• Non ci sono risultati.

Laccase Biosensor Based On Screen-Printed Electrode Modified With Thionine-Carbon Black Nanocomposite For Bisphenol A Detection

N/A
N/A
Protected

Academic year: 2021

Condividi "Laccase Biosensor Based On Screen-Printed Electrode Modified With Thionine-Carbon Black Nanocomposite For Bisphenol A Detection"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Electrochimica

Acta

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / e l e ct a c t a

Laccase

biosensor

based

on

screen-printed

electrode

modified

with

thionine–carbon

black

nanocomposite,

for

Bisphenol

A

detection

M.

Portaccio

a,b

,

D.

Di

Tuoro

a,b

,

F.

Arduini

c,b

,

D.

Moscone

c,b

,

M.

Cammarota

a

,

D.G.

Mita

a,b,d,∗

,

M.

Lepore

a,b

aDipartimentodiMedicinaSperimentale,SecondaUniversitàdiNapoli,Napoli,Italy bConsorzioInteruniversitarioINBB,Roma,Italy

cDipartimentodiScienzeeTecnologieChimiche,UniversitàdiRomaTorVergata,Rome,Italy dInstituteofGeneticsandBiophysicsofCNR,Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15May2013

Receivedinrevisedform12July2013 Accepted15July2013 Available online xxx Keywords: BisphenolA Laccase Carbonblack Thionine Screen-printedelectrode

a

b

s

t

r

a

c

t

TherelevanceofBisphenolA(BPA)inhumanhealthiswell-known.Forthisreasonwedesignedand developedabiosensorbasedonabionanocomposite(laccase–thionine–carbonblack)-modified screen-printedelectrode.Thionine,acommerciallyavailabledye,wasusedaselectrochemicalmediatorcoupled withananostructuredcarbonblack.Bymeansofcyclicvoltammetry,theinteractionofthionineadsorbed onmodifiedscreenprintedelectrodewithlaccase/BPAreactionproductshasbeenstudied.Inaddition, theimmobilizationoflaccasebyphysicaladsorptiononthesurfaceofthionine–carbonblackmodified screenprintedelectrodeswasinvestigated.Theresponseofthebiosensorhasbeenoptimizedintermsof enzymeloading,pHandappliedpotentialreachingalinearconcentrationrangeof0.5–50␮M,a sensitiv-ityof5.0±0.1nA/␮Mandalimit-of-detection(LOD)of0.2␮M.Thedevelopedbiosensorhasbeenalso challengedintomatojuicesamplescontainedinmetalliccanswherereleaseofBPAduetotheepoxyresin coatingcanbeassumed.Asatisfactoryrecoveryvaluecomprisedbetween92%and120%wasobtained.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

BisphenolA[BPA, 2,2-(4,4-dihydroxydiphenyl)propane; CAS RegistryNo.80-05-7]isproducedbycombiningacetoneand phe-nolandisanimportantorganicchemicalowingtoitswideuseas intermediateinthemanufactureofpolycarbonateplastics,epoxy resins,andflameretardants[1].Itsmainuseisascoatingofmetallic cans,powderpaints,dentalfillings,andantioxidantinplastics.It hasalsobeenusedasaninertingredientinpesticides,antioxidants andpolyvinylchloridestabilizer[2].Recently,BPAhasreceived considerableattentionduetoitsendocrinedisruptingactivityand possibletoxicimpactonenvironment[3–5].BPAlevelsinthe␮g/L rangehavebeenfoundinbiological,foodandwatersamples[6,7]. ThepresenceofBPAisstilla“hottopic”:theEuropeanFoodSafety Authority(EFSA)isstillinvestigatingonnewriskassessmentof BPAand,veryrecently,initsnewsletter,invited“...MemberStates, researchinstitutions,academia,foodbusinessoperators,packaging businessoperatorsandotherstakeholderstosubmitdataonBPA,in particularitsoccurrenceinfoodandbeverages,migrationfromfood contactmaterials, occurrenceinfood contactsmaterials. Deadline:

∗ Correspondingauthorat:DipartimentodiMedicinaSperimentale,Seconda Uni-versitàdiNapoli,Napoli,Italy.Tel.:+390816132608;fax:+390816132608.

E-mailaddress:mita@igb.cnr.it(D.G.Mita).

31July2012”.Theabovefindingssuggestthatitis necessaryto determinetheBPApresencealsointraceamounts.

Traditional methods for BPA detection include chromato-graphic techniques coupled with mass spectrometry, capillary electrophoresisandsolidphasemicroextraction,methodsthatare timeconsuming,cannotbeperformedon-siteandrequire sam-plepre-treatment[8].Electrochemicalsensorscanproviderapid andon-siteBPAdetection.Forthispurposemanyresearchershave developedelectrochemicalsensorsusingtyrosinaseasbiological elementanddifferentimmobilizationprocedures[9–13].Recently, theuseofdifferenttyrosinase-functionalisednanoparticlesystems hasshowninterestingresults[14].

All the developed electrochemical sensors for BPA use the enzymetyrosinase,differentlyfromtheapproachusedforother phenolcompoundsforwhichotherenzymes,suchasperoxidase [15]andlaccase[16],havebeensuccessfullyemployed.In particu-lartheuseoflaccasecombinedwithaproperlychosenredox-active compoundcouldrepresentapotentialgoodcandidatefordesigning andfabricatingnovelBPAsensors.

Laccases(E.C.1.10.3.2)aredimericortetramericglycoproteins, containingfourcopperatomspermonomerdistributedinthree redoxsites: one ineach T1 andT2 sites,and two inT3 site. It isassumedthatthecatalysisfirstlyinvolvesT1Cureductionby thesubstrate,followedbyinternalelectrontransferfromT1Cuto T2andT3Cuand,finally,dioxygenreductionatT2andT3sites

0013-4686/$–seefrontmatter © 2013 Elsevier Ltd. All rights reserved.

