributionstogetherwiththeresultsoftheglobalfitincludingtheppK.Thedifferentcontributionsare

labeledasinFig. 2andthegreenhistogramsrepresenttheppK−signal.

Two tests were performed that demonstrate that both physical

processes should be included in the fit. First, if the 3NA contri-butionisswitchedoffa variationofthereduced

χ

2 of0.19from

0.85(the best fit) to 1.05 is observed. Such effect is mainly due to the fact that the



0 andthe proton momentum distributions arenolongerwelldescribed.Theotherkinematicdistributionsare lesssensitivetothiscontribution.Inparticular,the

χ

2 calculated

forthefitresultoftheprotonmomentumdistributiononlyis de-terioratedby 47%when excludingthe 3NAcontributionfromthe fit.Asasecond limitingcasethe2NA

+

FSIcontributionwas dis-carded,leadingtoareduced

χ

2 of1.18.Inthiscasethecos

0p

)

and



0p invariantmassdistributionsarenotproperlyreproduced.

The uncorrelatedemission ofthe



0p isalso not distinguish-ablefromthe4NAprocessandhencethesetwocontributionsare addedup.

4. SearchfortheppK−boundstatesignal

The last step of the analysis consists in the search of the ppK− bound state produced in K− interactions with nuclear tar-gets,decaying intoa



0p pair.The ppK− are simulatedsimilarly to the2NA-QF process butsamplingthe massof the ppK− state withaBreit–Wignerdistribution,ratherthantheFermimomenta of the two nucleons in the initial state. The event kinematic is

implemented by imposing the momentum conservation of the

ppK−-residualnucleussystem.Differentvaluesforthebinding en-ergyandwidth varyingwithin 15–75 MeV/c2 and30–70 MeV/c2 insteps of15and20 MeV/c2, respectively,are tested. Thisrange

is selected according to theoretical predictions [14] and taking intoaccounttheexperimentalresolution.Theglobalfitisrepeated addingtheppK−statetotheprocesses1–4.Thebestfit(

χ

2

/

ndf

=

0

.

807) isobtainedforappK−candidatewithabindingenergyof 45 MeV/c2 anda width of30 MeV/c2,respectively. Fig. 3 shows

theresults ofthebest fitforthe



0p invariantmass andproton momentumdistributionswheretheppK−boundstatecontribution isshownin green.The resultingyield normalisedto the number ofstoppedK−isppK−

/

K−stop

= (

0

.

044

±

0

.

009stat+00..004005syst

)

·

10−2. Fig. 4showstheyieldresultsfromthetwobestfitsofthebound statewitha widthof30 MeV/c2 andabinding energyof45and

60 MeV/c2, respectively, with statisticalerrors calculated by

MI-NOSat1

σ

(black line),2

σ

(blue boxes)and3

σ

(redboxes). The inclusionof theppK− boundstate to theglobalfitintroduces an additional parameter andthis improves the fit quality. Consider-ing also that the improvement of the

χ

2 is only marginal, an

F-Testiscarriedouttocomparethetwomodels:withandwithout ppK− bound state. This test consists in evaluating the statistical significance ofthe model withthe ppK−,accounting forthe

ad-Fig. 4. (Colour online.)ppK−yieldnormalisedtothenumberofstoppedK−forthe

twobestfitscorrespondingtobindingenergiesof45and60 MeV/c2andwidthof 30 MeV/c2fortheppKboundstate.Theerrorsareonlystatisticalcalculatedby

MINOSat1(blackline),2(blueboxes)and3(redboxes)σ.

Fig. 5. (Colour online.)p-ValueresultingfromtheF-testthatcomparesthetwo

fit-tinghypotheses.Horizontallinesshowingupto3σaredrawn.

ditionalfitparameter, by comparingtheresiduals andnumberof degreesoffreedom oftwomodels.Theresulting F valuereadsas follows:

F

=

(

S S E1

S S E2

)/(

ndf1

ndf2

)

S S E2

/

ndf2

(1)

withS S E beingthequadraticsumoftheresidualsbinperbinand ndf thenumberofdegreesoffreedom ofeachmodel.Theglobal p-value associatedto theobtained F valueandfromthenumber of parameters ineach model is shownin Fig. 5 for bound state simulationswithawidthof30,50and70 MeV/c2asafunctionof

thebindingenergy.Onecanseethateventhebestfitcorresponds toap-valueequalto0

.

