• Non ci sono risultati.

CZTS layers for solar cells by an electrodeposition-annealing route

N/A
N/A
Protected

Academic year: 2021

Condividi "CZTS layers for solar cells by an electrodeposition-annealing route"

Copied!
5
0
0

Testo completo

(1)

CZTS

layers

for

solar

cells

by

an

electrodeposition-annealing

route

Md

Ibrahim

Khalil,

Roberto

Bernasconi,

Luca

Magagnin

*

Dip.Chimica,MaterialieIng.ChimicaGiulioNatta,PolitecnicodiMilano,ViaMancinelli7,20131Milano,Italy

Articlehistory:

Received8April2014

Receivedinrevisedform3September2014

Accepted3September2014

Availableonline6September2014

1.Introduction

Inrecent times abundant,inexpensive andenvironmentally friendlymaterials havegotlotofattention fromresearcherfor thinfilmsolar cells.Cu2ZnSnS4 (CZTS)isa promisingabsorber

material for thin film which has all those qualities unlike its predecessorsCdTe andCu(In,Ga)Se2(CIGS), current commercial

materialforthinfilmphotovoltaicdevices.CZTShasdirectband gapenergy of 1.4–1.5eV and large absorption coefficient over 104cm1[1] aswellas theoreticalconversion efficiencyof 32%,

whichmakesitsuitablefornextgenerationthinfilmsolarcells. Severalmethodshavebeenusedtopreparethisthinfilmnamely sputtering [2–4], photochemical deposition [5], the sol-gel method [6], screen-printing [7], physical vapour deposition

[8–10],asolution-processedapproach[11–13],and electrodepo-sition[14–19].ThehighestconversionefficiencyofCZTSachieved tilldateis12.6%byWangetal.usinghydrazine-basedsolution process [13]. Through electrodeposition, the highest efficient CZTS solar cell was demonstrated by Ahmed et al. with 7.3% conversionefficiency[19].Pointtobenoted,Wangetal.achieved thehighestefficiencywhentheyaddedsulfur(S)andselenium (Se) in the precursor using hydrazine based solutions. Electrodeposition is a potentially suitable preparation method to obtain low-cost precursor films because it is inexpensive, non-vacuum, uses an environment-friendly process, produces

large deposition areas by low temperature growth. Usually electrodeposition base processes can be divided into two categories.One is atwo-stepsprocess wheremetal precursors needsulfurizationafterelectrodepositionofCu-Zn-Sn.Theother oneisasingle-stepelectrodepositionwhereCu,Zn,SnandSare directly deposited from electrolyte to form CZTS compound. However, itis very difficult todeposithomogeneousand good crystalline films from single-step electrodeposition as the reductionpotentialgapofthemetal ionsisconsiderablylarge. For this reasons, up to present, very few reports have been publishedonthisprocess[16,20].Therefore,electrodepositionof metal precursor followed by sulfurization has been preferred. Two-steps process could be accomplished in two approaches eitherbysulfurizationofsequentialelectrodepositedprecursors or sulfurizationof co-electrodeposited Cu-Zn-Sn precursors. In caseofsequentialelectrodepositionofCu-Zn-Sn,therearesome issues like (i) poor adhesion of Sn to the Mo surface [21]

(ii) morphologyofSnprecursorsarequiteporouscomparedto otherelementalprecursors(iii)volatilityofSnduring sulfuriza-tionifSnisdepositedattheuppersurface(iv)non-homogeneous nucleationofZnwhichleadstopoormorphologyofCZTSwith manysecondaryphasesaftersulfurization[22].Ontheotherside, proper complexing agents and optimized parameters are the main issues to deposit Cu-Zn-Sn simultaneously from single electrolyte.Mostofthepublishedworksonco-electrodeposition of Cu-Zn-Sn has been done using trisodium citrate as a complexingagent.Arakietal.fabricated CZTSfrom co-electro-deposited Cu-Zn-Sn precursor with 3.16% power conversion efficiency[14].Gougaudetal. demonstratedrecently theeffect

* Correspondingauthor.Tel.:+390223993124;fax:+390223993180.