(2)

[17].Laccasescatalyzetheoxidationofortho-andpara-diphenols, aminophenols,aryldiamines,polyphenols,polyamines,ligninas wellassomeinorganicions,coupledtothereductionof molec-ular dioxygento water [18,19]. In the case of BPA not all the reactionproductshavebeencharacterized.Forinstance,an inter-estingstudywasperformedbyFukudaetal.[20],inwhichthey demonstrated that theBPAwas metabolizedby laccasein two kindsofcompounds:onekindcomposedbyhighmolecularweight compoundsandanotherkindcomposedbylowmolecularweight compounds,oneofwhichwasidentifiedas4-isopropenylphenol bymeansofgaschromatography–massspectrophotometry.The 4-isopropenylphenolasoxidativedegradation producthasbeen identifiedusingchromatographymass–spectrometryalsoinother worksreportedinliterature[21,22].

Ithasbeenalsoreportedthatsomeredox-activecompounds, knownas“mediators”,allowenlargingtherangeofcompounds thatcanbetargetedforoxidationbylaccase[23].Themediator interactswiththeenzymeorwiththereactionproduct.Insome cases,typicallytheenzymefirstlyoxidizesthemediator,which dif-fusesawayfromtheenzymeactivesite,andsequentiallyoxidizes acompoundthatmaybeornottobesubstrateoftheenzyme.The mediatorthenreturnstoitsoriginalformandcansubsequently beusedtoaccomplishtheconversionofmoretargetspecies.The employmentofmediatorsmakestheuseoflaccasemoreattractive becauseitincreasesthenumberofpollutantsthatcanbetargeted [24].Whenmediatorsareinvolvedinlaccase-assistedprocesses, theelectrontransferfromthemediatortotheenzymeisfollowed byelectrondonationfromthetargetmoleculetooxidized media-tor,whichgivesrisetotheregenerationofthemediator[25–27].In othercases,instead,themediatorreactsdirectlywiththereaction products,asitoccursfortyrosinaseinteractingwithphenols[10]. Severalorganicandinorganiccompoundshavebeenreportedas effectivemediatorsfortheabovepurposes.Thelaccasereduction ofdioxygentowaterinthepresenceofdifferentredoxmediators ornanomaterials[28]hasbeenstudiedinotherelectrochemical applications[29–34].

Ithasbeenalsodemonstratedthattheuseofredoxmediators coupledwithcarbonnanomaterialscanfurtherimprovethe elec-trochemicalperformancesofthedevelopedsensor.Forexample carbonnanotubeswereusedtogetherwithferrocenedicarboxylic acid[35],azuredye[36],thionine[37].Amongthecarbon nanos-tructured materialssuchas carbon nanotubesand graphene, it wasrecentlydemonstratedtheusefuluseofcarbon black(CB). CBisanindustriallymanufacturedcolloidalmaterialthatconsists ofapproximatelysphericalcarbonprimaryparticleswith diam-etercomprisedfrom15to100nm,whichtypically formsfused aggregateswithsizesbelow1000nm.CBwasdemonstrated:(i)to haveelectrocatalyticpropertiestowardsmanycompoundssuchas ascorbicacid,dopamine,NADH,benzoquinone,epinephrine, cys-teine,thiocholine,hydrogenperoxide[38–43],and(ii)thatitcan beusedasthebasisforconstructionofatyrosinasebiosensorfor catecholdetection[44].Inaddition,ashighlightedinourpapers [41–43],this materialallows theproduction ofa stable disper-sionusing a cheapcarbon nanostructured material, asrecently confirmedbyCompton’sgroup[45].

InthispaperwedescribeadisposableBPAbiosensorbasedon laccase.Toourknowledge,thisisthefirstreportinliterature con-cerningbiosensorforBPAdetectionbasedonlaccasecoupledwith disposablesensor.Bymeansofcyclicvoltammetry(CV),theeffect ofthionineasamediatorhasbeeninvestigatedwhenthe immobi-lizedlaccaseinteractswithBPA.Inordertoincreasetheanalytical performanceandtheeasinessoftheproposedbiosensor,ascreen printedelectrode(SPE)modifiedbyusingananocompositeformed byCBandthioninehasbeenused.Alsointhiscase,toour knowl-edgethisisthefirsttimethattheCBwasusedcoupledwitharedox mediatorindevelopinganelectrochemicalsensor.

Fig.1.ChemicalstructureofBPA(a)andofthionine(b).

The biosensor response was examinedin terms of immobi-lizedenzymeunits,appliedelectricalpotentialandpH.Finallythe optimizedbiosensorhasbeenusedfortheamperometric determi-nationofBPAinaqueousbuffersolutionsandinpeeledtomatoes storedinmetalliccans.

2. Materialsandmethods 2.1. Materials

Laccase(20Units/mg)fromTrametesVersicolor,BisphenolA(see chemicalstructureinFig.1a),Thionineacetate(seechemical struc-tureinFig.1b),Nafion®andalltheotherchemicalswerepurchased fromSigma(Sigma–Aldrich, Milan,Italy)and usedwithout fur-therpurification.CarbonBlackN220(CB)wasobtainedfromCabot Corporation(Ravenna,Italy).Screen-PrintedElectrodesG-Sensor (SPEs) was obtainedfrom Ecobioservice and Research (Firenze, Italy).

Theworkingelectrodewasmadeofgraphiteanditsdiameter was0.3cm.

2.2. Methods

Theenzymaticworkingelectrodewaspreparedbymodifying thesurfaceofascreenprintedelectrodewith6␮Lofadispersion ofCB1mg/mLinacetonitrile[41].Aftersolventevaporation,5␮Lof thionine0.4mMaqueoussolutionwereaddedandthenthe elec-trodewasputinanovenat60◦Cforabout15h[13].Afterthis treatment,theelectrodewasfurthermodifiedbyadding5␮Lof laccasesolutionatdifferentconcentrations,inordertoobtain enzy-maticunitvaluesrangingfrom0.59Uto6.52U.Afterdrying,the electrodeswerecoveredwith3␮Lofaneutralizedaqueous solu-tionofNafion®2.2%(v/v)andlefttodryatroomtemperaturefor 30mininordertoavoidrapidenzymeleaking.Thewholescheme isreportedinFig.2a.