25 andhencetoasignificanceof1

σ

.

Thisimpliesthatalthoughthefitfavoursthepresenceofan ad-ditionalcomponentthatcanbeparametrisedwithaBreit–Wigner

(6)

distributionwithacertain massandwidth, its significanceisnot sufficienttoclaimtheobservationoftheboundstate.Thepresent datalacks ofsensitivityforinvestigatingtheexistenceofabound statewithalargerbindingenergyand/orwidththanthose consid-eredinthedescribedanalysis.

5. Summary

WehavepresentedtheanalysisoftheK−absorptionprocesses leadingtothe



0p finalstatemeasuredwiththeKLOEdetector.It

isshownthat thefullkinematics ofthisfinal state canbe recon-structed anda globalfitof thekinematic variablesallows to pin down quantitatively the different contributingprocesses. A cock-tail of processes including simulations of the K− absorption on twoormorenucleonswithorwithoutfinalstateinteractionsand backgroundprocessesestimatedwithexperimentaldataisusedfor theglobalfit.The absorptionontwonucleons withoutfinalstate interaction (2NA-QF) is isolated and the yield normalised to the number of absorbed K− is presented in this work for the first time. It is shown that it is difficult to distinguish between the

case where K− are absorbed on three nucleons (3NA) or when

thetwo-nucleonabsorptionisfollowedbyafinalstateinteraction (2NA-FSI).Forthispurposethedatashouldbefurtherinterpreted withthehelpoftheoreticalcalculations.The2NA-QFyieldisfound tobeabout20%ofthesumofthe3NA and2NA-FSIprocesses.If oneconsidersthe ratioofthe2NA-QFtoall othersimulated pro-cessesavalueofabout9%isobtained.Hence,weconcludethatthe contributionofthe2NA-QFprocessesforK−momentalowerthan 120 MeV/cismuchsmallerincomparisonwithotherprocesses.

Asecondfitoftheexperimentaldataincludingthecontribution ofa ppK− bound state decayinginto a



0p final state iscarried out. A systematic scan of possible binding energies and widths varying within 15–75 MeV/c2 and30–70 MeV/c2,respectively, is performedandthebestvalue ofthetotalreduced

χ

2 isachieved

forthehypothesisofappK−withabindingenergyof45 MeV/c2

andawidthof30 MeV/c2.ThecorrespondingppK−yieldextracted fromthefitisppK−

/

K−stop

= (

0

.

044

±

0

.

009stat+00..004005syst

)

·

10−2.An F-test is conducted to compare the simulation models withand withouttheppK− signalandtoextractthesignificanceofthe re-sult. A significance of only 1

σ

is obtained for the ppK− yield result.Thisshowsthatalthoughthemeasuredspectraare compat-iblewiththehypothesisofacontributionofthechannel pp K



0

+

p,thesignificanceoftheresultisnotsufficienttoclaimthe observationofthisstate.

Acknowledgements

Weacknowledge theKLOECollaboration fortheir supportand forhavingprovidedusthedataandthetoolstoperformthe anal-ysis presentedinthispaper.

References

[1]D.Cabrera,etal.,Phys.Rev.C90(2014)0552017.

[2]A.E.Nelson,D.B.Kaplan,Phys.Lett.B192(1987)193.

[3]C.Fuchs,Prog.Part.Nucl.Phys.56(2006)1,nucl-th/0507017.

[4]M.Bazzi,etal.,SIDDHARTAColl.,Phys.Lett.B704(2011)113.

[5]P.Demorest,etal.,Nature467(2010)1081; F.Özel,etal.,Astrophys.J.757(2012)55.

[6]D.Gazda,E.Friedman,A.Gal,J.Mares,Phys.Rev.C77(2008)045206.