(2)

oftwo complexingagents(sodiumcitrateandtartaricacid) on co-electrodepositionofCu-Zn-Snwith5.8%conversionefficiency ofCZTS[23].Scraggetal.demonstratedthefabricationofCZTS fromstackedmetalliclayerwith3.2%conversionefficiency[22]. Linet al.recentlyshowedtheoptimizedparameters (tempera-ture,time)topreheatthemetallicstackedprecursorofCu-Zn-Sn before sulfurization with conversion efficiency of 5.6% [24]. Ennaouietal.reportedthefabricationofCZTSfrom co-electro-depositedmetallicprecursorwith3.4%conversionefficiency[15]. Thisgroupusedpyrophosphatealongwithsomeother complex-ing agents to deposit Cu-Zn-Sn simultaneously from single solution. Later precursor was sulfurized by annealing using a gasmixtureofArwith5%H2Sat550Cfor2hours.Thisistheonly

report as faras our concernwhere pyrophosphate along with someothercomplexingagentswasused,evenif co-electrodepo-sitionofCu-Zn-Snfrompyrophosphateelectrolytewasdeveloped longtimeago[25].

Ourresearch introducesa novelelectrodepositionroute for the simultaneous deposition of Cu-Zn-Sn alloy from single electrolyte.Herewe usedonly pyrophosphateasa complexing agent for the co-electrodeposition of Cu-Zn-Sn. Afterwards precursorsareannealedinelementalsulfurenvironmenttoget stoichiometricCZTSfilminsteadofH2Satmospheretoavoidtoxic

environment. 2. Experimental

Electrodeposition was carried out galvanostatically in a conventional electrochemical cell assembly. Mo foil substrate (200

m

m thick from Goodfellows) with an exposed area of 2cm1cmwasusedasaworkingelectrode,agraphiteelectrode asan inertcounter electrode. Beforedeposition, Mosubstrates werecleanedinacetone,dippedin32%HClfor10minutes,distilled waterandfinallydriedunderN2atmosphere.Theelectrolyticbath

contained 0.016M CuSO4



5H2O, 0.072M ZnSO4



7H2O, 0.037M

Na2SnO3



3H2O,0.60MK4P2O7.Allthechemicalswerepurchased

fromSIGMAALDRICHandusedasreceived.ThepHofthesolution bathwas adjusted to11 by using 20% H2SO4 and 30% KOH to

stabilize the electrolyte. Electrodeposition was carried out at 5.5mA/cm2for6minutesinambienttemperaturewithamoderate

stirringforthedesiredcomposition;thehighestcathodiccurrent efficiency CE achieved on Mo was 84%. Current efficiency was calculatedonthebasisofFaraday'slawfromthemetalcontentsof deposits,asdeterminedbyEDSanalysis,asfollows:

CEð%Þ¼100ICuþIZnþISn Itot ¼ 100 2mCu ACu þ 2mZn AZn þ 4mSn ASn   Itot  F t

whereICu,IZnandISnarepartialcurrentsforcopper,zincandtin,Itot

istotalcurrent;mCu,mZnandmSnareweightsofcopper,zincandtin

deposited;ACu,AZnandASnaretheatomicweightsofmetals;Fis

theFaradayconstantandtisthedepositiontime.

Noprecipitate,e.g.tin(IV)oxides,appearedfromtheelectrolyte after two months storage at room temperature. After electro-plating,theCu-Zn-Snprecursorswereannealedat550C temper-atures for 15minutes or 2hours with different ramping rates (20C/minute or 2C/minute) with 30mg elemental sulfur environment and presence of a very small flow of N2. The

electrochemical characterization of the plating solution was performed using a Solartron analytical Modulab. Graphite was usedascounterandglassycarbon(selectedasinertmaterialfor preliminaryelectrolyteformulation andelectrochemical charac-terization)asstandardworkingelectrode,whileSCEwasusedas reference.The crystallographic phase of as deposited Cu-Zn-Sn precursorsandannealedthinfilmswasanalyzedwiththehelpof X-raydiffractometer(XRD,PhilipsX-pertMPDwithCuK