The BPA/laccasereaction productswere separately obtained bythefollowingprocedure:500␮Lof0.05McitratebufferatpH 4.5 were added to100␮L of 1mM BPA and 100␮L of laccase (40mg/mL)bothinthesamebufferandallowedtoreactat37◦C for1htoobtaintotalconversionofBPAinproduct.

Toobtainathionine–CB-modifiedSPE,twostepswerecarried out:(1)6␮LofadispersionofCB1mg/mLinacetonitrilewere placedonSPEasdescribedinourpreviouswork[41];(2)thionine wasmadetoadsorbonthemodifiedSPEaspreviouslydescribed.

AllthemeasurementswerecarriedoutusingSPEsconnected to a PalmSensinstrument (Palm Instruments,the Netherlands) coupled to a PC and were performed at room temperature (25.0±0.5◦C). The potentials were referred to the internal Ag

(3)

Fig.2. (a)Fabricationprocessoflaccasebiosensorbasedonscreen-printedelectrodemodifiedwiththionine–carbonblackandNafion.(b)Schemeofbiosensorelectrocatalytic mechanism.

pseudo-referenceelectrode of the SPE. The cyclic voltammetry experimentswerecarriedoutin0.1Mphosphatebufferplus0.1M KCl,pH=6.5andatscanrateof100mV/s.

Foramperometricexperiments,a magneticstirreranda stir-ringbarprovidedtheconvectivetransportintheelectrolyticcell filledwithavolumeof10mL.Thesemeasurementswerecarried outintheabsenceofKClinthereactionvolume,becausesalinity affectsthesolubilityofthereactionproducts,leadingto inactiva-tionorchangesintheenzymaticprocessesasaresultofinteractions withtheproduct.Inparticular,chlorinatedcompounds substan-tiallyinhibittheconversionofBPAand thenchlorineionisthe maincauseoflowconversion[24].

Eachexperimentalpointinthefiguresistheaverageoffour experimentscarriedoutunderthesameconditions.The experi-mentalerrorneverexceeded5%.

MicrographsofCB-SPE,thioninemodifiedCB-SPEandlaccase biosensorbasedonthioninemodified CB-SPEwereobtainedby scanning electron microscopy (SEM) using a Carl Zeiss model SUPRA40microscope.

3. Resultsanddiscussion

3.1. Cyclicvoltammetrymeasurementsusingthionineinsolution Preliminaryexperimentswereperformedinordertostudythe electrocatalyticpropertiesofthioninetowardsBPA/laccase reac-tionproducts.Thionineis anartificialorganicdyederivativeof phenothiazine,anditisusedasamediatorsinceitsformalpotential fallsbetween0.08and−0.25V,neartheredoxpotentialofmany biomolecules[13,37].

Initially100␮Lof 0.4mM thionine werepoured ontheSPE without any modification and the typical thionine voltammo-gramobtainedisshownincurve1ofFig.3a,withEpa=−330mV, Epc=−360mV,Ipa=1.47␮AeIpc=1.33␮AandaIpa/Ipcratioequal to1.10.

Afterwards,20␮LofBPA/laccasereactionproduct,obtainedas reportedinSection2.2,wereaddedtothe100␮Lof0.4mM thion-ineandpouredonthescreenprintedelectrode.TheCVinpresence ofBPA/laccasereactionproductandthionineisreportedincurve2 ofFig.3a.Itiseasytonoticearelevantchangeinthevoltammogram shapeaftertheadditionofBPA/laccasereactionproduct.The cur-rentsignalduetothioninereductionprocessincreasesinrespectto theoneinabsenceofBPA/laccasereactionproduct.Conversely,the

anodicpeakofcurrentsignalduetothethionineoxidationprocess decreases,asexpectedformediatedreactions.Theenzymatic reac-tioncausedanincreaseoftheamountofthionineoxontheworking electrodesurface,withtheconsequentincreaseofcathodic cur-rentpeak.Onthecontrary,theanodiccurrentpeakisproportional to theamount of thioninered and this quantity decreasesafter theenzyme/BPAreaction.Theseresultsconfirmthatthioninehas anelectrocatalyticactivitytowardsthereduction ofBPA/laccase oxidationproductsasshownbytheelectrocatalyticmechanism schemereportedinFig.2b.ThentheSPEsareanusefultoolfor mon-itoringtheelectrocatalyticeffectwiththeadvantage,inrespect totheconventionalelectrodessuchasglassycarbonelectrode,of usingafewmicrolitersofsolution.

3.2. Cyclicvoltammetrymeasurementsusingthionineadsorbed ontheworkingelectrodesurface

In order todevelop a ready-to-usebiosensor modified with thionine,this mediator wasadsorbedontheworkingelectrode surface,accordinglytoourpreviouslyoptimizedprocedureinthe caseofthioninemodifiedcarbonpasteelectrode[13].The thionine-modifiedSPEwasthuscheckedbycyclicvoltammetryinorderto testitsworkingstability.AsshowninFig.3b,theredoxpeaksof thioninecanbeobservedatEpa=−320mVandatEpc=−360mV withalargeincreaseinthepeakcurrents.However,after10scans, adecreaseofabout70%inanodicandcathodicintensitycurrentof thionineisobserved,demonstratingthatthesimplemodification byadsorptiongivesanunsatisfactoryworkingstability.