[7]A.Forster,etal.,Phys.Rev.Lett.91(2003)152301; P.Crochet,etal.,Phys.Lett.B486(2000)6; G.Agakishiev,etal.,Phys.Rev.C82(2010)044907.

[8]V.Zinyuk,etal.,FOPIColl.,Phys.Rev.C90(2014)025210.

[9]P.A.Katz,etal.,Phys.Rev.D1(1970)1267.

[10]T.Suzuki,etal.,Mod.Phys.Lett.A23(2008)2520.

[11]A.Gal,Nucl.Phys.A914(2013)270.

[12]N.Kaiser,P.B.Siegel,W.Weise,Nucl.Phys.A594(1995)325; E.Oset,A.Ramos,Nucl.Phys.A635(1998)99;

B.Borasoy,U.G.Meißner,R.Nißler,Phys.Rev.C74(2006)055201; T.Hyodo,W.Weise,Phys.Rev.C77(2008)035204.

[13]R.J.Hemingway,Nucl.Phys.B253(1985)742,CERN-EP/84-113; I.Zychor,etal.,ANKEColl.,Phys.Lett.B660(2008)167; G.Agakishiev,etal.,HADESColl.,Phys.Rev.C87(2013)025201; K.Moriya,etal.,Phys.Rev.C87(2013)3.

[14]T.Yamazaki,Y.Akaishi,Phys.Rev.C76(2007)045201; A.Doté,T.Hyodo,W.Weise,Phys.Rev.C79(2009)014003; S.Wycech,A.M.Green,Phys.Rev.C79(2009)014001; N.Barnea,A.Gal,E.Z.Liverts,Phys.Lett.B712(2012)132; N.V.Shevchenko,A.Gal,J.Mares,Phys.Rev.Lett.98(2007)082301; Y.Ikeda,T.Sato,Phys.Rev.C79(2009)035201;

E.Oset,etal.,Nucl.Phys.A881(2012)127.

[15]M.Agnello,etal.,FINUDAColl.,Phys.Rev.Lett.94(2005)212303; T.Yamazaki,etal.,Phys.Rev.Lett.104(2010)132502;

G.Agakishiev,etal.,HADESColl.,Phys.Lett.B742(2015)242; Y.Ichikawa,etal.,Prog.Theor.Exp.Phys.021D01(2015).

[16]F.Bossi,etal.,Riv.NuovoCimento31 (10)(2008).

[17]A.Gallo,etal.,Conf.Proc.C060626(2006)604.

[18]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001.

[19]V.K.Magas,E.Oset,A.Ramos,Phys.Rev.C74(2006)025206.

Figura

Fig. 1. (Colour online.)  γ invariant mass distribution. The black symbols represent
Fig. 2. (Colour online.) Experimental distributions of the  0 p invariant mass, cos (θ  0 p ) ,  0 momentum and proton momentum together with the results of the global fit.
Fig. 3. (Colour online.)  0 p invariant mass and proton momentum distributions together with the results of the global fit including the ppK −

Riferimenti

Documenti correlati

re verso la Toscana, dove poi incontrò la morte. Il contrasto con Matilde fu tale da permettere il sorgere di accuse verso la contessa di aver provocato la morte di Corrado,

Santi Albanese e Gaetano Gulino Carmen Andriani Walter Angonese Anselmi&amp;Associati Arrigoni architetti Barozzi / Veiga Gabriele Bartocci Enrico Bordogna Camillo Botticini

In this context, three main reasons have led the Italian Government to launch another regularisation procedure: firstly, the necessity to «guarantee adequate levels

Sulla base di queste premesse, rilevano innanzitutto i titoli della bibliografia dedicati all’analisi della base giuridica di un diritto privato europeo, individuata

Although the dimin- ished state 4 respiration during succinate oxidation in muscle mitochondria from semistarved animals might re£ect in- creased mitochondrial energy coupling [25]

Abbiamo osservato che in alcuni casi la traduzione italiana riproduce l’ordi- ne delle parole della lingua di partenza, mantenendone la struttura informativa, mentre altre volte

Here, we set out to determine (i) lipid composition dynamics in single oocytes and preimplantation embryos by high mass resolution desorption electrospray ionization