a

=1.5406

Å).Surfacemorphologyandcompositionofthefilmswerestudied by using Scanning Electron Microscopy (Model Zeiss EVO 50) equippedwithanenergydispersiveX-rayanalyzer(EDS)Oxford instrument (Model7060). Ramanspectroscopywas obtainedat roomtemperatureinairbyaLabramHR800WHoribaJobinYvon microscopespectrometer.The514.5nmlineof anAr+laserwas

usedastheexcitationsourcewiththeintensityof10mW.Glow dischargeopticalemissionspectroscopy(GDOES)wasalsocarried outusingSpectrumAnalyticGMBH(ModelGDA750analyzer) 3. ResultsandDiscussion

ThereductionpotentialoftheCu,ZnandSncationscouldbe expressedinthefollowingequations[26]:

Cu2þþ2e!Cu;E¼0:093VþRT 2Fln½Cu 2þðvs:SCEÞ Zn2þþ2e!Zn;E¼1:007VþRT 2Fln½Zn 2þðvs:SCEÞ Sn4þþ2e!Sn2þ;E¼0:096VRT2Fln Sn 2þ Sn4þ   ðvs:SCEÞ Sn2þþ2e!Sn;E¼0:384VþRT 2Fln½Sn 2þðvs:SCEÞ

Asthegapamongthereductionpotentialofcopper,zincandtin isconsiderablylarge,itisdifficulttoco-electrodepositthemfrom single electrolyte. Above equations make it clear that Zn has considerablymorenegativepotentialthanCuandSn.Inorderto reducethepotentialgapamongthethreeelements,mostofthe researchersusedtrisodiumcitrateasacomplexingagent.Inour studies we have usedpotassium pyrophosphate as complexing agent.Pyrophosphateisknowntocomplexcopperinanefficient wayoverawidepHrange,giving[CuHq(P2O7)2](6q)species[27].

AlsoZnischelatedbypyrophosphate,givingsimilarcomplexes overagoodpHrange[28].Accordingtothespeciationdiagrams,Sn isnotcomplexedatthepHselected,i.e.11,andispresentinthe solutionasfreestannateionsSn(OH)62[29].Thiswasoneofthe

reasons for selecting pH 11, together with the difficulty in achievingthedesiredchemicalcompositionatvalueslowerthan 10.5.It was found thatpyrophosphate hasnarroweddownthe potential gapmorewithrespecttothetrisodiumcitrate.Thisis visible (from Fig. 1) considering the relative positions of the detectedreductionpeaks:-0.3VfortheCu2+!Cu0,-0.5Vincase

oftheSn2+!Sn0reactionand-1VforZn2+!Zn0.TheSn4+!Sn2+

reactionisnotclearlyvisibleinthegraph,asitisprobablyeither superimposed with the reduction peak of Cu or not present (abehaviorcommonforsomeelectrolytescontainingSn(IV)[30]).

Fig.1showstheCVperformedontheelectrolyteatascanrateof 2mV/sinapotentialrangefrom-2to2Vvs.SCE.Pyrophosphate hasagreateffectinloweringthereductionpotentialofCu,while for theothertwo metals thecomplexation isless efficient.For comparisonitispossibletocitethereductionpotentialsobtained inacitrateelectrolyte:0.2VforCu,-0.6VforSnand-1.1Vinthe caseofZn[31].Thecorrespondingoxidationpotentialswerealso observed intheanodicpartof thecurve.Itis well knownthat Cu-poorandZn-richCu-Zn-SnprecursorisfavorableforgoodCZTS thin films[32].Ourresultshavealsomatchedupwellwiththe literature. Theatomicmetalcomposition ofCu-Zn-Snprecursor was Cu: 39.90% Zn: 34.47% and Sn: 25.63%; Cu/(Zn+Sn) 0.66,Zn/Sn1.34byEDSmeasurementinourexperiment.