Inorder toavoidthis drawback,weconstructeda biosensor modifiedwithCB–thioninenanocomposite.Theapproachusedin thisworkwasthebilayerone,inwhichfirstly,alayerofCBwas depositedontheworkingelectrodesurfaceby“drop”coating, fol-lowedbyanotherlayerofthionine.Inthisway,athionine–CB–SPE was obtained. This latter was tested by cyclic voltammetry in ordertoinvestigateitsworkingstability.AsshowninFig.3c,the potentialofanodic andcathodicpeakswereEpa=−220mVand Epc=−260mV,respectively,andstablecyclicvoltammogramswere obtained.ThedifferenceoftheexperimentalEpfromtheideal surfaceredoxprocess(withEp=0)isduetolimitations associ-atedwithchargepropagationinthefilm,thechemicalinteraction betweenthe ionsand the modified film, and thepolarizability ofthecationinfluencingitspenetrationin oroutoffilm.Using thionine–CB–SPE,after10 scansonly asmall decreaseofabout

(4)

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 -6000 -5000 -4000 -3000 -2000 -1000 0 1000

a)

2 1 C ur rent (n A) potential (V) -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

b)

time C ur rent ( A) potential (V) -0.4 -0.3 -0.2 -0.1 0.0 -20 -15 -10 -5 0 5 10 15 time

c)

Cu rrent ( A) potential (V) -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 -10 -8 -6 -4 -2 0 2 4

d)

2 1 Cu rr en t ( A) potential (V)

Fig.3. (a)CyclicvoltammetryforSPEwiththioninesolutionintheabsence(curve1)andinthepresences(curve2)ofthelaccase/BPAreactionproducts.(b)Cyclicvoltammetry foranadsorbedthioninemodifiedSPE.(c)CyclicvoltammetryforanadsorbedthionineandCB-SPE.(d)CyclicvoltammetryforanadsorbedthionineandCB-SPEintheabsence (curve1)andinthepresences(curve2)ofthelaccase/BPAreactionproducts.Forallthemeasurementsvscan=100mV/s.

5% in themeasuredanodic and cathodic intensitycurrent was observed.Moreover,thepeakcurrents(Ipa=11␮AandIpc=16␮A) weremuch higherthan theonespreviousfoundinthecase of thionine–SPE(Ipa=0.39␮AandIpc=0.29␮A),demonstratingthe improvementduetothepresenceofcarbonblack,becausethe pres-enceofthenanomaterialCBN220,characterizedbyahighsurface area(120m2/g),allowstheadsorptioninastablewayofahigher amountofthionineontheworkingelectrodesurfaceinastable way.

InordertotesttheelectroactivitytowardstheBPA/laccase reac-tionproduct,cyclicvoltammetrywascarriedoutinabsenceand inpresenceofBPA/laccasereactionproducts.Fig.3dshowsthat thecurrentduetothethioninereductionincreaseswithrespect tothatobtainedintheabsenceofBPA/laccasereactionproducts, whileinthereversescan thecurrent oftheanodicpeakdueto thethionineoxidationdecreases,asexpectedformediated oxida-tivereactions.Theseresultsconfirmtheelectrocatalyticactivityof thionineadsorbedonCB-SPEtowardsthereductionofBPA/laccase reactionproducts.Thethionine–CB–SPEwasthuschosenfor fur-therstudies.

3.3. Electrochemicalcharacterizationofthionine–CB–SPE

Thenthethionine–CB–SPEwaselectrochemicallycharacterized. Thecurrent oftheanodic () andcathodic()peaksincreases

linearlywithincreasingscanrateupto200mV/s(Fig.4), demon-stratingthatthereisasurfacecontrolledelectrochemicalreaction. Infact,forthinfilmsandlowscanrates(iffinitediffusionoccurs withinthefilm),thin-layerbehaviourpredominates,andthepeak

0,0 0,2 0,4 0,6 0,8 1,0 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 curre nt ( A) scan rate (V/s)

(5)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 -0.28 -0.26 -0.24 -0.22 -0.20 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08 E 0 (V ) pH

Fig.5.FormalredoxpotentialasafunctionofpH.

current(Ip)isproportionaltothescanrate

v

accordingtothe fol-lowingequation: Ip=



n2F2 4RT



A

wherenisthenumberoftheelectronsinvolvedintheredox reac-tion,FistheFaradayconstant,Risthegasconstant,Tistheabsolute temperature,Aisthesurfaceoftheworkingelectrodeassuming thatitssurfacecorrespondstothegeometricalareaand is sur-facecoverage.Athigh-scanratesitcanbeobservedthattheanodic andcathodicpeakcurrentsdeviatefromalineartrend.

Theeffectof pHontheredoxreactionof thionineadsorbed on the CB-SPEs was also evaluated as reported in Fig. 5. The thionineresulted tobeelectroactive whenit is workingin the pH range from 4.0 to 7.0 (Britton–Robinson buffer). The

rela-tionship between E◦ (V) and pH is described by the equation E◦(V)=(−0.057±0.003)pH+(0.136±0.016)(R=0.997).Theslope valueisequalto(−57±3)mV/pHanditisingoodagreementwith thetheoreticalvalueof−59mV/pH(at20◦C)forareversible elec-trontransfer processcoupledwithidenticalnumberof protons andelectrons[46].Inordertoevaluatethenumberofelectrons involved,thepeakwidthathalfheightofthecathodicpeak(Fig.3c) wasmeasuredandresultedequaltoof92mV[47],thusmeansthat theredoxreactionofthionineinvolvesatransferofoneelectron coupledtothetransferofoneproton.

3.4. SEMmicrographs

Inordertounderstandthemorphologicalchangesdueto differ-entstepsinelectrodepreparation(seeFig.2a),SEMimagesofbare SPE(Fig.6a),CB-SPE(Fig.6b),thioninemodifiedCB-SPE(Fig.6c) andlaccasebiosensorbasedonthioninemodifiedCB-SPE(Fig.6d) arereported.ThecomparisonbetweenFig.6aandbshowsthat thepresenceofCBiswellevidenced;thenanostructurematerial conferstoelectrodesurfacearoughtopography,whilethe pres-enceofthethioninelayerontheCB-SPEcausesonlyadifferent contrastinrespecttotheSPE-CBSEMimage.Arelevantsurface changewasobservedinFig.6dwhenNafionmembraneispresent ontheenzymaticelectrode.