(3)

Fig.2andFig.3showtheXRDspectraofasdepositedCu-Zn-Sn precursorandsulfurizedthinfilmsafterannealingat550C for 2hours with ramping rate 20C/minute and 2C/minute. XRD

patternofasdepositedCu-Zn-Snprecursorwascomposedofpure

Sn(JCPDScard86–2265)andCu5Zn8(JCPDScard25–1228)which

isnotinagreementwithsomedataoftheliterature[30,33].Our newelectrolytemightbethereasonbehinditastheydeposited fromacidicelectrolyte.FormationsofCu-ZnandCu-Snphaseson asdepositedprecursorhavealsobeenreportedearlier[18,34].As expected,therehasbeennoformationofaZn-Snphaseduringthe depositionofCu-Zn-Snprecursor,asthesetwometalsdonotform any intermetallic compound. XRD pattern of sulfurized film exhibitedmostlythepeaksrelatedtokesteritestructureofCZTS. In case of 20C/minute ramping rate, all the XRD patterns of sulfurizedsamplescorrespondtothekesteritestructureofCZTS (JCPDScard26–0575).Ontheotherhand,incaseof2C/minute rampingrate,kesteritestructureofCZTShasbeenformedalong withsomeothersecondaryphases.Dominantpeak (112)ofthe XRDpatternofthesepolycrystallinefilmsliesatdiffractionangle (2 Theta) 28.53 which was commonly observed by others

[16,35–37].It was reportedearlier thatlow rampingrates used toincreasethegrainsizeofthefilm[15].Themainissuethatwas foundin ourcase is theformation of secondary phases atlow rampingrate, whichcanbeconnectedtotheuseofpuresulfur atmosphereinsteadofH2Spluslongdurationoftheprocessduring

sulfurization.ThepresenceofMoS2(JCPDS06-0097)wasobserved

as well. More work will be necessary on this aspect of the sulfurization process. Fig. 4 shows the as deposited Cu-Zn-Sn precursor(a)onMosubstratewhich transformedinto polycrys-talline thin film (b) after annealing at 550C for 2hours with ramping rate 20C/minute. The thickness of as deposited precursorswasnearabout750nmon200

m

mthickMosubstrate. Earlierwork[19]suggeststhatduringsulfurizationtheconversion ofCuZnSnmetalintotheCu2ZnSnS4thinfilmcausesthreetimes

volumeexpansion withrespecttotheoriginal thicknessof the CuZnSn layer. After sulfurization, we detected a thickness of 2.4

m

mfor theCZTSfilm.InFig.4 (b) someverythinlayersof adsorbedmaterialonsomegrainsofCZTSarevisible.Theseare probablyconnectedtosomesecondaryphasesofCuSnSandSnSas thosezonesshowedadeviationfromstoichiometricratioofCZTS by SEM (EDS) analysis; this is also confirmed by preliminary micro-Ramanevaluations.Theatomiccompositionofsulfurized films was Cu: 20.59% Zn: 15.59% Sn: 11.44% S: 52.59% by EDS measurementwhich isneartothestoichiometricratioof CZTS. Sampleannealedat550Cfor2hourswith2C/minuteramping rate,reportedinFig.4(c)showedalotofsecondaryphasesafter sulfurizationwithnon-stoichiometricratioofCZTS.Annealingat 550Cfor15minuteswith20C/minuterampingrateshoweda nearly stoichiometric ratio for CZTS (Cu: 29.03% Zn: 10.67%

Fig.2.XRDpatternofasdepositedprecursorandsulfurizedfilmswith20C/

minuterampingrate.

Fig.3.XRDpatternofasdepositedprecursorandsulfurizedfilmwith2C/minute

rampingrate.

(4)

Sn:10.78%S:49.03%),lackofsecondaryphases,butthequalityof thefilm(grainsize)islowerwithrespecttothe2hoursannealed sample (Fig. 5). Fig. 6 shows Raman spectrum of the sample annealed at 550C for 2hours with20C/minute ramping rate with major peaks at 237cm1, 288cm1, 338cm1, 374cm1 whichareingoodagreementwiththeresultofpreviousstudies

[10,38–41]: specifically with commonly acknowledged peak at 338cm1 [44]. No peak was observed corresponding to ZnS (271cm1,352cm1)andCu2SnS3(305cm1,350cm1)indicating

thepresenceofgoodqualitysinglephaseCZTS[41–43].ZnSand Cu2SnS3arethemainsecondaryphaseswhichusedtobepresent

alongwithCZTSaftersulfurization.Thoughupto18phasesofthe ternary Cu-Sn-S system have been described [45], secondary phasespeakswerenotdetectedindicatingagoodqualityofthe electrodepositedfilms.Samplewasfurthercharacterizedbyglow

Fig.4. SEMimagesof(a)asdepositedprecursor,(b)sulfurizedfilm(annealedat550Cfor2hourswithrampingrate20C/minute),and(c)sulfurizedfilm(annealedat550C

for2hourswith2C/minuterampingrates).

Fig.5.XRDresultandSEMimageofthesampleannealedat550Cfor15minutewith20C/minutesrampingrate.

Fig.6.Ramanspectrumofsulfurizedsample(annealedat550Cfor2hourswith

20C/minuterampingrate).

Fig. 7. GDOESresultsonsulfurizedsample(annealedat550Cfor2hourswith

(5)

dischargeopticalemissionspectroscopytoseehowthe composi-tionofCZTSchangesalongthefilmthicknessasEDSanalysisonly showstheaveragecompositionofthefilm.FromFig.7,itisevident thatthecompositionofCZTSdoesnotchangealongthethickness ofthefilm.Thecharacterizationofthedeposit/substrateinterface withpossibleformationofaMoS2layerisstillunderinvestigation.

4. Conclusions

CZTS thin filmsweresuccessfully preparedonMosubstrate using co-electrodeposition of Cu-Zn-Sn in a novel electrolyte. Differentcharacterizationresultshavewellmatchedupwiththe literature. It was found that duration of annealing at high temperatureincreases the grain size of thefilm. On theother handitwasalsofoundthatalowrampingratedoesnotincrease thegrainsizeofthefilmratheritcreatessecondaryphasesinthe film.Itwasfoundthatasdepositedprecursorandsulfurizedfilm arequiterough,thusanattempttoreducetheroughness,e.g.using pulseplating,willbesubjectoffuturedevelopments.Atthesame timebyoptimizingthesulfurizationparameters,roughnessofthe film after sulfurization could be decreased. This work demon-strates a novel procedure to fabricate stoichiometricCZTS thin filmsfromco-elctrodepositedmetallicprecursorsand sulfuriza-tion,withhomogeneousdistributionofthe elementsalongthe crosssectionofthefilms.

References

[1]K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternarysemiconductorthinfilms,TheJapaneseJ.Appl.Phys.27(1988) 2094–2097.

[2]R.B.V. Chalapathy,G.S. Jung,B.T.Ahn, Fabricationof Cu2ZnSnS4 filmsby

sulfurizationofCu/ZnSn/Cuprecursorlayersinsulfuratmosphereforsolar cells,Sol.EnergyMater.Sol.Cells95(2011)3216–3221.

[3]T.Tanaka,T.Nagatomo,D.Kawasaki,etal.,PreparationofCu2ZnSnS4thinfilms

byhybridsputtering,J.Phys.Chem.Solids66(2005)1978–1981.

[4]J.S.Seol,S.Y.Lee,J.C.Lee,H.D.Nam,K.H.Kim,Electricalandopticalproperties ofCu2ZnSnS4thinfilmspreparedbyrf-magnetronsputteringprocess,Sol.

EnergyMater.Sol.Cells75(2003)155–162.