3.5. Laccase-CB-SPEbiosensor

InordertodevelopalaccasebasedCB-SPEbiosensor charac-terizedbysatisfactorysensitivity,severalparametersaffectingthe analytical performancesofthebiosensor wereinvestigated and optimized.

3.5.1. Effectofenzymeloading

Theamountofenzymeimmobilizedontotheelectrodesurface isakey parametertoobtaina highsensitivityofthebiosensor. In detail we investigated the electrochemical response of the

(6)

electrode as a function of the amountof immobilized enzyme (0.59U,1.19U,2.36U,4.74Uand6.52Uoflaccaseatapotential of−200mVin0.05Mcitratebuffer,pH4.5).AsshowninFig.7a, theelectricresponse increaseswiththeamountofimmobilized laccase,reachingamaximumvaluewhenusing1.19Uofenzyme. Forgreateramounts,thereisasignificantdecreaseinthecurrent value.Thisbehaviourcouldbeattributedtotheincreaseoffilm thickness,leading toan increaseof interfacial electrontransfer resistance,makingtheelectrontransfermoredifficult[48].Forthis reason,subsequentexperimentswerecarriedoutusing1.19Uof laccaseimmobilizedontheworkingelectrodecoveredbyalayerof Nafiontoavoidtheleakageoftheenzymeduringthemeasurement. 3.5.2. Effectofappliedpotential

Inordertoobtainahighsensitivityintheelectrochemical detec-tionofenzymaticproduct,thebiosensorresponsetowardsBPAhas beenstudiedasafunctionoftheappliedpotentialin0.05M cit-ratebuffer,pH4.5.Weinvestigatedthebiosensorresponsevarying theappliedpotentialintherangebetween−300and−100mVvs internalAgpseudo-referenceelectrode.AsevidencedinFig.7b,the highestcurrentpeakisobtainedatthepotentialof−200mV,sothis workingpotentialhasbeenappliedinthesuccessiveamperometric measurements.

3.6. EffectofpH

ItiswellknowntheinfluenceofpHonthebiosensorresponse, thusthisinfluenceonthebiosensorresponsetoBPAata concen-trationof10␮MhasbeenstudiedinapHrangebetween3and5.8 in0.05Mcitratebuffer.TheresultsarereportedinFig.7c, show-ingthatcurrentvaluesarepHdependentandthattheoptimum pHoccursat4.5.ForlowerorhigherpHvalues,acurrentdecrease occurs,probablyduetolossorinactivationoftheenzyme activ-ity.TheseresultsareinagreementwiththeoptimumpHrange of 3.5–5reportedfor free laccase[24,49]and indicate thatthe immobilizationproceduredidnotalterthelaccaseactivity.Once establishedthattheoptimumvalueofthepeakcurrentoccursat pH4.5,theexperimentshenceforwardwerecarriedoutunderthese conditions.

3.7. BPAconcentrationdetermination

Onceoptimized the biosensor response in terms of enzyme loading(1.19U),pH(0.05McitratebufferatpH4.5)andapplied potential(−200mV),thesignalcurrentwasstudiedasafunction oftheBPAconcentration(Fig.8).

Intheinset(a)theamperometricsignalobtainedwithBPAata concentrationequalto20␮Misreportedanditshowstheresultof twosuccessiveadditionsofBPAstandard.

AscanbeseenfromFig.8,theelectricalresponseasafunction ofBPAconcentrationissimilartoaMichaelis–Mentenbehaviour, with a Kapp

m =161±18 ␮M and Imax=1073±57 nA. The Kmapp valueissimilartoKmbiochemicalonereportedin[50]andobtained fromexperimentwithBPAandfreelaccase.

Linearity was obtained in a BPA concentration range of 0.5–50␮M,while thesensitivitywas5.0±0.1nA/␮M (seeinset (b)).Thelimit-of-detection(LOD)wasequalto0.2␮M.TheLODhas beencalculatedasratiosignal/noise(S/N)=3.Theintra-electrode repeatabilitywasaroundthe3%(n=5),whiletheinter-electrode reproducibilitywasaround5%.Concerningthestability,the elec-trodehadanoperationalstabilityofabouttwoweeks.

The LOD obtained is comparable with the one (0.15␮M) obtainedinourpreviousstudyinwhichatyrosinase–thionine car-bonpasteelectrodewasdeveloped,butbetterthantheone(23␮M) foundbyDempseyetal.[10]usingtyrosinase-thionineglassy car-bonelectrode. Moreover, in ourcase there is theadvantage of

0 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

a)

cu rr ent (n A )

laccase unit

-300 -250 -200 -150 -100 35 40 45 50 55

b)

cu rr ent (n A) potential (mV) 3.0 3.5 4.0 4.5 5.0 5.5 6.0 30 40 50 60 70 80 90 100

c)

re la tive cu rr e nt (% ) pH

Fig.7.(a)Effectofenzymeunitsonthebiosensorresponseinpresenceof10␮M BPAin0.05Mcitratebuffer,pH4.5,appliedpotentialequalto−200mV,T=25◦C.

(b)Dependenceofbiosensorresponseontheappliedpotentialinthepresenceof 10␮MBPAin0.05Mcitratebuffer,pH4.5,T=25◦Cand1.19Ulaccase.(c)Effect

ofpHonthebiosensorresponseinpresenceof10␮MBPAin0.05Mcitratebuffer, appliedpotentialequalto−200mV,T=25◦Cand1.19Ulaccase.

(7)

0 50 100 150 200 250 300 0 100 200 300 400 500 600 700 cur ren t ( n A) [BPA] ( M)

Fig.8.DependenceofbiosensorresponseontheconcentrationofBPAin0.05M citratebuffer,pH4.5,appliedpotentialof−200mV,1.19Uoflaccase.Inset:(a) amperometricsignalobtainedwithtwosuccessiveadditionofBPAstandard,of 20␮M;(b)linearrangeforbiosensorresponse.

Table1

Recoverystudiesofspikedtomatojuicesamples.