[5]K. Moriya,K.Tanaka, H.Uchiki, Characterization ofCu2ZnSnS4thinfilms

preparedbyphoto-chemicaldeposition,Jpn.J.Appl.Phys.44(2005)715–717. [6]K.Tanaka,Y.Fukui,N.Moritake,H.Uchiki,Chemicalcompositiondependence ofmorphologicalandopticalpropertiesofCu2ZnSnS4thinfilmsdepositedby

sol–gelsulfurizationandCu2ZnSnS4thinfilmsolarcellefficiency,Sol.Energy

Mater.Sol.Cells95(2011)838–842.

[7]Z.H.Zhou,Y.Wang,D.Xu,Y.Zhang,FabricationofCu2ZnSnS4screenprinted

layersforsolarcells,Sol.EnergyMater.Sol.Cells94(2010)2042–2045. [8]H.Katagiri,N.Sasaguchi,S.Hando,S.Hoshino,J.Ohashi,T.Yokota,Preparation

andevaluationofCu2ZnSnS4thinfilmsbysulfurizationofEBevaporated

precursors,Sol.EnergyMater.Sol.Cells49(1997)407–414.

[9]H.Katagiri,K.Saitoh,T.Washio,H.Shinohara,T.Kurumadani,S.Miyajima, DevelopmentofthinfilmsolarcellbasedonCu2ZnSnS4thinfilms,Sol.Energy

Mater.Sol.Cells65(2001)141–148.

[10]K.Wang,O.Gunawan,T.Todorov,B.Shin,S.J.Vhey,N.A.Bojarczuk,Structural andelementalcharacterizationofhighefficiencyCu2ZnSnS4solarcells,Appl.

Phys.Lett.98(2011)051912.

[11]D.B.Mitzi,O.Gunawan,T.K.Todorov,K.Wang,S.Guha,Thepathtowardsa high-performancesolution-processedkesteritesolarcell,Sol.EnergyMater. Sol.Cells95(2011)1421–1436.

[12]T.K.Todorov,K.B.Reuter,D.B.Mitzi,High-EfficiencySolarCellwith Earth-AbundantLiquid-ProcessedAbsorber,Adv.Mater.22(2010)156–159. [13]W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu,

D.B.Mitzi,DeviceCharacteristicsofCZTSSeThin-FilmSolarCellswith12.6% Efficiency,Adv.EnergyMater.4(2014)1301465.

[14]H.Araki,Y.Kubo,K.Jimbo,etal.,PreparationofCu2ZnSnS4thinfilmsby

sulfurizationofco-electroplatedCu-Zn-Snprecursors,Phys.StatusSolidiC61 (2009)1266–1268.

[15]A.Ennaoui,M.Lux-Steiner,D.Abou-Ras,etal.,Cu2ZnSnS4thinfilmsolarcells

fromelectroplatedprecursors:Novellow-costperspective,ThinSolidFilms 517(2009)2511–2514.

[16]S.M.Pawar,B.S.Pawar,A.V.Moholkar,etal.,Singlestepelectrosynthesisof Cu2ZnSnS4(CZTS)thinfilmsforsolarcellapplication,ElectrochimicaActa55

(2010)4057–4061.

[17]C.P.Chan,H.Lam,C.Surya,PreparationofCu2ZnSnS4filmsby

electrodeposi-tionusingionicliquids,Sol.EnergyMater.Sol.Cells94(2010)207–211.

[18]R.Schurr,A.Holzing,S.Jost,etal.,ThecrystallisationofCu2ZnSnS4thinfilm

solarcellabsorbersfromco-electroplatedCu–Zn–Snprecursors,ThinSolid Films517(2009)2465–2468.

[19]S.Ahmed,K.B.Reuter,O.Gunawan,L.Gao,L.T.Romankiw,H.Deligianni,Ahigh efficiencyelectrodepositedCu2ZnSnS4solarcell,Adv.EnergyMater.2(2012)

253–259.

[20]Y.Cui,S.Zou,J. Jiang,S.Yuan, J. Chu,Synthesisandcharacterization of co-electroplatedCu2ZnSnS4thinfilmsaspotentialphotovoltaicmaterial,Sol.

EnergyMater.Sol.Cells95(2011)2136–2140.

[21]J.lljina,O.Volobujeva,T.Raadik,N.Revathi,J.Raudoja,M.Loorits,R.Traksmaa, E. Mellikov, Selenisation of sequentiallyelectrodeposited Cu-Sn and Sn precursorlayers,ThinSolidfilms535(2013)14–17.

[22]J.J. Scragg, D.M. Berg, P.J. Dale, A 3.2% efficient kesterite device from electrodepositedstackedelementallayers,J.Electronal.Chem.646(2010) 52–59.

[23]C.Gougaud,D.Rai,S.Delbos,E.Chassaing,D.Lincot,Electrochemicalstudiesof one-stepelectrodepositionofCu-Sn-ZnLayersfromaqueouselectrolytesfor photovoltaicapplications,J.Electrochem.Soc.160(2013)D485–D494. [24]Y.Lin,S.Ikeda,W.Septina,Y.Kawasaki,T.Harada,M.Matsumura,Mechanistic

aspectsof preheating effects of electrodeposited metallic precursors on structuralandphotovoltaicpropertiesofCu2ZnSnS4thinfilms,Sol.Energy

Mater.Sol.Cells120(2014)218–225.

[25]G.N.Guseva,T.A.Vagramyan,ElectrodepositionofCu-Zn-Snfrom pyrophos-phateelectrolyte,ProtectionofMetals21(1985)381.

[26]Petrucci, Harwood, Herring, Madura, General Chemistry: Principles and ModernApplications,9thed.,PearsonEducation,UpperSaddleRiver,New Jersey,2007.

[27]C.Heitner-Wirguin,J.Kendy,Anionexchangestudyofcopperpyrophosphate complexesinsolution,JournalofInorganicandNuclearChemistry22(1961) 253–257.

[28]OAMJr.,S.A.Wiest,DeterminationofStabilityConstantsfor Zinc-Pyrophos-phateComplexes,Anal.Biochem.77(1977)73–78.

[29]J.R.Duffield,D.R.Williams,Speciationstudiesofthesolubilityandaqueous solution chemistry of Tin(II)- and Tin(IV)- pyrophosphate complexes, Polyhedron10(1991)377–387.

[30]U.Unal,G.Somer,SimultaneousdeterminationoftraceSn(II)andSn(IV)using differentialpulsepolarographyandapplication,TurkJChem35(2011)73–85. [31]K.V.Gurav,S.M.Pawar,S.W.Shin,M.P.Suryawanshi,G.L.Agawane,P.S.Patil,J.H. Moon,J.H.Yun,J.H.Kim,ElectrosynthesisofCZTSfilmsbysulfurizationofCZT precursor:Effectofsoftannealingtreatment,Appl.Surf.Sci283(2013)74–80. [32]J.Li,M.Wei,W.Li,G.Jiang,C.Zhu,TheCu2ZnSnSe4thinfilmssolarcells

synthesizedbyelectrodepositionroute,Appl.Surf.Sci.258(2012)6261–6265. [33]X.He,H.Shen,W.Wang,J.Pi,Y.Haob,X.Shi,SynthesisofCu2ZnSnS4filmsfrom

co-electrodeposited Cu–Zn–Sn precursors and their microstructural and opticalproperties,Appl.Surf.Sci282(2013)765–769.

[34]Z.Chen,L.Han,L.Wan,C.Zhang,H.Niu,J.Xu,Cu2ZnSnSe4thinfilmsprepared

byselenizationofco-electroplatedCu–Zn–Snprecursors,Appl.Surf.Sci.257 (2011)8490–8492.

[35]A.Wangperawong,J.S.King,S.M.Herron,B.P.Tran,K.Pangan-Okimoto,S.F. Bent, Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic

absorbers,ThinSolidFilms519(2011)2488–2492.

[36]X. Zhang,X. Shi,W. Ye, C. Ma, C. Wang,Electrochemical deposition of quaternaryCu2ZnSnS4thinfilmsaspotentialsolarcellmaterial,Appl.Phys.A

94(2009)381–386.