Sample BPAconcentration added(␮M) BPAconcentration found(␮M) Recovery(%) A 10 12 120 A 20 18.5 92 B 10 9 90 B 20 19 95

Experimentalconditions:0.05Mcitratebuffer,pH4.5,appliedpotentialof−200mV, 1.19Uoflaccase.Allthevaluesaremeanoftriplicatemeasurements.

acost-effective biosensor,becausewe haveused(i)disposable,

cost-effectiveandminiaturizedscreen-printedelectrodeinstead

ofcarbonpasteorglassycarbonelectrodes(ii)thecarbonblack,

whichisacost-effectivenanostructuredmaterialand(iii)the

lac-caseenzyme,whichiscost-effectivethanthetyrosinaseenzyme.

3.8. BPAmeasurementsinrealsamples

Tochallengethebiosensorwithrealsamples,thebiosensorwas

thentestedusingtomatojuicecomingfrommetalcanscoatedwith

epoxicresins,whichareknowntocontainandleakBPA.Two

differ-entcommercialbrandswereinvestigated.Thejuiceswereproperly

treated[51]andeachsample(Aand B)wasexaminedwithour

biosensorusingtheprocedurepreviouslydescribed.No apprecia-blecurrentsignalswereobtained,accordingtothecircumstance thatthesamesamplesanalyzedwithHPLCgaveaBPA concentra-tionsmallerthanthevalueofourLOD.Toevaluatetheaccuracy ofourbiosensor,thesampleswerespikedwithknownamountof BPA.TwodifferentconcentrationsofBPAwereusedforeachsample andTable1showstheobtainedresults.Arecoveryvaryingbetween 92%and120%wasobtained.Therelativestandarddeviation(RSD) ofthreesuccessivemeasurementsofthesamesamplewasaround 5%.Theseresultssuggestagoodrecoveryvaluesandalowmatrix effectonthebiosensorsamples.

4. Conclusion

In this paper it hasbeen reported,for the first time toour knowledge,thedesignanddevelopmentofabiosensorbasedon

abionanocompositelaccase–thionine–carbonblackforBPA detec-tion.

Inparticular theinteractionwithlaccase/BPAreaction prod-uctsbythionineadsorbedonscreen-printedelectrodesmodified withnanostructuredcarbonblackwasinvestigated.Thethionine seemstobeaneffectiveelectrochemicalmediatortowardstheBPA detectioninbothtyrosinase[10,13]andlaccasebasedbiosensors. Theresponseofthebiosensorwasoptimizedintermsofenzyme loading,pHand applied potentialreachinga detection limit of micromolarslevel.

The biosensor proposed here shows better results when compared with laccase carbon paste biosensor [52] and tyrosinase–thionineglassycarbonelectrode[10].Thecouplingof thioninewithnanostructuredmaterials(carbonblackinourcase) thusallowsthedevelopmentofastable,miniaturizedandlowcost deviceforBPAdetection.

References

[1]Y.Mutou,Y.Ibuki,Y.Terao,S.Kojima,R.Goto,Chemicalchangeofchlorinated bisphenolAbyultravioletirradiationandcytotoxicityoftheirproductson Jurkatcells,Environ.Toxicol.Pharmacol.21(2006)283.

[2]S.Rodriguez-Mozaz,M.LopezdeAlda,D.Barcelo,AnalysisofbisphenolAin naturalwatersbymeansofanopticalimmunosensor,WaterRes.39(2005) 5071.

[3]A.Ballesteros-Gomez,S.Rubio,D.Perez-Bendito,Analyticalmethodsforthe determinationofbisphenolAinfood,J.Chromatogr.A1216(2009)449.

[4]J.H.Kang,F.Kondo,Y.Katayama,HumanexposuretobisphenolA,Toxicology 226(2006)79.

[5]H.H.Le,E.M.Carlson,J.P.Chua,S.M.Belcher,BisphenolAisreleasedfrom poly-carbonatedrinkingbottlesandmimicstheneurotoxicactionsofestrogenin developingcerebellarneurons,Toxicol.Lett.176(2008)149.

[6]W.Dekant,W.Voelkel,HumanexposuretobisphenolAbybiomonitoring: methods,resultsandassessmentofenvironmentalexposures,Toxicol.Appl. Pharmacol.228(2008)114.

[7]W.Volkel,M.Kiranoglu,H.Fromme,Determinationoffreeandtotalbisphenol Ainhumanurinetoassessdailyuptakeasabasisforavalidriskassessment, Toxicol.Lett.179(2008)155.

[8]I.Rykowska,W.Wasiak,Properties,threats,andmethodsofanalysisof bisphe-nolAanditsderivatives,ActaChromatogr.16(2006)7.

[9]S.Andreescu,O.A.Sadik,Correlationofanalytestructures withbiosensor responsesusingthedetectionofphenolicestrogensasamodel,Anal.Chem.76 (3)(2004)552.

[10]E.Dempsey,D.Diamond,A.Collier,Developmentofabiosensorforendocrine disruptingcompoundsbasedontyrosinaseentrappedwithinapoly(thionine) film,Biosen.Bioelectron.20(2004)367.

[11]D.G.Mita,A.Attanasio,F.Arduini,N.Diano,V.Grano,U.Bencivenga,S.Rossi, A.Amine,D.Moscone,EnzymaticdeterminationofBPAbymeansoftyrosinase immobilizedondifferentcarboncarriers,Biosens.Bioelectron.23(2007)60.

[12]H.Notsu,T.Tatsuma,A.Fujishima,Tyrosinase-modifiedboron-dopeddiamond electrodesforthedeterminationofphenolderivatives,J.Electroanal.Chem.523 (2002)86.

[13]M.Portaccio,D.diTuoro,F.Arduini,M.Lepore,D.G.Mita,N.Diano,L.Mita, D.Moscone,Athionine-modifiedcarbonpasteamperometricbiosensorfor catecholandbisphenolAdetermination,Biosens.Bioelectron.25(2010)2003.