[37]Y.Zhou, W. Zhou,Y. Du, M.Li, S. Wu, Sphere-likekesterite Cu2ZnSnS4

nanoparticlessynthesizedbyafacilesolvothermalmethod,Mater,Lett.65 (2011)1535–1537.

[38]X.Fontané,L.Calvo-Barrio,V.Izquierdo-Roca,E.Saucedo,A.Pérez-Rodriguez, J.R.Morante,D.M.Berg,P.J.Dale,S.Siebentritt,In-depthresolvedRaman scatteringanalysisfortheidentificationofsecondaryphases-characterization ofCu2ZnSnS4layersforsolarcellapplications,Appl.Phys.Lett.98(2011)

1819051–1819053.

[39]H.Yoo,J.Kim,GrowthofCu2ZnSnS4thinfilmsusingsulfurizationofstacked

metallicfilms,ThinSolidFilms518(2010)6567–6572.

[40]R.B.V.Chalapathy,C.Lee,B.T.Ahn,Cu2ZnSnS4(CZTS)ThinFilmsGrownby

SulfurizationofDifferentPrecursorLayersinSulfurAtmosphere,Proceedings 37thIEEEPVSC2011,Seattle,USA,2014.

[41]P.A. Feranades, P.M.P. Salome, A.F. Da Cunha, Study of polycrystalline Cu2ZnSnS4filmsbyRamanscattering,J.AlloysCompd.509(2011)7600–7606.

[42]E.M.Mkawi,K.Ibrahim,M.K. Ali,A.S.Mohamed,Dependence ofcopper concentration on the properties of Cu2ZnSnS4 thin film prepared by

electrochemicalmethod,Int.J.Electrochem.Sci.8(2013)359–368. [43]J.Wang,S.Li,J.Cai,B.Shen,Y.Ren,G.Qin,Cu2ZnSnS4thinfilms:facileand

cost-effectivepreparationbyRF-magnetronsputteringandtexturecontrol,J.Alloys Compd.552(2013)418–422.

[44]X.Wang,Z.Sun,C.Shao,D.M.Boye,J.Zhao,Afacileandgeneralapproachto polynarysemiconductor nanocrystalsvia amodified two-phase method, Nanotechnology22(2011)245605.

[45]F.D.Benedetto,I.Bencista,etal.,ElectrodepositionofternaryCuxSnySzthin

filmsfor photovoltaicapplications, Prog. Photovolt.Res, Appl.22(2014) 97–106.

Riferimenti

Documenti correlati

Up to now this class of low power thrusters has not been deeply studied, in fact, only recently there is a great interest to mini and micro satellites that ask for thruster

+zdjhv, e| d odujh dprxqw zkhq wkh| fdq uhvhw wkhp1 Lq wkh deryh prg0 hov/ wkh| zrxog eh zloolqj wr gr vr rqo| iru rqh uhdvrq= wr suhvhuyh ghpdqg1 Wkh| uhfrjqlvh wkdw/ iroorzlqj

For the receiver side we have found that the Memory Acceleration technique is an effective optimization method that permits us to achieve the real-time target with a

Giunta a New York, nell’arco di un anno Forti diventa una presenza attiva e influente attraverso la partecipazione al corso di Robert Dunn, da cui scaturisce il Judson Dance

Figure 7: Dependency on the heat dissipater thermal coefficient for a-Si and CZTS–based HTEPV cells of the TEG hot-side temperature (a) at maximum HTEPV efficiency for TC cells

Kesterite-type CZTS material showing the highest energy conversion efficiency (η) is synthesized mostly via vacuum-based methods such as sputtering or evaporation of metals (or

The cross section as shown for (B) before thermal annealing illustrates an average film thickness of 1 microns while film expansion was observed after themal treatment (D),

From the SEM top view images (Figure 4. 13) it can be noticed that the layers produced with the addition of a sodium source are more compact: the samples CZTSe Na10 and Na10ZnE show