[14]R.S.J.Alkasir,M.Ganesana,Y.H.Won,L.Stanciu,S.Andreescu,Enzyme function-alizednanoparticlesforelectrochemicalbiosensors:acomparativestudywith applicationsforthedetectionofbisphenolA,Biosen.Bioelectron.26(2010)43.

[15]M.T.Sulak,E.Erhan,B.Keskinler,Amperometricphenolbiosensorbasedon horseradishperoxidaseentrappedPVFandPPycompositefilmcoatedGC elec-trode,Appl.Biochem.Biotechnol.160(2010)856.

[16]M.Portaccio,S.diMartino,P.Maiuri,D.Durante,P.deLuca,M.Lepore,U. Bencivenga,S.Rossi,A.deMaio,D.G.Mita,Biosensorsforphenoliccompounds: thecatecholasasubstratemodel,J.Mol.Catal.B:Enzym41(2006)97.

[17]L.Gianfreda,F.Xu,J.M.Bollag,Laccases:ausefulgroupofoxidoreductive enzymes,Bioremediat.J.3(1999)1.

[18]A.I.Yaropolov,O.V.Skorobogatko,S.S.Vartanov,S.D.Varfolomeyev,Laccase properties,catalyticmechanism,andapplicability,Appl.Biochem.Biotechnol. 49(1994)257.

[19]E.I.Solomon,U.M.Sundaram,T.E.Machonkin,Multicopperoxidasesand oxy-genases,Chem.Rev.9(1996)2563.

[20]T.Fukuda,H.Uchida,Y.Takashima,T.Uwajima,T.Kawabata,M.Suzuki, Degra-dationofbisphenolAbypurifiedlaccasefromtrametesvillosa,Biochem.Bioph. Res.Co.284(2001)704.

[21]M.Michizoe,H.Ichinose,N.Kamiya,T.Maruyama,M.Goto,Biodegradationof phenolicenvironmentalpollutantsbyasurfactant–laccasecomplexinorganic media,J.Biosci.Bioeng.99(2005)642.

[22]T.Chairin,T.Nitheranont,A.Watanabe,Y.Asada,C.Khanongnuch,S. Lumy-ong,BiodegradationofbisphenolAanddecolorizationofsyntheticdyesby

(8)

laccasefromwhite-rotfungustrametespolyzona,Appl.Biochem.Biotechnol. 169(2013)539.

[23]A.Majcherczyk,C.Johannes,A.Huttermann,Oxidationofpolycyclicaromatic hydrocarbons(PAH)bylaccaseofTrametesversicolor,EnzymeMicrobiol. Tech-nol.22(1998)335.

[24]Y.J.Kim,J.A.Nicell,Impactofreactionconditionsonthelaccase-catalyzed con-versionofbisphenolA,Bioresour.Technol.97(2006)1431.

[25]H.P.Call,I.Mucke,History,overviewandapplicationsofmediatedlignolytic systems,especiallylaccase-mediator-systems(Lignozym®-process),J. Biotech-nol.53(1997)163.

[26]C.L. Chen, A. Potthast, T. Rosenau, J.S. Gratzl, A.G. Kirkman, D. Nagai, T. Miyakoshi, Laccase-catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene using ABTS as mediator, J. Mol. Catal. B: Enzym. 8 (2000) 213.

[27]A.Potthast,T.Rosenau,K.Fischer,Oxidationofbenzylalcoholsbythe laccase-mediatorsystem(LMS)–acomprehensivekineticdescription,Holzforschung 55(2001)47.

[28]W.Zheng,H.Y.Zhao,J.X.Zhang,H.M.Zhou,X.X.Xu,Y.B.Wang,Y.Cheng,B.Z. Jang,Aglucose/O2biofuelcellbaseonnanographeneplatelet-modified elec-trodes,Electrochem.Commum.12(2010)869.

[29]G.Tayhas,R.Palmore,H.H.Kim,Electro-enzymicreductionofdioxygentowater inthecathodecompartmentofabiofuelcell,J.Electroanal.Chem.565(1999) 110.

[30]R.A. Rincón, C. Lau, H.R. Luckarift, K.E. Garcia, E. Adkins, G.R. Johnson, P. Atanassov, Enzymatic fuel cells: integrating flow-through anode and air-breathingcathodeintoamembrane-lessbiofuelcelldesign,Biosen. Bio-electron.27(2011)132.

[31]F.Trudeau,F.Daigle,D.Leech,Reagentlessmediatedlacasseenzyme elec-trode for the detection of respiratory poisons, Anal. Chem. 69 (1997) 882.

[32]B.A.Kuznetsov,G.P.Shumakovich,O.V.Koroleva,A.I.Yaropolov,On applicabil-ityoflaccaseaslabelinthemediatedandmediatorlesselectroimmunoassay: effectofdistanceonthedirectelectrontransferbetweenlaccaseandelectrode, Biosens.Bioelectron.16(2001)73.

[33]R.Szamocki,V.Flexer,L.Levin,F.Forchiasin,E.J.Calvo,Oxygencathodebased onalayer-by-layerself-assembledlaccaseandosmiumredoxmediator, Elec-trochim.Acta54(2009)1970.

[34]T.Kudanga,G.S.Nyanhongo,G.M.Guebitz,S.Burton,Potentialapplicationsof laccase-mediatedcouplingandgraftingreactions:areview,EnzymeMicrob. Technol.48(2011)195.

[35]A.A.Ensafi,H.Karimi-Maleh,Ferrocenedicarboxylicacidmodifiedmultiwall carbonnanotubespasteelectrodeforvoltammetricdeterminationofsulfite, Int.J.Electrochem.Sci.5(2010)392.

[36]M.Zhang,W.Gorski,Electrochemicalsensingbasedonredoxmediationat carbonnanotubes,Anal.Chem.77(2005)3960.

[37]D.R. Shobha Jeykumari, S. Ramaprabhu, S. Sriman Narayanan, A thionine functionalized multiwalled carbon nanotube modified elec-trode for the determination of hydrogen peroxide, Carbon 45 (2007) 1340.

[38]J.Razumiene,J.Barkauskas,V.Kubilius,R.Meskys,V.Laurinavicius,Modified graphitizedcarbonblackastransducingmaterialforreagentlessH2O2and enzymesensors,Talanta67(2005)783.

[39]S.B.Hocevar,B.Ogorevc,Preparationandcharacterizationofcarbonpaste micro-electrodebasedoncarbonnano-particles,Talanta74(2007)405.

[40]I.G.Svegl,M.Bele,B.Ogorevc,Carbonblacknanoparticlesfilmelectrode pre-paredbyusingsubstrate-induceddepositionapproach,Anal.Chim.Acta628 (2008)173.

[41]F.Arduini,A.Amine,C.Majorani,F.diGiorgio,D.deFelicis,F.Cataldo,D. Moscone,G.Palleschi,Highperformanceelectrochemicalsensorbasedon modifiedscreen-printedelectrodeswithcost-effectivedispersionof nanos-tructuredcarbonblack,Electrochem.Commun.12(2010)346.

[42]F.Arduini,C.Majorani,A.Amine,D.Moscone,G.Palleschi,Hg2+detection bymeasuringthiolgroupswithahighlysensitivescreen-printedelectrode modifiedwithananostructuredcarbonblackfilm,Electrochim.Acta56(2011) 4209.

[43]F.Arduini,F.diNardo,A.Amine,L.Micheli,G.Palleschi,D.Moscone,Carbon black-modifiedscreen-printedelectrodesaselectroanalyticaltools, Electro-analysis24(2012)743.

[44]F.Arduini,F.diGiorgio,A.Amine,F.Cataldo,D.Moscone,G.Palleschi, Elec-troanalyticalcharacterizationofcarbonblacknanomaterialpasteelectrode: developmentofhighlysensitivetyrosinasebiosensorforcatecholdetection, Anal.Lett.43(2010)1688.

[45]T.W.B.Lo,L.Aldous,R.G.Compton,Theuseofnano-carbonasanalternativeto multi-walledcarbonnanotubesinmodifiedelectrodesforadsorptivestripping voltammetry,Sens.ActuatorsB162(2012)361.

[46]N.Spãtaru,B.V.Sarada,D.A.Tryk,A.Fujishima,Anodicvoltammetryofxanthine, theophylline,theobromineandcaffeineatconductivediamondelectrodesand itsanalyticalapplication,Electroanalysis14(2002)721.

[47]J.Wang,AnalyticalElectrochemistry,2nded.,Wiley,NewYork,2001,pp.37.

[48]V.CarraleroSanz,M.LuzMena,A.Gonzalez-Cortes,P.Yanez-Sedeno,J.M. Pingarron,Developmentofatyrosinasebiosensorbasedongold nanoparticles-modifiedglassy carbon electrodes:application to the measurementofa bioelectrochemicalpolyphenolsindexinwines,Anal.Chim.Acta528(2005) 1.

[49]O.V.Morozova,G.P.Shumakovich,M.A.Gorbacheva,S.V.Shleev,A.I.Yaropolov, Bluelaccases,Biochemistry(Moscow)72(2007)1136.

[50]C.Nicolucci,S.Rossi,C.Menale,T.Godjevargova,Y.Ivanov,M.Bianco,L.Mita, U.Bencivenga,D.G.Mita,N.Diano,Biodegradationofbisphenolswith immobi-lizedlaccaseortyrosinaseonpolyacrylonitrilebeads,Biodegradation22(2011) 673.

[51]J.E.Biles,T.P.McNeal,T.H.Begley,H.C.Hollifield,Determinationofbisphenol-A in reusable polycarbonate food-contact plastics and migration to food-simulatingliquids,J.Agric.FoodChem.45(1997)3541.

[52]D.G.Mita,A.Attanasio,N.Diano,V.Grano,U.Bencivenga,S.Rossi,P.Canciglia, L.Mita,M.Portaccio,F.Arduini,A.Amine,D.Moscone,Bioremediationand biodeterminationofbisphenolA(BPA)inaqueoussolutions,in:M.Marino,D.G. Mita(Eds.),TheEndocrineDisruptors,TransworldResearchNetwork,India, 2007,p.1.

Figura

Fig. 1. Chemical structure of BPA (a) and of thionine (b).
Fig. 2. (a) Fabrication process of laccase biosensor based on screen-printed electrode modified with thionine–carbon black and Nafion
Fig. 3. (a) Cyclic voltammetry for SPE with thionine solution in the absence (curve 1) and in the presences (curve 2) of the laccase/BPA reaction products
Fig. 5. Formal redox potential as a function of pH.
+3

Riferimenti

Documenti correlati

Meanwhile laboratory methods and classical analytical equipment can be used to detect nutrient levels (in particular phosphate) with high precision and

Le temperature miti che hanno caratterizzato i primi mesi del- l’anno hanno favorito il risveglio delle prime specie arboree che hanno leggermente an- ticipato la

“cultural and creative industries are those industries that are based on cultural values, cultural diversity, individual and/or collective creativity, skills

Sebbene nessun sistema di monitoraggio strutturale può prescindere dalla valutazione di figure professionali compe- tenti, alla luce della vastità del patrimonio edilizio

Nell’ambito del settore delle Telecomunicazioni, HERE Technologies ha da poco pre- sentato un nuovo innovativo prodotto, “HERE Cellular Signal”, che fornisce per ciascun

BENASSI V., BUCCELLATO A., CALDARINI C., CATALANO P., DE ANGE- LIS F., EGIDI R., MINOZZI S., MUSCO S., NAVA A., PANTANO W., PARIS R., PESCUCCI L., La donna come forza lavoro nella

The Archetypes class contains the thematic archetypes to which a story can be referred; the Artifact class contains the media objects, organized according to the FRBR model;

Franco Amarelli – Jean-Michel Carrié – Francesco Paolo Casavola Fabrizio Conca – Lellia Cracco Ruggini – Ugo Criscuolo Giovanni Cupaiuolo – Lucio De Giovanni – Lietta